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Abstract: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted 

to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence 

of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial 

design clinical trial found that neither selenium nor vitamin E reduced the incidence of 

prostate cancer after seven years and that vitamin E was associated with a 17% increased 

risk of prostate cancer compared to placebo. The null result was surprising given the strong 

preclinical and clinical evidence suggesting chemopreventive activity of selenium. 

Potential explanations for the null findings include the agent formulation and dose, the 

characteristics of the cohort, and the study design. It is likely that only specific 

subpopulations may benefit from selenium supplementation; therefore, future studies 

should consider the baseline selenium status of the participants, age of the cohort, and 

genotype of specific selenoproteins, among other characteristics, in order to determine the 

activity of selenium in cancer prevention. 
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1. Introduction 

Prostate cancer is the second leading cause of cancer death among men in the United States (US) 

and is the most commonly diagnosed non-cutaneous cancer, with 1 in 6 men expected to be diagnosed 

with this disease in their lifetimes [1]. In 2012, an estimated 241,740 new cases were diagnosed in the 

US and approximately 28,170 men died of prostate cancer [2]. While 81% of prostate cancers are 

diagnosed in the early stage and treated effectively with surgery or radiation, these treatments often 

result in poorer quality of life due to side effects like incontinence, impotence, or declining bowel 

function [3,4]. Current treatments for advanced prostate cancer are largely palliative. Many known risk 

factors for prostate cancer are non-modifiable, including age, race, and genetic factors, whereas 

modifiable risk factors associated with prostate cancer include obesity, physical activity, and possibly 

dietary factors [5]. Prostate cancer screening is controversial due to overdiagnosis and overtreatment of 

non-fatal disease, and the United States Preventive Services Task Force strongly recommends against 

prostate-specific antigen (PSA) screening for prostate cancer [6]. Because prostate cancer has a long 

natural history, mainly non-modifiable risk factors, and an incidence rate that far exceeds the mortality 

rate, a focus on prevention over screening or early detection offers an appealing area of investigation. 

Goals for prevention strategies should focus on reducing cancer incidence and delaying cancer 

diagnosis until the individual succumbs to other causes [7]. 

Because of the established role of androgens in prostate carcinogenesis and the common use of  

anti-androgenic therapy for treatment of advanced or recurring prostate cancer, the first large 

prevention trials for prostate cancer targeted androgens. The Prostate Cancer Prevention Trial (PCPT), 

sponsored by the National Cancer Institute (NCI) and conducted by the Southwest Oncology Group 

(SWOG), was the first such trial. The aim of PCPT was to determine whether the 5α-reductase 

inhibitor (5ARI) finasteride would reduce the prevalence of prostate cancer after 7 years of 

treatment [8]. Because 5α-reductase catalyzes the conversion of testosterone to the more potent 

androgen dihydrotestosterone and androgens are promoters of prostate carcinogenesis, investigators 

hypothesized that pharmacological inhibition of this enzyme would reduce prostate cancer prevalence. 

Men (n = 18,882) over the age of 55 without evidence of prostate cancer detected by digital rectal 

exam (DRE) or prostate-specific antigen (PSA) levels were randomized to receive either 5 mg/day 

finasteride or placebo for 7 years. Annual DRE and PSA tests were administered and prostate biopsies 

were recommended for patients with abnormal results. All men without prostate cancer diagnoses at 

the end of the study were also requested to undergo biopsies; 7551 men agreed to this end-of-study 

biopsy. After 7 years, the prevalence of prostate cancer was reduced by 24.8% in the finasteride group 

compared to the control group. However, this promising result was accompanied by a 27% increase in 

the rate of high-grade prostate cancer (defined as having a Gleason score of 7 to 10) in the finasteride 

group, dampening enthusiasm for the use of finasteride as a chemopreventive agent. Among the 

reasons offered to explain this unexpected outcome included detection bias in the finasteride group. 

Detection bias in the finasteride group was thought to be due to increased sampling density because 

finasteride reduces the volume of the prostate gland [9]. 

The Reduction by Dutasteride of Prostate Cancer Events (REDUCE) study was designed to 

determine the effect of dutasteride on incident prostate cancer. Dutasteride inhibits 5α-reductase types 1 

and 2 while finasteride only inhibits type 1. In this four-year multicenter, randomized, double-blind, 
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placebo-controlled, parallel group study, 6729 men were enrolled. In addition to a negative baseline 

biopsy, inclusion criteria were based on factors that placed these men at high risk of prostate cancer 

including age, slightly elevated serum PSA levels (2.5 to 10.0 ng/mL), or previous prostate biopsies 

due to suspected cancer. Participants were randomized to receive either 0.5 mg dutasteride or placebo 

daily for 6 months. Free and total PSA levels were measured every six months and biopsies were 

performed after 2 and 4 years or when clinically indicated. Dutasteride was associated with a relative 

risk reduction of prostate cancer of 22.8%. During the four-year study period, rates of high grade 

prostate cancer were similar between the dutasteride and the placebo group, though in years 3 and 4, 

there was a small statistically significant increase in rates of tumors with Gleason scores of 8–10 in the 

dutasteride group [10]. Due to the concerns about increasing risks of high grade prostate cancer, a US 

Food and Drug Administration (FDA) advisory panel voted overwhelmingly not to approve finasteride 

or dutasteride for prostate cancer prevention [11].  

Concomitant with the interest in anti-androgens, a totally independent approach to prostate cancer 

chemoprevention involved nutritional agents, specifically vitamin E and selenium. Secondary analyses 

of other large-scale chemoprevention trials had suggested that these compounds may decrease risk of 

prostate cancer [12,13]. Further controlled intervention trials, human observational studies, and 

preclinical studies all provided evidence for potential chemopreventive efficacy of these compounds. 

Adding to the appeal, both agents are naturally-occurring micronutrients essential to human health that 

have antioxidant activities. In this review, we will describe the rationale, results, and implications of 

the Selenium and Vitamin E Cancer Prevention Trial (SELECT). 

2. Selenium  

2.1. Dietary Sources and Supplements  

Selenium is a nutritionally essential trace mineral. Selenium enters the food chain from the soil in 

the form of selenate (SeO4
2
) or selenite (SeO3

−2
) and is converted in plants to organic forms, largely  

L-selenomethionine and to a lesser extent L-selenocysteine [14,15]. Selenium concentrations in foods 

can therefore vary widely based on the selenium content of the soil. For example, Ireland, Israel, and 

the western US have high soil selenium content, while certain regions of China have very low soil 

selenium content [16]. In fact, Keshan disease, a congestive cardiomyopathy, first observed in Keshan 

County of Heilongjiang province, Northeast China, was found to be caused by a combination of 

dietary deficiency of selenium and the presence of a mutated strain of Coxsackievirus [17]. 

The richest dietary sources of selenium are Brazil nuts, meats, fish, eggs, and cereals. Selenium is 

also found in lesser amounts in cruciferous vegetables, garlic, and mushrooms [18,19]. 

Selenium is available in supplement form as selenomethionine or as selenized yeast, yeast grown in 

a selenium-rich medium. Commercially available selenized yeast can provide up to 1000 to 2000 μg/g 

selenium, over 90% of which is selenomethionine [20]. Certain selenium supplements, particularly 

weight loss products or infant formulas, contain sodium selenite or sodium selenate, though these 

inorganic forms are not highly bioavailable.  

  



Nutrients 2013, 5 1125 

 

 

2.2. Selenium Metabolism and Biological Activities  

Dietary selenium, as selenomethionine, selenocysteine, selenate, or selenite, is essential for 

selenoprotein synthesis. Selenomethionine can be nonspecifically incorporated into proteins in place of 

methionine or converted to selenocysteine via a trans-sulfuration pathway. Selenocysteine, either from 

the diet or derived from selenomethionine, can be converted to hydrogen selenide, a key metabolite 

integral to both selenocysteine insertion into proteins and selenium excretion. Selenate is reduced to 

selenite by glutathione, and selenite undergoes further glutathione reduction to hydrogen selenide 

(Figure 1) [21–23]. Therefore, all dietary forms of selenium can be used for selenoprotein synthesis 

following conversion to hydrogen selenide. 

Figure 1. Selenium biology. 
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Selenophosphate synthetase converts hydrogen selenide to selenophosphate. Selenophosphate then 

reacts with L-seryl-tRNA to form L-selenocysteinyl-tRNA, the latter of which is inserted into 

selenoproteins where specified by the UGA codon in mRNA [24]. Selenocysteine, considered the 21st 

amino acid, is integral to the activity of selenoproteins [24]. Twenty-five human selenoproteins have 

been identified, including glutathione peroxidases (GPx), thioredoxin reductases (TR), thyroid hormone 

deiodinases, selenophosphate synthetase, and several uncharacterized proteins (reviewed in [25]). 

These selenoproteins play an important role in maintaining redox balance and proper cellular 

functioning [26]. 

Hydrogen selenide can also be mono-, di-, or tri-methylated for excretion. Methyl selenol is the 

major urinary excretory form of selenium. With larger doses of selenium, dimethyl selenium is exhaled 

from the lungs and the trimethylselenonium ion is excreted in the urine [27]. While the methylation 

pathway is the main excretion pathway of selenium, selenosugars have also been reported in the  

urine [28]. The activities of intracellular selenium metabolites including methyl selenol determine the 

clinical efficacy of selenium, including its chemopreventive effects [29–31]. 

2.3. Nutritional Requirements 

The recommended dietary allowance (RDA) for selenium for adult men and women is  

55 μg/day [32]. This RDA is based on the daily selenium intake necessary for maximal activity of 

GPx-3. However, with an intake of 55 μg/day, not all selenoproteins’ activity levels would be 

maximal. Others have suggested that an RDA of 80 μg/day for men is more appropriate for achieving 

selenium balance [33]. Deficiency symptoms, including loss of immunocompetency, progression of 

viral infections, and reproductive symptoms, became apparent with intake <11 μg/day [34,35]. 

Symptoms of selenium toxicity, or selenosis, including hair and nail brittleness/loss, gastrointestinal 

disturbances, skin rash, garlic breath odor, fatigue, or irritability, appeared with 800 μg/day of 

selenium intake. Based on this observation and using an “uncertainty factor” of 2, half of 800 μg/day, 

i.e., 400 μg/day is considered the tolerable upper limit [32]. 

According to reports using data from the National Health and Nutrition Examination Survey 

(NHANES) 2003–2006, a nationally representative cross-sectional survey, the usual intake for 

individuals over the age of 19 was 109 ± 1 μg/day from naturally-occurring dietary sources and  

126 ± 1 μg/day from naturally occurring sources plus supplements. Less than 1% of adults had intakes 

below the estimated average requirements (EAR) and only 0.1% ± 0.4% had intakes above the 

tolerable upper limit [36]. 

NHANES data from 2003 to 2006 also show that 19% ± 1% of males reported taking a dietary 

supplement that contained selenium, including multivitamin-multimineral supplements. Older men 

were more likely to take any dietary supplements, including those containing selenium. Of men  

51–70 years of age and over the age of 70, 30% ± 2% and 32% ± 2% were taking supplemental 

selenium, respectively [37]. Overall, for all individuals, users of any dietary supplement were more 

likely to be of non-Hispanic white race, have lower BMI, more education, be less likely to smoke, be 

more physically active, and consume more fruits and vegetables. For men, but not women, selenium 

supplement users had higher food selenium intake than non-selenium supplement users, suggesting 

that those taking supplements were not doing so out of nutritional need. However, selenium 
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supplementation did not affect the percentage of men (0.1% ± 0%) in the analysis who had inadequate 

selenium intake; in other words, men with already adequate dietary selenium were the same men using 

selenium supplements [38]. These NHANES analyses suggest that men in the US have adequate 

selenium intake. 

2.4. Prostate Cancer Prevention by Selenium—Rationale for SELECT 

Although the data are inconsistent, a number of preclinical and epidemiological studies have 

supported a role for selenium in inhibition of cancers, in some cases including prostate cancer [39–41]. 

In a review of animal studies investigating selenium’s chemopreventive efficacy, Combs and Gray 

noted that selenium significantly reduced tumor incidence in two-thirds of the studies and many of 

these studies showed tumor reductions of 50% or more in a variety of non-prostate cancer tumor  

sites [22]. 

Laboratory studies have been especially useful in highlighting potential antitumorigenic 

mechanisms of selenium. These studies have been reviewed in depth elsewhere [22,29,34].  

Cancer-relevant cellular pathways and physiological processes affected by selenium include 

carcinogen bioactivation, cell proliferation, apoptosis, and immune function. Many preclinical studies 

testing the chemopreventive efficacy and mechanisms of selenium have used inorganic selenium in the 

form of selenite.  

Very few in vivo prostate cancer prevention studies that used tumor endpoints have been conducted 

in animal models (Table 1). Two studies with designs relevant to SELECT tested the efficacy of  

L-selenomethionine or DL-α-tocopherol on prostate cancer incidence and multiplicity and reported null 

findings [42,43]. Other in vivo prevention studies either only used selenium in combination with other 

agents and not alone or used methylated or inorganic selenium [44–47]. Despite the null findings in 

animal studies, epidemiological studies and analyses of data on secondary endpoints in clinical trials 

provided evidence for potential effects of selenium. 

2.4.1. Epidemiological Studies 

The first epidemiological evidence for cancer preventive activities of selenium came from 

ecological analyses that suggested an association between higher risk and mortality of certain cancers 

in selenium-deficient regions of the US compared to selenium-replete areas [48,49]. Numerous  

case-control studies have found that a general trend exists between higher selenium levels (as assessed 

by pre-diagnostic blood levels, serum levels, toenail selenium levels, or dietary selenium intake) and 

decreased cancer incidence and mortality (reviewed in [22,34,50]). 
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Table 1. In vivo animal studies that assessed prostate cancer prevention by selenium. 

Animal Model [Ref.] Agent and Dose Results 

Studies relevant to SELECT trial design 

N-Nitroso-N-methylurea (MNU) 

+ testosterone-treated  

Wistar-Unilever rats [42] 

L-selenomethionine (1.5 or 3 mg/kg diet)  

DL-α-tocopherol (4000 or 2000 mg/kg diet)  

L-selenomethionine (3 mg/kg diet ) + DL-α-tocopherol (2000 or  

5000 mg/kg diet) 

Selenized yeast (target Se levels of 9 or 3 mg/kg diet)  

Control  

No effect on prostate cancer incidence in any group 

   

Testosterone + estradiol-treated 

NBL rat [43] 

L-selenomethionine (1.5 or 3.0 mg/kg diet)  

DL-α-tocopherol (4000 or 2000 mg/kg diet)  

Control  

No effect on prostate tumor incidence, multiplicity, or 

death in any group 

Studies on selenium in combination with other agents only 

Lady transgenic mice [44] α-tocopherol succinate (800 IU) + L-selenomethionine (200 μg)  

+ lycopene (50 mg)  

α-tocopherol succinate (800 IU) + L-selenomethionine (200 μg)  

Control  

Increased survival (p < 0.0001) in both treatment groups 

compared to control, no effect on prostate tumor incidence 

in any group 

   

Lady transgenic mice [45] α-tocopherol succinate (800 IU) + L-selenomethionine (200 μg) + lycopene 

(50 mg)  

Control  

Four-fold decrease in prostate cancer incidence in animals 

treated with 3 agents combined compared to control 

animals (p < 0.0001) 

Studies on other forms of selenium 

Transgenic adenocarcinoma 

mouse prostate (TRAMP)  

model [46] 

Methylseleninic acid (3 mg selenium/kg body weight) for 10 weeks  

Methylseleninic acid (3 mg selenium/kg body weight) for 16 weeks  

Control 

Decreased cancer-specific mortality in methylseleninic acid 

groups compared to control group (p10 weeks = 0.0078,  

p16 weeks = 0.0385) 

   

MNU + testosterone-treated 

Wistar rats [47] 

Sodium selenite (4 mg/L in drinking water/day)  

Control 

No effect on prostate intraepithelial neoplasia, decreased 

prostate cancer multiplicity by 44.6% in sodium selenite 

group compared to control group 
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Studies of the association of selenium and prostate cancer specifically support this same general 

association [34,50,51]. In a matched case-control study nested within the prospective cohort Health 

Professionals Follow-Up Study, the highest quintile of toenail selenium level was associated with a 

decreased risk of advanced prostate cancer compared to the lowest quintile (OR: 0.49, 95% CI: 0.25–0.96, 

p-trend = 0.11) [52]. This decreased risk was more pronounced after adjustment for known prostate 

cancer risk factors including family history and body mass index (OR: 0.35, 95% CI: 0.16–0.78,  

p-trend = 0.03). However, this association was not observed in two nested case-control studies among 

men in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The 

investigators found that plasma selenium was not associated with prostate cancer risk. Reasons for the 

discrepancies in findings are unclear, but the authors noted that the European cohort had substantially 

lower plasma selenium concentrations (mean: 70 μg/L) than those found in men in the US (>100 μg/L). 

Therefore, it is possible that the selenium levels of men in even the highest quintile in the EPIC cohort 

were below levels necessary for cancer prevention. 

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) reviewed 

17 cohort studies, 3 ecological studies, 14 case-control studies, and 1 clinical trial (NPC, see below) 

and concluded that selenium and foods containing selenium probably protect against prostate cancer 

due to dose-response relationships and evidence for plausible mechanisms [53]. A meta-analysis in this 

report indicated that there was a 5% decrease in the risk of prostate cancer and a 13% decrease in the 

risk of advanced or aggressive prostate cancer for every 10 ng/mL increase in plasma selenium or a 

20% decrease in the risk of advanced or aggressive prostate cancer for every 100 ng/g increase in 

toenail selenium. While this report was released after the design and implementation of SELECT and 

the report focused on the rationale and implications of SELECT, many of the studies used in the 

review and meta-analysis were published prior to the start of the trial. Further, the findings of this 

report are important to the future of selenium and cancer prevention. 

2.4.2. Clinical Trials 

Large randomized trials in Qidong and Linxian, China, were among the first to demonstrate cancer 

preventive activities of selenium in humans, though these trials investigated liver, gastric, and 

esophageal, and not prostate, cancers. In a community intervention trial in Qidong, a selenium-deficient 

region, salt supplemented with sodium selenite, which provided 50–80 μg of selenium per day, 

decreased the incidence of primary liver cancer by 35.1% over 8 years in regions receiving the salt 

compared to control regions [54]. When the intervention ended and the selenized salt was no longer 

administered, incidence of primary liver cancer increased in the intervention regions. A concurrent 

clinical trial in the same region among 226 hepatitis B surface antigen positive participants showed 

that 200 μg selenium as selenized yeast daily for 4 years resulted in no cases of primary liver cancer 

among 113 individuals compared to 7/113 new cases in the placebo group [54]. 

The Linxian Nutritional Intervention Trials aimed to determine whether supplementation with 

multiple vitamins and minerals would decrease the risk of esophageal and gastric cardia cancers 

among those with esophageal dysplasia. In the first trial, 29,854 participants 40–69 years old with 

esophageal dysplasia were recruited and randomized to receive one of eight combinations of vitamins 

and minerals. Among participants receiving Factor D, which consisted of 50 μg selenium, 30 mg 
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vitamin E, and 15 mg β-carotene daily, cancer mortality decreased by 13% and stomach cancer 

mortality decreased by 21% over 5 years compared to those not receiving Factor D [55]. In the  

second trial, 3000 individuals with esophageal dysplasia were randomized to receive either a 

multivitamin/multimineral supplement containing 12 micronutrients including 50 μg selenium and a 

separate 15 mg β-carotene supplement daily, or two placebos. After 6 years of follow-up, total cancer 

mortality decreased by 4%, gastric/esophageal cancer mortality decreased by 8%, and esophageal 

cancer mortality decreased by 16% in the supplement group compared to the placebo group; however, 

none of these decreases was statistically significant and cancer incidence rates were similar between 

the two groups [56]. 

The primary hypothesis-generating trial that prompted the use of selenium in SELECT was the 

Nutritional Prevention of Cancer (NPC) Trial [13]. This randomized, double-blind, placebo-controlled 

trial enrolled 1312 participants from the eastern US who had a history of skin cancer. The aim of the 

study was to test the efficacy of selenium supplementation on preventing non-melanoma skin cancer. 

Secondary endpoints included total cancer incidence, total cancer mortality, and incidence and 

mortality of lung, prostate, and colorectal cancers. Participants were randomized to receive either  

200 μg of selenium in the form of selenized yeast or a placebo daily. After 8271 person-years of 

follow-up, the primary endpoint of skin cancer was not favorably affected by the selenium 

intervention. However, an observed decrease in other cancer incidence and mortality became evident. 

Prostate cancer was decreased in the selenium group by 64% after 4.5 years and by 49% after 10 years 

(incidence RR: 0.51, 95% CI: 0.29–0.87). This decrease was most pronounced in former smokers. 

Stratified analysis showed that selenium supplementation lowered the incidence of prostate cancer in 

those in the lowest two tertiles of baseline selenium status (RRtert1: 0.14, 95% CI: 0.02–0.59; RRtert2: 

0.39, 95% CI: 0.14–0.99), but not in those in the highest tertile of baseline selenium status (RR: 1.20, 

95% CI: 0.50–2.97). A significant interaction between treatment group and baseline selenium status 

was observed. The risk reduction for prostate cancer was also confined to those men who had baseline 

PSA levels ≤ 4.0 ng/mL (RR: 0.35, 95% CI: 0.13–0.87), although no significant interaction was 

observed between treatment and baseline PSA [57].  

Following the NPC trial, a small pilot study was initiated to test the effect of selenium 

supplementation on selenium levels in the prostate and seminal vesicles [58]. Men with organ-confined 

prostate cancer (n = 66) who were planning on surgical resection of the prostate were randomized to 

receive either 200 μg L-selenomethionine daily for 14–31 days or standard of care observation (control 

group) during the pre-surgical period. Prostate selenium concentrations were 22% higher in the 

selenium group than in the control group while selenium concentrations in the seminal vesicles were 

similar in both groups. This study demonstrated that supplemental selenium selectively accumulated in 

the prostate, providing additional biological plausibility for chemopreventive effects of selenium 

against prostate cancer. 

The Alpha-Tocopherol, β-Carotene Cancer Prevention (ATBC) study also served as a  

hypothesis-generating trial for SELECT. In this randomized, double-blind, placebo-controlled trial of 

29,133 male smokers aged 50–69 at enrollment, the primary endpoint of lung cancer incidence was not 

affected by alpha-tocopherol intake. However, as a secondary endpoint, the 50 mg/day alpha-tocopherol 

decreased the incidence of prostate cancer from 17.8/10,000 person-years in the placebo group to  

11.7 in the α-tocopherol group after 5–8 years of follow-up [59]. Preclinical evidence, as well as 
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findings from the Linxian trials, suggested that the combination of selenium and vitamin E might offer 

additional protection for prostate cancer prevention. 

3. SELECT 

3.1. Rationale and Objectives 

In light of findings in the NPC and ATBC trials, the Selenium and Vitamin E Cancer Prevention 

Trial (SELECT) was funded by the NCI and implemented by SWOG. SELECT represented the second 

phase III NCI-sponsored prostate cancer prevention trial.  

The primary objective of SELECT was to assess the efficacy of selenium and vitamin E alone and 

in combination on the incidence of prostate cancer. Pre-specified secondary endpoints included 

prostate cancer-free survival, all cause mortality, incidence and mortality of other cancer types 

including lung and colorectal cancers, overall cancer incidence and survival, and disease potentially 

impacted by chronic administration of selenium and/or vitamin E. Investigators also aimed to monitor 

serious cardiovascular events, assess quality of life, study serum micronutrient levels and prostate 

cancer risk, and evaluate biological and genetic markers associated with the risk of prostate cancer. 

3.2. Agent Formulation and Dose 

Despite the use of selenized yeast in the NPC trial [13], L-selenomethionine was chosen for 

SELECT, based on the advice of an NCI-sponsored panel of experts. This recommendation was 

founded on large batch-to-batch variability and lack of commercial availability of selenized yeast. 

Further, laboratory analyses had determined that L-selenomethionine was the predominant selenium 

species in selenized yeast available at the time. The daily dose of 200 μg was similar to the dose of  

200 μg selenized yeast used in the NPC trial [13]; however the precise amount of selenium delivered 

by the selenized yeast was highly variable [60], so it is difficult to directly compare the doses between 

the two trials except to say that 200 μg L-selenomethionine delivers more selenium than 200 μg 

selenized yeast. 

The racemic mix of α-tocopherol, which includes the D- and L-isomers, was chosen based on the 

association of long-term supplementation with this formulation with reduced prostate cancer incidence 

in the ATBC trial. The dose of 400 mg/day was chosen based on its use in vitamin supplements 

(suggesting safety) and its potential benefits for non-cancer diseases, including cardiovascular disease 

and Alzheimer’s disease. However, this dose was eight times higher than that used in the ATBC study, 

50 mg/day [59]. 

3.3. Trial Design and Outcome Ascertainment 

SELECT was a prospective, randomized, double-blind, placebo-controlled 2 × 2 factorial design 

clinical trial of selenium and vitamin E alone and in combination in eligible healthy men who were at 

elevated risk by virtue of age and/or African ancestry. Participants were randomized to receive daily 

oral doses of either 200 μg selenium plus placebo, 400 mg α-tocopherol plus placebo, 200 μg selenium 

plus 400 mg α-tocopherol, or two placebos. The planned duration of the study was 12 years with a  

5-year accrual period, and 7–12 years of intervention. 
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A sample size of 32,400 men was required to address five predetermined comparisons: vitamin E 

vs. placebo, selenium vs. placebo, vitamin E plus selenium vs. placebo, vitamin E plus selenium vs. 

vitamin E alone, and vitamin E plus selenium vs. selenium alone. This sample size provided adequate 

power to detect ≥25% decreases in the incidence of prostate cancer for selenium or vitamin E alone 

and an additional 25% decrease for selenium and vitamin E combined compared to either agent alone. 

Prostate cancer was assessed based on a recommended routine clinical diagnostic evaluation, 

including yearly DRE and serum PSA measurement. Prostate biopsies were performed at the discretion 

of study physicians, with additional study recommendations of biopsy for participants with DRE 

suspicious for cancer or elevated PSA. No end-of-study biopsies were required.  

3.4. Recruitment, Enrollment, Cohort, and Baseline Characteristics 

Eligibility was based on elevated risk of prostate cancer due to age. Caucasian men ≥55 years old 

and African American men ≥50 years old were targeted. Other inclusion criteria required men to be 

healthy, have total PSA ≤ 4.0 ng/mL, have a DRE not suspicious for cancer, have no previous prostate 

cancer or high grade prostate intraepithelial neoplasia, have normal blood pressure, not be currently 

taking anticoagulation therapy, and be willing to stop taking off-study supplements [61]. A total of 

35,533 eligible men from the US, Canada, and Puerto Rico were enrolled in a 3-year period, exceeding 

the goals for both number of participants and for length of the accrual period. The cohort included  

21% minorities (12% African American, 7% Hispanic, and 2% other) [62]. Prostate cancer risk factors, 

including age, race, education level, baseline PSA, and smoking status were equally balanced among 

the four treatment groups following randomization [62]. 

3.5. Primary Endpoint Results 

Results from the trial were released in two reports [62,63]. An independent data and safety 

monitoring committee unanimously decided after 7 years of the planned 12-year study that supplement 

use should be discontinued due to lack of evidence of benefit. The first report of SELECT results 

included data current as of 23 October 2008, the date on which study sites were advised to discontinue 

supplement administration. The median follow-up time was 5.46 years with a range of 4.17–7.33 years. 

Rates of prostate cancer did not differ significantly among the four intervention arms. The hazard ratio 

(HR) of prostate cancer was 1.13 (99% CI: 0.95–1.35) for the vitamin E group, 1.04 (99% CI: 0.87–1.24) 

for the selenium group, and 1.05 (99% CI: 0.88–1.25) for the selenium + vitamin E group, relative to 

the placebo group (Table 2). 
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Table 2. Primary endpoint results from SELECT, first and second reports [62,63]. 

 First Report, October 2008  Second Report, July 2011  

 
Placebo  

(n = 8696) 

Vitamin E  

(n = 8737) 

Selenium  

(n = 8752) 

Selenium + Vitamin E  

(n = 8703) 

Placebo  

(n = 8696) 

Vitamin E  

(n = 8737) 

Selenium  

(n = 8752) 

Selenium + Vitamin E  

(n = 8702) 

Prostate cancer          

No. events 416 473 432 437 529 620 575 555 

HR (99% CI) 1 (reference) 
1.13  

(0.95–1.35) 

1.04  

(0.87–1.24) 

1.05  

(0.88–1.25) 
1 (reference) 

1.17  

(1.004–1.36) 
a
 

1.09  

(0.93–1.27) 

1.05  

(0.89–1.22) 

Method of diagnosis, n (%)         

Prostate biopsy 404 (97) 458 (97) 419 (97) 420 (96) n.r. 
b 

n.r. n.r. n.r. 

Other/unknown  12 (3) 15 (3) 13 (3) 17 (4) n.r. n.r. n.r. n.r. 

Gleason score, n (%)         

2–6 240 (66) 249 (63) 217 (60) 220 (60)     

4–6     286 (69) 310 (67) 281 (64) 281 (63) 

7 101 (28) 124 (31) 124 (34) 115 (32) 102 (24) 118 (25) 135 (31) 124 (28) 

8–10 24 (7) 23 (6) 20 (6) 30 (8) 31 (7) 37 (8) 26 (6) 40 (9) 

Not graded 51 77 71 72 110 155 133 110 

a p = 0.008. b n.r.: not reported. 



Nutrients 2013, 5 1134 

 

 

The second report included data current as of July 2011, which contained an additional  

54,464 person-years of follow up since the first report. An additional 521 prostate cancers were 

diagnosed, 12113 in the placebo group, 147 in the vitamin E group, 143 in the selenium group, and 

118 in the selenium + vitamin E group. The rates of prostate cancer detection in the selenium and  

selenium + vitamin E groups did not differ significantly from the rate in the placebo group. However, 

risk of prostate cancer in the vitamin E group was increased 17% compared to the placebo  

group (HR = 1.17, 99% CI: 1.004–1.36, p = 0.008). The 13% increase in risk seen in the vitamin E 

group in the first report, while not statistically significant, suggested that the later significant 17% 

increase in risk was not an outlier. Further, the graph of cumulative incidence of prostate cancer by 

supplement group suggests that the vitamin E group curve begins to diverge from the placebo curve by 

about 3–4 years after randomization (Figure 2). There was no increased risk of prostate cancer for the  

vitamin E + selenium group. 

Figure 2. Cumulative incidence of prostate cancer from both SELECT reports (a) Results 

from the 2009 initial report. Median follow-up time was 5.46 years. (b–d) Results from the 

2011 report including data on an additional 54,464 person-years of follow-up; (b) Vitamin E 

vs. placebo; (c) Selenium vs. placebo; (d) Vitamin E + selenium vs. placebo. Adapted  

from [62,63] with permission. 
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The majority of prostate cancers were diagnosed by prostate biopsy “for cause” due to increased 

PSA levels or abnormal DRE results. Most were early stage and low Gleason grade. Importantly, stage 

and grade did not differ by treatment group. In addition, when the entire study population was 

examined for PSA levels, levels did not differ by treatment group. 

3.6. Secondary Endpoints and Adverse Outcomes 

Secondary endpoints specified a priori included other cancers, including colorectal and lung cancer, 

total cancer incidence, cardiovascular events, diabetes, and deaths. There were no significant 

differences among treatment groups for any of these endpoints (Table 2). Type 2 diabetes mellitus was 

of particular interest because previous reports had linked higher prevalence with higher selenium  

levels and higher incidence with long-term selenium supplementation [64–66]. A somewhat, though 

non-significantly, increased risk of type 2 diabetes mellitus in the selenium arm (HR: 1.07; 99% CI: 

0.94–1.22) was observed in the first report. However, this slight increase was diminished in the second 

report (HR: 1.04; 99% CI: 0.93–1.17), suggesting that selenium’s possible link with diabetes was less 

concerning than previously thought. 

3.7. Adherence to Study Supplements 

Adherence to study supplements was assessed by pill counting and participant diaries. Serum levels 

of selenium (Table 3) and cholesterol-adjusted α-tocopherol and γ-tocopherol levels were also 

measured in a bioadherence subcohort. On average, adherence by pill count was 83% at year 1 and 

65% at year 5. Serum selenium and α-tocopherol levels rose only in participants randomized to receive 

those agents and not in the other groups, demonstrating good adherence and minimal drop-ins. The 

drop-in rate was also assessed via asking participants whether they took either supplement; rates were 

3.1% or less for vitamin E and 1.8% or less for selenium [62]. 

3.8. Follow-Up 

Following the discontinuation of supplement use and release of the primary data, SELECT 

transitioned into an observational cohort study, the SELECT Centralized Follow-up Study (SELECT 

CFU). As of December 2011, 17,761 participants, 58% of the 32,569 SELECT participants who were 

still alive and not refusing further contact, had enrolled in SELECT CFU [67]. In addition, four 

ancillary studies evaluating the effect of selenium and vitamin E on colon cancer screening procedures, 

memory changes, lung function, and age-related macular degeneration are ongoing.  
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Table 3. Secondary endpoints and adverse outcomes in SELECT by report date [62,63]. 

 First Report, October 2008  Second Report, July 2011  

Trial Arm 
Placebo  

(n = 8696) 

Vitamin E  

(n = 8737) 

Selenium  

(n = 8752) 

Selenium + Vitamin E  

(n = 8703) 

Placebo  

(n = 8696) 

Vitamin E  

(n = 8737) 

Selenium  

(n = 8752) 

Selenium + Vitamin E  

(n = 8702) 

Any cancer, including prostate a         

No. events 824 856 837 846 1108 1190 1132 1149 

HR (99% CI) 1 (reference) 1.03 (0.91–1.17) 1.01 (0.89–1.15) 1.02 (0.90–1.16) 1 (reference) 1.07 (0.96–1.19) 1.02 (0.92–1.14) 1.02 (0.92–1.12) 

Lung cancer         

No. events 67 67 75 78 92 104 94 104 

HR (99% CI) 1 (reference) 1.00 (0.64–1.55) 1.12 (0.73–1.72) 1.16 (0.76–1.78) 1 (reference) 1.11 (0.76–1.61) 1.02 (0.70–1.50) 1.11 (0.76–1.62) 

Colorectal cancer         

No. events 60 66 63 77 75 85 74 93 

HR (99% CI) 1 (reference) 1.09 (0.69–1.73) 1.05 (0.66–1.67) 1.28 (0.82–2.00) 1 (reference) 1.09 (0.72–1.64) 0.96 (0.63–1.46) 1.21 (0.81–1.81) 

Other primary cancer         

No. events 306 274 292 290 579 570 557 594 

HR (99% CI) 1 (reference) 0.89 (0.72–1.10) 0.95 (0.77–1.17) 0.94 (0.76–1.16) 1 (reference) 0.97 (0.83–1.14) 0.96 (0.83–1.13) 1.02 (0.92–1.14) 

Diabetes         

No. events 669 700 724 660 869 918 913 875 

HR (99% CI) 1 (reference) 1.04 (0.91–1.18) 1.07 (0.94–1.22) 0.97 (0.85–1.11) 1 (reference) 1.05 (0.93–1.17) 1.04 (0.93–1.17) 0.99 (0.89–1.12) 

Any cardiovascular event         

No. events 1050 1034 1080 1041 n.r. b n.r. n.r. n.r. 

HR (99% CI) 1 (reference) 0.98 (0.88–1.09) 1.02 (0.92–1.13) 0.99 (0.89-1.10)     

Cardiovascular events, grade ≥4         

No. events n.r. n.r. n.r. n.r. 969 909 939 943 

HR (99% CI)     1 (reference) 0.93 (0.83–1.05) 0.97 (0.86–1.09) 0.97 (0.86–1.09) 

Deaths, all cause         

No. events 382 358 378 359 564 571 551 542 

HR (99% CI) 1 (reference) 0.93 (0.77–1.13) 0.99 (0.82–1.19) 0.94 (0.77–1.13) 1 (reference) 1.01 (0.86–1.17) 0.98 (0.84–1.14) 0.96 (0.82–1.12) 
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Table 3. Cont. 

Bioadherence  

Trial arm 

Placebo  

(n = 285) 

Vitamin E  

(n = 290) 

Selenium  

(n = 277) 

Selenium + Vitamin E 

(n = 257) 
    

Serum selenium, μg/L         

Baseline, mean 137.6  135.9 135.0 136.4 n.r. n.r. n.r. n.r. 

IQR 124.7–151.8 122.4–148.4 123.4–145.9 122.9–150.0     

6-months visit, mean 137.4  138.4 223.4 227.0     

IQR 123.3–152.0 124.1–154.0 198.6–251.8 199.4–251.2     

1st annual visit, mean 138.1  137.7 232.4 228.5     

IQR 125.2–152.2 120.1–139.9 204.2–261.4 205.5–258.1     

2nd annual visit, mean 132.0  129.8 228.0 220.7     

IQR 120.8–143.1 126.2–158.6 206.3–256.9 194.0–249.5     

4th annual visit, mean 140.1  143.8 251.6 253.1     

IQR 124.3–150.8 126.2–158.6 218.7–275.0 210.5–283.0     

a Numbers for specific types of cancers (lung, colorectal, other primary cancers, prostate cancers from Table 2) may not sum to number of individuals with cancer (described as “any cancer”) 

due to multiple cancers per person. b n.r.: not reported. 

 



Nutrients 2013, 5 1138 

 

 

4. Discussion  

The results of SELECT showed that neither selenium nor vitamin E alone or in combination 

decreased the incidence of prostate cancer and that vitamin E supplementation significantly increased 

the incidence of prostate cancer among healthy men. These findings were surprising given the strong 

epidemiological findings and the promising results of the hypothesis-generating NPC and ATBC trials. 

Numerous hypotheses have been generated to explain the null findings. These hypotheses center on the 

agent formulation and dose that were chosen, the cohort, and the study design. 

4.1. Agent: Selenium Formulation and Dose 

A daily dose of 200 μg of L-selenomethionine was used in SELECT. This is the same dose but a 

different formulation than the selenized yeast used in the NPC trial. The dose was chosen by an expert 

panel for NPC based on efficacy and safety data from preclinical studies. However, it is important to 

note that an optimal dose of selenium for cancer prevention has not been established. It is likely that a 

narrow range of optimal doses exist, and these doses may depend on the baseline selenium status of  

the individual. 

The use of pure L-selenomethionine is more controversial than the dose chosen. Inorganic selenium 

had been shown to have better in vitro anticancer activities, but these forms were linked to DNA single 

strand breaks [68]. L-selenomethionine was chosen over selenized yeast largely for logistical reasons, 

including lack of widely available selenized yeast and batch-to-batch variability in that which was 

commercially available. While L-selenomethionine is the predominant selenocompound in selenized 

yeast, the yeast contains numerous other selenocompounds with varying chemopreventive efficacy [69]. 

Ip and colleagues demonstrated that methylseleninic acid, a metabolite of methyl selenol, is important 

for the chemopreventive effects of selenium [70]. Selenomethionine can be converted to methyl 

selenol, but is also non-specifically incorporated into proteins in place of methionine, diverting the 

selenium away from its active chemopreventive form (Figure 1). Other selenocompounds like 

selenocysteine, selenite, or selenate, are not used non-specifically in proteins and therefore are more 

likely to be converted to the potentially antitumorigenic metabolite methyl selenol [23]. However, 

recent findings by Waters et al. indicated that selenomethionine and selenized yeast have similar 

biological activities in prostatic tissue of dogs [71]. After seven months of supplementation with either 

selenomethionine or selenized yeast, there were no differences in levels of intraprostatic 

dihydrotestosterone and testosterone, dihydrotestosterone: testosterone ratio, DNA damage, proliferation, 

or apoptosis in the prostates of dogs by formulation received. Additionally, the investigators found no 

differences in toenail or intraprostatic selenium levels by formulation. In light of these results, it seems 

unlikely that the formulation of selenium used in SELECT is a major reason for the null results 

observed. However, it is important to compare these formulations in humans. We are aware of one 

ongoing clinical trial to compare the effect of selenized yeast and selenomethionine on PSA levels and 

other prostate cancer biomarkers in healthy men [72]. 
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4.2. Cohort: Baseline Selenium Status, Age, Genetics 

The characteristics of the men recruited, including baseline selenium status, age, and genetics, 

reflect potentially important differences between NPC and SELECT, and are likely reasons for the null 

results in SELECT. 

4.2.1. Baseline Selenium Status 

NPC recruited men from eastern coastal areas of the USA where environmental selenium is low, 

whereas SELECT recruited US/Canada-wide. This resulted in large discrepancies in baseline selenium 

status between men in the two trials. The mean baseline serum selenium concentration in NPC was  

114 ng/mL; the mean baseline concentration among men in SELECT was 135 ng/mL. In fact, 78% of 

the volunteers in SELECT had serum levels that were above the lower two tertiles in NPC and 

therefore above levels of those who saw benefit from selenium in NPC [73]. 

Waters and colleagues demonstrated that selenium status as determined by toenail selenium 

concentration exhibits a U-shaped relationship with DNA damage in the prostate in elderly dogs and 

that this relationship parallels results from human studies [74]. They estimated that the optimal range 

of toenail selenium levels for prostate cancer risk reduction is 0.80–0.92 ppm, which corresponds to 

119–137 ng/mL [75]. Above this level, additional selenium would offer no added benefit and may 

even be harmful. This estimate is consistent with results from NPC where protection was only seen in 

men with baseline serum selenium concentrations <123.2 ng/mL [57]. Stratified analysis of SELECT 

data by quantile baseline selenium status may identify a subset of men who received a benefit from 

selenium, though it is possible that the baseline selenium status of men in the lowest quantile in this 

cohort may be above levels at which supplemental selenium could offer protection.  

It is likely that the importance of baseline selenium status was not adequately recognized when 

SELECT was in its planning stage, and low baseline selenium status was not considered as a criterion 

for study enrollment nor was a soil selenium-deficient region considered for the study location. 

Regardless, because SELECT was a very large trial it was necessary to be inclusive with regards to 

geography in order to accrue an adequate number of participants and the study was conducted through 

more than 400 clinical sites across the United States, Puerto Rico, and Canada. Further, due to 

increasing fortification of the food system with selenium in the years since implementation of the NPC 

trial, it would be difficult to ensure low baseline selenium status by limiting the catchment area to a 

low soil selenium area. 

4.2.2. Genetics 

While not a focus of NPC or SELECT, genetics may affect selenium status or an individual’s 

response to selenium supplementation. In particular, polymorphisms in the genes that encode 

selenoproteins or proteins involved in selenium metabolism may influence health outcomes. For 

example, Li et al. [76] reported that among men with the AA genotype of codon 16 (rs4880) of SOD2, 

a gene that encodes the mitochondrial antioxidant enzyme manganese superoxide dismutase, men with 

higher selenium levels had lower risk of total prostate cancer (RR: 0.3, 95% CI: 0.2–0.7) and of 

clinically aggressive prostate cancer (RR: 0.2, 95% CI: 0.1–0.5) compared to those with lower 
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selenium levels. This protection was much weaker in men with VV or VA genotypes [76]. In an 

analysis of prostate cancer mortality from the Physicians’ Health Study, three different polymorphisms 

in the selenoprotein gene SEP15 (rs479341, rs1407131, and rs561104) significantly affected survival 

time in men with prostate cancer, either increasing or decreasing survival depending on the 

polymorphism and the genotype. Further, an interaction exists between selenium and genotype of 

rs561104. High levels of selenium were associated with decreased prostate cancer mortality only in 

those with the increased risk homozygous variant genotype and not in those with the wild-type 

genotype (Pinteraction = 0.02) [77]. The genotype of GPX1, which encodes the selenoprotein GPx1, was 

recently shown to be a determinant of selenium requirements. In a study of 161 men and women, those 

with the GPX1 679 (rs1050450) T/T genotype had significantly lower plasma selenium levels than 

those with the C/C genotype [78]. The mean plasma selenium level in this study was 142.0 ng/mL, 

slightly above that of men in SELECT.  

The genotype of these and other genes is expected to contribute to selenium balance and  

selenium-dependent health outcomes. These findings have implications for future studies on selenium 

status and supplementation. Stratification of SELECT participants according to allelic status in these 

relevant genes may elicit relationships between selenium supplementation and prostate cancer risk that 

were not evident in the trial population as a whole. 

4.2.3. Age 

The age of the study population is also of interest. Given the long natural history of prostate cancer, 

it is possible that intervening in men older than 50 years of age may miss a critical window for 

intervention. For example, in a case-control study addressing breast cancer, another hormonal cancer, 

an inverse association was observed between soy food intake in adolescents and breast cancer as an 

adult, but protection was not observed when soy food intake began later in life [79]. Rodent studies 

have shown that selenite and other selenium metabolites inhibit carcinogen-induced mammary cancer 

at the stage of initiation by decreasing DNA damage, but that selenium also has post-initiation 

activities and is most efficacious when administered continuously beginning during initiation [22]. A 

better understanding of selenium biology and the process and timing for which selenium influences 

prostate carcinogenesis might better predict the optimal age range at which selenium supplementation 

should take place. However, in light of the NPC results, intervention in men over the age of 50 still has 

the potential to yield some anti-cancer benefit. 

4.3. Design 

An important difference between the NPC trial and SELECT is that prostate cancer incidence was a 

secondary outcome measure of NPC and a primary outcome measure of SELECT. Each trial was 

adequately powered to detect differences of predetermined magnitude in their respective primary 

outcomes. In a clinical trial with multiple outcomes, a prioiri designation of a primary endpoint 

protects that measure from concerns of the observed result being due to chance as a result of multiple 

testing [80]. Secondary endpoints remain at risk of false positive results because of multiple testing. In 

NPC, results on skin cancer were protected while observations on secondary endpoints, including 

prostate cancer, were not. Results of the NPC trial were particularly vulnerable to chance findings due 
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to the small sample size of 64 prostate cancer cases in 1312 participants. Therefore, follow-up of the 

prostate cancer incidence findings from NPC in a large randomized trial where prostate cancer 

incidence was the primary outcome of interest was essential. Further, in the NPC trial, participants 

with a history of skin cancer were recruited. Because the primary endpoint of that trial was skin cancer 

incidence, risk factors for prostate cancer including PSA were not considered for eligibility or 

exclusion criteria. 

SELECT was designed to test the effects of selenium and vitamin E on prostate cancer after  

7–12 years of supplementation. It remains a possibility that a lag to effect occurred and that the benefit, 

or harm, of selenium supplementation is only evident after a much longer period of time, as was the 

case for tamoxifen in the Royal Marsden Hospital breast cancer chemoprevention trial [81]. Results 

from the SELECT-CFU cohort study can help to address this issue.  

Additionally, SELECT was designed to test the effects of these agents in a diverse cohort of older 

men and was not powered to address subgroup analyses. Regardless, findings according to quantile of 

baseline selenium status, genotype, or other risk factors will be enlightening and may help generate 

hypotheses for future trials in cohorts that may receive benefit from selenium. 

4.4. Does Selenium Really Prevent Prostate Cancer? 

A number of potential explanations for the failure of selenium and vitamin E individually and 

together to reduce prostate cancer incidence have been proposed above. However, one possibility is 

that neither bioactive food component actually has a potent preventive effect on this disease and that 

the supportive data from randomized trials in humans merely reflected secondary endpoints that did 

not carry statistical validity. In fact, early laboratory data mimicking the design of what would 

eventually become the SELECT trial showed no statistically significant reductions in prostate cancer 

incidence with either selenium (L-selenomethionie) or vitamin E alone or together [42]. Nevertheless, 

interest remains in pursuing selenium as a potential cancer preventive agent for prostate as well as 

other cancers. 

5. Future Directions  

Hatfield and Gladyshev proposed that an additional important outcome of SELECT was the need to 

better understand selenium biology. [23] A clearer view of selenium’s biological activities will aid 

researchers in choosing the appropriate doses and formulations of future agents. Work is continuing on 

selenium and its ability to antagonize carcinogenesis. One promising avenue is the ongoing 

characterization of selenium’s anti-DNA damage activities. The doses and conditions necessary as well 

as the mechanisms of action may be enlightening [75,82]. Furthermore, many of the 25 selenoproteins 

identified in humans remain largely uncharacterized regarding tissue specificity, function, regulation, 

and enzyme kinetics [25]. Ongoing work to characterize these proteins will help researchers to better 

understand selenium’s mechanisms of action.  

Additional pilot human studies testing proper doses and formulation and smaller trials in specific 

populations combined with further preclinical studies on selenium’s mechanisms of action are 

necessary before the undertaking of any new large phase III clinical trials [83].  
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Above all, it is imperative to determine the subpopulations that can benefit from nutritional 

intervention. Mixed results from clinical and epidemiological studies underscore the difficulty in 

making nutritional recommendations for cancer prevention to the population as a whole and highlight 

the need for studies using subgroups at greater risk [84]. Evidence indicates that those with low 

baseline selenium status or those that live in selenium-deficient regions represent the optimal cohort 

for studying cancer prevention by selenium (Table 4). Further refinement of eligibility or stratification 

criteria by age or selenoprotein genotype may also be useful. 

Table 4. Possible explanations for null findings in SELECT with selenium. 

Agent Optimal dose range for selenium has not been established. 

 L-selenomethionine may not be most active formulation of selenium. 

 A better understanding of selenium biology is necessary. 

Cohort 
Baseline selenium status of participants was too high for the men to receive additional  

benefit from selenium supplementation. 

 Genotype of various selenoproteins of the cohort should be taken into consideration. 

 Intervening in older men may miss a critical window for preventive activities of selenium. 

Design Possible lag to effect may have occurred. 

 Subgroup analyses were not addressed. 
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