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Abstract
Embodied Choice considers action performance as a proper part of the decision making pro-

cess rather thanmerely as a means to report the decision. The central statement of embodied

choice is the existence of bidirectional influences between action and decisions. This implies

that for a decision expressed by an action, the action dynamics and its constraints (e.g. cur-
rent trajectory and kinematics) influence the decision making process. Here we use a percep-

tual decision making task to compare three types of model: a serial decision-then-action

model, a parallel decision-and-action model, and an embodied choicemodel where the action

feeds back into the decision making. The embodied model incorporates two key mechanisms

that together are lacking in the other models: action preparation and commitment. First, action

preparation strategies alleviate delays in enacting a choice but also modify decision termina-

tion. Second, action dynamics change the prospects and create a commitment effect to the

initially preferred choice. Our results show that these two mechanismsmake embodied

choice models better suited to combine decision and action appropriately to achieve suitably

fast and accurate responses, as usually required in ecologically valid situations. Moreover,

embodied choice models with these mechanisms give a better account of trajectory tracking

experiments during decision making. In conclusion, the embodied choice framework offers a

combined theory of decision and action that gives a clear case that embodied phenomena

such as the dynamics of actions can have a causal influence on central cognition.

Author Summary

The modern view of how we make perceptual decisions is of a process of accumulating
sensory evidence until reaching a threshold level of certainty. However, this evidence accu-
mulation model neglects the contribution of action and motor processes to the choice that
is made. Recent novel studies that track the changing dynamics of actions during percep-
tual decisions are increasingly revealing the contribution of the actions we make to our
perceptual choices. Thus, the action dynamics of our bodies causally influences our central
cognition, which is a core assumption of embodied theories of mind. This paper presents
an explanation of how actions, encompassing behavioral strategies such as preparation
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and commitment, can bias decision making processes in ways that optimize the ecological
choices of animals behaving in natural environments. It thus combines two disconnected
research streams, decision-making and action control in a manner consistent with theoret-
ical and psychological arguments for embodied cognition.

Introduction
According to a widely held view, perceptual decision making is a competitive process based on
the accumulation of sensory evidence up to a threshold. This idea has been formalized using
various methods, which include signal detection theory, neural race models, attractor dynamics
and Bayesian inference [1–8]. However, although this diffusion-to-bound framework has re-
ceived strong support from the neuroscience literature [9], it has been limited by only address-
ing decisions in isolation without considering if and how decision and action systems interact.

In this article, we propose a framework of Embodied Choice, in which action performance is
considered as a proper part of the decision making process. To make comparison with previous
work on decision making, we discuss three different ways to link decisions to action: the serial
model, the parallel model, and the embodied choice model. We describe their theoretical un-
derpinning first, before successively analyzing and comparing them from a computational per-
spective. The results of this comparison show that the serial model has a poorer speed-accuracy
tradeoff than the parallel model; however, the parallel model is limited in that it cannot trade
accuracy for speed to achieve the quickest decision times, which requires the full embodied
choice model.

We first clarify the differences between these three types of decision making model in the re-
mainder of the introduction, before giving results on how these models compare on a simple
perceptual choice task involving action on synthetic data, and then give empirical support for
embodied choice models from motion tracking experiments during decision making. Finally,
in the discussion, we discuss the broader implications of an embodied choice framework and
how it relates to recent developments in the neuroscience and psychology of decision making.

Serial models: segregating decision and action
Most studies using the diffusion-to-bound framework implicitly assume that decision making
is a serial process (although this is not a necessary feature of the diffusion-to-bound
framework—see later). According to serial models (Fig. 1 (A)), decision and action are neural-
ly/computationally segregated and arranged in a pipeline [10]: the decision is made first and
then the action (e.g. pressing a button to report the choice) is executed at the time of decision
completion; the costs of action are not considered.

Parallel decision and action: the continuous flow model
That response regions in the brain show effects of decision signals before committing to the
final outcome was known 25 years ago; for example, an EMG study found activation of the in-
correct response hand in a flanker task, even on trials where subjects eventually gave the correct
response [11]. Successive EEG and neurophysiological studies of decision-making consistently
found a covert preparation of multiple motor plans in parallel, providing a strong support for
parallel views of human information processing [12–15].

More recently, several studies tracking response dynamics (e.g.mouse movements of sub-
jects who must click buttons to report choices) showed a similar effect for the overt phases of
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action. A consistent finding across several paradigms tracking mouse movements, from simple
perceptual categorizations to more complex lexical and numerical decisions, is that overt action
does not simply start when decision is complete. Instead, the action begins early in the decision
process and is continuously revised, with action dynamics (e.g.mouse trajectories, acceleration
peaks) reflecting the choice uncertainty [16–22].

This evidence has lead to the development of models in which decision and action are de-
ployed in parallel. For example, in the continuous flow model [14], the partial results of the on-
going decision computations are continuously transferred to the action component (see Fig. 1
(B)). In this way action can start before completion of the decision and be revised during the
decision process. See Table 1 for some differences between serial and parallel models of deci-
sion making.

Note that the continuous flow model was initially developed to explain covert and not overt
response competition. According to a recent proposal the continuous flow model can explain
also overt revisions of actions during decision making and in particular so-called “changes of
mind”, or the fact that an initially preferred choice is changed during the course of the decision
making [23]. In this model, a change of mind happens when the drift-diffusion process first
reaches a threshold that triggers action initiation, but then later (due to accumulated evidence
not initially considered) passes an opposition threshold that triggers execution of an initially
non-preferred action.

Another way the continuous flow model can explain overt response competition is to imple-
ment an action preparation strategy: the partial results of the competition are used to approach

Fig 1. Schematic illustration of alternative ways to link decision and action systems: (A) serial
models, (B) parallel models, and (C) embodied choicemodels.Note that here decision, choice, and
action are shown as separate and modular systems for illustrative purposes only.

doi:10.1371/journal.pcbi.1004110.g001
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the more likely option (e.g. the more likely response button to be clicked with a mouse) or to
move in between the alternatives if these are uncertain [24]. This can be realized, for example,
by allowing the action system to generate two simultaneous motor commands and to average
them over time with changing weights [25], producing a ‘continuous competition’ between re-
sponse alternatives [20]. This strategy can explain why, during perceptual choices, participants’
movements (e.g.mouse trajectories) start almost immediately and can be attracted to the
unselected alternative.

Embodied choice
Both of the aforementioned decision making models consider decisions as independent of ac-
tion and its dynamics. However, in ecologically valid scenarios, the situated aspects of choice
(e.g. the action dynamics and the achievability of the action alternatives) should be worth con-
sidering as part of the decision making process. Ecological psychologists have long recognized
that agents do not passively receive sensory stimuli, but contribute with their actions to shaping
the sensory flux [26–28]. Not only sensations determine (choice and) action but actions deter-
mine the next sensations in a continuous perception-action loop. Within this loop, several as-
pects of action and its dynamics can influence the choice, as we now discuss.

First, in ecologically valid scenarios, actions are not effortless but have a cost. For example,
reaching a far object is energetically more costly than reaching a close object, and takes more
time. Hence, living organisms typically trade off the benefits of an outcome from the cost of ob-
taining it. In accordance, the biomechanical costs of movement and target distance influence
choice [29–31], motivating recent computational studies that begin to incorporate action costs in
the decision process [24, 32]. In principle, even serial and parallel models can incorporate action
cost in the decision process; for example, they can trade off the benefits of pressing a button and
the required effort. However, these models can only include costs that are known a priori and
not those that emerge (or change) due to action dynamics, because they do not consider the feed-
back process from action to decision. In ecologically valid situations, costs cannot be completely
specified a priori because they change in an action-dependent way. For example, the biomechani-
cal costs of changing a decision (e.g. the choice of whether a lion should continue pursuing a ga-
zelle or give up) will vary depending on the relative trajectory and the distance from the target.

This leads us to a second point: actions are not instantaneous but require time to execute.
Imagine, for example, a lion given the choice between capturing two gazelles: if the lion waits
until its decision is complete, it risks missing an opportunity because one or both gazelles may
run away. The lion faces a decision problem that is not stable but dynamic. In dynamic, real-
world environments, costs and benefits cannot be completely specified in advance but are de-
fined by various situated factors such as the relative distance between the lion and the gazelles,
which change over time as a function of the geometry of the environment (e.g. a gazelle jump-
ing over an obstacle can follow a new escape path) and the decision maker’s actions (e.g. if the

Table 1. Differences between serial and parallel models of decision-making.

Serial models Parallel models

Subjects accumulate evidence until they make a
final decision (reach a bound) then act

Subjects start moving before they make a final decision
and can revise the initial choice (change mind)
successively

Decision is completed before starting the action Decision is not completed before starting the action

Uncertainty in the decision is reflected in errors
and response time

Uncertainty in the decision is also reflected in the
movement trajectories

doi:10.1371/journal.pcbi.1004110.t001
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lion approaches one gazelle the other can escape) [33]. It seems that the brain solves this prob-
lem by preparing multiple actions in parallel and selecting between them through biased com-
petition in the sensorimotor system [34, 35]. Furthermore, choice experiments conducted to
assess the relative contribution of perceptual evaluation and motor execution to response time
(using a ‘compelled response’ paradigm where participants need to initiate a saccade towards a
target before the stimulus signalling the correct target is fully revealed) provide strong evidence
in favor of the idea that action plans can be prepared, and even launched, prior to the comple-
tion of the decision process [36]. The continuous flow model can partially capture these pro-
cesses by allowing the preparation of actions through the influence of the ongoing decision;
however, as we noted before, it has principally focused on the covert components of prepara-
tion (e.g. allocation of neuronal resources) rather than also its overt components (e.g. initiation
of movements towards or between alternative goal locations).

Recent computational studies have suggested a continuous preparation of action influenced
by the current state of the decision process, and explored the trade-offs between alternative
preparation strategies (e.g. approach one gazelle early with the risk of later undoing that action,
or moving between them to keep all options open) [24], see also [37]. What these computation-
al studies suggest is that action dynamics in all their aspects (i.e. both their covert planning and
their overt execution) have a backwards influence on the decision process by changing the pros-
pects (the value and costs of the action alternatives). For example, when the lion starts tracking
one of the gazelles, undoing that action can be too costly and thus the overall benefit of con-
tinuing to track the same gazelle increases. This produces a commitment effect to the initial
choice that reflects both the situated nature of the choice and the cognitive effort required for
changing mind at later stages of the decision [38].

Accounting for all these aspects of ecological decision making requires a re-conceptualization
of the relation between decision and action. To achieve this aim, we introduce an Embodied
Choice framework in which action and its dynamics are considered an integral part of the deci-
sion making process, rather than merely a way to report an already made choice. The brain con-
siders both the decision part (i.e.making the right choice) and the action part (i.e.minimizing
movement costs) simultaneously. A consequence of this view is that actions and their constraints
influence decisions. Fig. 1 (C) illustrates this aspect by including a feedback loop from the action
to decision systems that is missing from both serial and parallel models. Table 2 further clarifies
the differences between embodied choice and continuous flowmodels of decision making.

Embodied choice can thus be considered a general framework that can be implemented in
different ways. In this article we propose a computational characterization of Embodied Choice
and compare it with alternative proposals made in the literature. We keep the model minima-
listic (e.g. by using simplified movement dynamics) to better highlight the essential characteris-
tics of embodied choice in comparison with alternative models.

Table 2. Differences between parallel (continuous flow) and embodied choicemodels of decision-
making.

Parallel (continuous flow) models Embodied choice models

Action and its dynamics do not influence decision
making optimization

Action and its dynamics directly influence decision
making optimization

The partial results of the choice computation flow
forward to the action system

In addition, action dynamics influence (e.g.
provide evidence for) the decision making process

The forward influence from decision to action system
permits changes of mind and motor preparation

The backward influence from action to decision
produces commitment

The deadline for a decision is a threshold (or bound)
within the decision system

The natural deadline for a decision is the
completion of the situated action

doi:10.1371/journal.pcbi.1004110.t002
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Results
Serial, parallel and embodied choice models make different assumptions on how decision and
action systems interact. Here we incorporate these assumptions in four computational models
and test them in a simulation of a simple perceptual choice task involving action. This test aids
understanding of the differences between the alternative theoretical models while elucidating
their predictions.

All simulations represent a two-alternative forced choice task (2AFC) in which an action
must be made to one of two targets to indicate the decision (Fig. 2). For concreteness, we con-
sider a task based around a computer mouse experiment in which the subject moves a cursor
onto a target while making a perceptual choice (e.g. a lexical decision [16, 39]). However, we
emphasize that this model is considered here as more broadly representative of any decision
making task using action to make the choice.

These results are separated into two studies. In the first study, we simulate the decision tra-
jectories for four computational models with increasingly sophisticated interaction between
the decision making and action components. Model 1 serially initiates action after decision
completion; Model 2 is parallel by allowing changes of mind in the decision system after the ac-
tion initiates; Model 3 has action preparation operating in parallel with decision system, with
also some aspects of embodiment by using action completion for decision completion; and
Model 4 is fully embodied with a feedback loop from the action to decision systems, encom-
passing both action preparation and commitment. The trajectories from these four models are
then compared with motion tracking experiments during decision making to provide empirical
support for the models. Then in Study 2 we compute the speed-accuracy tradeoff curves result-
ing from these four models, and compare their performance to assess the overall effectiveness
of serial, parallel and embodied choice models.

Study 1: Decision trajectories during embodied choice
Experimental task: mouse-tracking experiment. Continuous measures of processing are

more informative about the dynamics of choice than response time experiments. Thus, we
model an experimental task in which participants performed the decision by moving the
mouse to indicate their response. Experimental data was collected using a MouseTracker appa-
ratus [17] during a visual-lexical decision task to observe the graded effects of competing items
attracting the trajectory of the mouse [16]. By tracking continuous reaching movements, the
technique enables study of the dynamics of choice between multiple competing hypotheses
and can reveal graded processing and uncertainty throughout the response. Some example of
mouse-tracking trajectories are shown in Fig. 2.

In our model of this task, we consider a square arena within which the mouse pointer fol-
lows a two-dimensional trajectory (x(t), y(t)). The choice is indicated when the mouse pointer
reaches one of two targets: T1 at position (x1, y1) and T2 at (x2, y2).

Modeling mouse trajectories: drift-diffusion model with action focus. All computation-
al models that we compare below are built on the drift-diffusion model [1], which is a model of
the cognitive processes involved in making simple two-choice decisions. Decisions are made by
a noisy process that accumulates information z(t) over time t (Fig. 4) from a starting point (as-
sumed at z(0) = 0) towards one of two decision boundaries that initiate a response (assumed
equal and opposite at z = ±b). Mathematically, the information accumulation can be defined as

zðt þ DtÞ ¼ zðtÞ þ Dz; ð1Þ
where Δz is the increment of sensory information over a time increment Δt. The rate of accu-
mulation of information is called the drift rate, and is determined by the quality of the
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information extracted from the stimulus in perceptual tasks and the quality of match between
the test item and memory in memory and lexical decision tasks. Within-trial variability (noise)
in the accumulation of information from the starting point toward the boundaries results in
processes with the same mean drift rate terminating at different times (giving response time
distributions) and sometimes at the wrong boundary (producing errors). Speed-accuracy
trade-offs are modeled by changing the distance between the decision boundaries: wider
boundaries (larger b) require more information to make a decision, leading to more accurate
but slower responses. For further details of the model, see Ratcliff and McKoon [40].

To formalize tasks using continuous measure of performance (like the MouseTracker) we
supplement the drift-diffusion model with an action focus: here a point towards which the
agent moves based on the current state of the decision process and its current position (Fig. 3).
Mathematically, we represent the action focus as a point (x(z), y(z))focus that is a function of the
accumulated information z(t). At each instance of time, the action is a move (Δx, Δy) from the
present location towards the action focus

ðDxðtÞ;DyðtÞÞ ¼ vDt
ðxðzÞ; yðzÞÞfocus � ðxðtÞ; yðtÞÞ
jðxðzÞ; yðzÞÞfocus � ðxðtÞ; yðtÞÞj ; ð2Þ

which for simplicity we assume is at constant speed v taken at discrete time-steps of Δt.
The action focus provides a way in which the decision and action systems can interact, re-

sulting in a continuum of models from fully non-embodied (i.e. where decision and action are
two serial stages and only the former can influence the latter) to fully embodied (i.e. where de-
cision and action systems interact bidirectionally and continuously). Below we consider four
models in order of increasing sophistication and adherence to the characteristics of embodied
models as defined in Table 2.

Model 1: Action initiation after decision completion. The simplest way to augment the
drift diffusion model with an action system is to consider a serial model with two stages: first
the decision is made at time tdec (when the decision variable first passes a boundary), which
then initiates the appropriate movement to enact that decision. For simplicity, we assume a

Fig 2. Mouse-tracking data. An action is made to either target T1 or target T2 to indicate the decision. This
action has a trajectory beginning at a start position equidistant from both targets. The red line indicated the
mean trajectory. Experiment: 10 trajectories randomly chosen from the data in ref. [16].

doi:10.1371/journal.pcbi.1004110.g002
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basic action model with constant movement speed, with then the time-optimal action to move
in a straight line towards the chosen target. This action model can be represented by having an
action focus that is coincident on the chosen target for times t� tdec

ðxðzÞ; yðzÞÞfocus ¼
ðx1; y1Þ; zðtdecÞ � b

ðx2; y2Þ; zðtdecÞ � �b:
ð3Þ

(

Prior to the decision time, there is no choice and the agent cannot move (equivalently, the
focus is at the start location). An example time-history of the action focus is shown in Fig. 4 as
information is accumulated for the two choices during a decision process.

Model 2: Action initiation and changes of mind. Next, we consider a model that also ini-
tiates movement after passing a decision boundary, as in Model 1, but updates the decision var-
iable with new sensory information during the movement. Consequently, if the opposing
decision barrier is passed before the trajectory reaches a target, then the action is revised to
move towards the other target. The possibility to revise an initial decision is a characteristic of
parallel models, where the decision system does not stop functioning after a deliberation. Note
that this model does not need a ‘continuous flow’ of information from decision to action sys-
tems [14]; it is sufficient that the decision system instructs the action system when the action is
revised. This Model 2 is similar to a model of ‘changes of mind’ by Resulaj et al [23], although
that model used distinct decision- and change-boundaries whereas the present model just has a
change boundary with action completion triggering the final decision, to consistently represent
the situated demands of the choice. Such changes of mind can improve decision accuracy by al-
lowing choices to be revised after receiving initially misleading sensory data, but are penalized
by longer response times due to sub-optimal ‘kinked’ trajectories to reach a target (e.g. that of
Fig. 3). This action model can be represented by having an action focus that is coincident on

Fig 3. Simulated 2AFC task with action dynamics (trajectory fromModel 3). For simplicity, movement
along the trajectory is at constant velocity. The trajectory depends on the interaction between the decision
and action systems, driven by information for the alternatives. An action focus is used to link the decision and
action systems, which here drifts from target T2 to T1 with the accumulated information for each alternative.

doi:10.1371/journal.pcbi.1004110.g003
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the currently chosen target

ðxðzÞ; yðzÞÞfocus ¼
ðx1; y1Þ; zðtÞ � b

ðx2; y2Þ; zðtÞ � �b:
ð4Þ

(

Similarly to Model 1, if the accumulated information has not passed threshold, then there is no
choice and the agent cannot move. Again, an example time-history of the action focus is shown
in Fig. 4.

Model 3: Action preparation. Next, we consider a parallel model of preparatory motor re-
sponse from the start of the decision process, rather than waiting for a decision to trigger action
initiation. In general, proactive action preparation consists of readying oneself so that succes-
sive actions can be executed better [24]: in the two-target 2AFC task considered here, we con-
sider a preparatory move towards an action focus between the two targets, to approach the
most likely target prior to accumulating sufficient information to make a decision. Note that
calculating the action focus as a function of the ongoing decision (e.g. as a function of the target

Fig 4. Accumulated information andmotor response during the decision process. The top plot shows the accumulated information z(t) plotted against
time, with decision bounds also shown and the times of crossing (dashed lines). The bottom plots show the trajectory of the focus on the line between the two
targets. Model 1 (action initiation after decision) and Model 2 (action initiation and changes of mind) begin when the information first crosses threshold, with
Model 2 changing its mind. Model 3 (action preparation) and Model 4 (preparation and commitment) begin at time zero, with the focus moving continually
throughout the decision process.

doi:10.1371/journal.pcbi.1004110.g004
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likelihood) requires a ‘continuous flow’ of information from decision to action systems. Mathe-
matically, we define the focus as collinear with the two targets with distance from each in the
proportion jb + zj : jb − zj for −b� z� b:

ðxðzÞ; yðzÞÞfocus ¼

ðx1; y1Þ; zðtÞ � b

jb� zj
2b

ðx1; y1Þ þ
jbþ zj
2b

ðx2; y2Þ; �b � zðtÞ � b

ðx2; y2Þ; zðtÞ � �b:

ð5Þ

8>>>>><
>>>>>:

This range is bounded such that the focus is coincident with a target if the decision bound is
passed. Hence, the decision bound no longer defines decision termination directly, but rather
the choice follows indirectly from action completion (upon reaching a target). Models 2 and 3
incorporate one element of embodiment because they use action completion as a deadline for
the decision. In other words, in these models the decision is terminated when reaching a target,
in contrast to the non-embodied method of having the decision complete upon reaching a deci-
sion bound. However, they are not a fully embodied models (as defined in Table 2) because the
interaction between the decision and action systems is not bidirectional.

Model 4: Action preparation and commitment. Our final model implements embodied
choice with both a preparatory motor response and commitment to an action when sufficiently
engaged in moving towards a target. This model is built on the same mechanism as Model 3,
with a preparatory move towards an action focus between the two targets, but also has commit-
ment: movement towards a target biases the focus to be closer to that target. The dependence
of the action focus upon both the accumulated information and the current movement and lo-
cation is characteristic of embodied choice models, because such models require a feedback
loop from action to decision systems. Mathematically, we implement commitment by includ-
ing a position-dependent term in the accumulated information

zcomðtÞ ¼ zðtÞ þ g
d1 � d2

d1 þ d2

; d1 ¼ jðx; yÞ � ðx1; y1Þj; d2 ¼ jðx; yÞ � ðx2; y2Þj; ð6Þ

with d1, d2 the distances to the two targets and g is a gain that determines the degree of commitment
(here set to g = 4b). The model is then fully embodied, because there is direct feedback from the ac-
tion system (represented by the location (x, y)) into the decision system as a component of the evi-
dence (see Fig. 1C). In this case, this creates a commitment effect: once you start moving towards a
target, it is more difficult to change your mind because the sensory information zmust outweigh the
commitment from having initiated an action.

Empirical support for embodied models. The embodied choice framework assumes that
choice is biased by the constraints of action, which are directly considered in the decision pro-
cess. Not only is this true at the beginning of a choice but also during the unfolding of the ac-
tion (e.g. while a subject is moving the mouse to press a button). The framework thus makes a
number of predictions, some of which are supported by available data while others require
future investigation. Here we focus on studies based on tracking mouse movements (see [16,
18, 21]).

In particular, the experimental results from mouse tracking studies [16] resemble those
from the parallel Model 3 and embodied choice Model 4, as can be seen from comparing their
individual trajectories (Fig. 5, Models 3 and 4) with experimental data (Fig. 2). Notably, while
the trajectories of Model 2 head towards one choice then undergo a distinct change of mind to
the other, the trajectories of Models 3 and 4 can occasionally produce discrete revisions but
also graded shifts between choices (Fig. 5) that are interpreted as reflecting a process of graded,
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continuous competition among the alternatives [41]. Both patterns are observed in the human
studies [16, 18, 21, 42]. Interestingly, both discrete and gradual revision processes have been re-
ported in the same study and even in the same experimental condition, pointing to the necessi-
ty of a model that accounts for both [39].

These differences in changes of mind can be quantified by determining the area between the
trajectories and a line running down from the chosen target (always shown to the left in Fig. 5),
which we evaluate over all trajectories before taking the mean. The larger this average area, the
more the trajectories deviate from heading directly towards the final choice. The minimum
area is for Model 1 which always heads directly towards the chosen target (mean area: 0.75),
followed by Model 2 (mean area: 0.91), then Model 4 (mean area: 1.06) and the largest is
Model 3 (mean area 1.25). These values compare with a mean area of 1.03 for the Experimental
Data, which is closest to that of Model 4 (consistent with a visual comparison of Fig. 5). Note
that these values do depend on the noise levels σ assumed in the model, as is apparent in the
‘curvature’ of mouse movements discussed below. The sharp kink with the change of mind in
Model 2 does not occur in human studies, although the modeled trajectories can be smoothed
with minor model amendments such as limiting the angular velocity; such smoothing would
also occur naturally with a more realistic model of the action kinematics [43]. However, the
sharp kink does serve to illustrate that there is a distinct change of mind in this model, whereas
human studies show both distinct changes of mind and more gradual shifts from one choice to
the other as in Models 3 and 4.

Another key empirical finding is that in all the aforementioned mouse-tracking experiments
(and others) the initial movements do not necessary target one of the two choice alternatives
but often lie between them. Fig. 5 shows individual trajectories from the sample task intro-
duced earlier: while in the serial Models 1 and 2 the initial parts of the trajectories already point
towards one of the two buttons, in Models 3 and 4 this is not necessarily the case, as observed
empirically in the Experimental Data and in a variety of studies [16, 18, 21, 42]. This finding
can be quantified with the average trajectories (Fig. 5; red curves), which are initially almost
vertical for the Experimental Data (initial angle from vertical: 6 deg) and Models 3 and 4
(angle: 2 deg, 7 deg), but off-vertical for Models 1 and 2 (angle: 34 deg, 21 deg).

It is interesting that embodied choice Model 4 (action preparation and commitment) more
closely resembles the Experimental Data than the parallel Model 3 (action preparation only);

Fig 5. Individual and average trajectories.Models 1–4: 10 trajectories randomly taken from the analysis for Figs 3, 4. Trajectories were selected to
complete at target 1 to the left. The decision bound b was chosen for Models 1–3 to have a mean response time of 1.5 sec; whereas (1 sec for model 4 to be
in range for this model). The average trajectory (red plot) in each case is taken over 150 trajectories, and computed parallel to the x-axis.

doi:10.1371/journal.pcbi.1004110.g005
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for example, the initial trajectories have a similar angular bias towards the target in the Experi-
mental Data (6 deg) and for Model 4 (7 deg). Another similarity is that the changes of mind are
earlier in the trajectory when commitment is modeled (Fig. 5), as also occurs in the experimen-
tal situation. This happens because the later trajectories are more likely to be close to a target,
which with commitment makes it more difficult to have a change of mind. Again, this finding
can be quantified with the average trajectories, with now the final approach to target across the
diagonal for the Experimental Data (final angle from vertical: 55 deg) and Model 4 (angle: 55
deg) but almost horizontal for Model 3 (angle: 90 deg). In general, we expect that the effect of
the embodied motor feedback upon the trajectories may depend on task characteristics such as
the amount of sensory uncertainty [44]. Thus there may be some experimental situations with
trajectories that better resemble Model 4 (as here) and others more like Model 3, depending
upon the relative contribution, or gain, of the motor feedback and sensory information to the
decision making process.

This dependance on the experimental situation is also evident from considering that the
‘curvature’ of mouse movements is greater for more difficult choices, even when there are no
changes of mind. Fig. 6 shows the average trajectories produced by the Models 3 and 4 for the
stimuli used so far and with stimuli having four-fold higher (4×) levels of noise (i.e. a more dif-
ficult choice). These two conditions closely resemble the comparison between high- and low-
frequency words in [16] and the comparison between low- and highly-ambiguous stick figures
in [42]. In Model 3, the curvature of mouse movements (as measured for example by its ‘area
under the curve’ [17]) is greater in more difficult choices, as is consistent with the empirical re-
sult that, even without changes of mind, higher levels of uncertainty ‘curve’ the mouse trajecto-
ries. Meanwhile, in Model 4 with commitment, the curvature is still affected but to a lesser
degree; this gives an experimental prediction that with commitment, the trajectory will be less
sensitive to changes in stimulus noise. The trajectories of both Model 3 and Model 4 are com-
patible with the results of an experiment that explicitly manipulated decision uncertainty. The
study compared two choice conditions having different levels of certainty (100% vs. 75%) and
found a small but significant difference in mouse movement curvature [45]. The currently
available data cannot clearly adjudicate between the models. We expect these similarities and

Fig 6. Trajectory dependence on noise. The ‘normal’ average trajectories are taken from Fig. 5. A second
average trajectory was computed with increased noise σ = 4 (red curve).

doi:10.1371/journal.pcbi.1004110.g006
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differences can be controlled to quantify further with specific experimental procedures for ex-
amining commitment, such as by manipulating task urgency [46].

Study 2: Decision speed and accuracy from embodied choice
Baseline model: drift-diffusion model with instantaneous action. In the Baseline Model,

we consider just the drift-diffusion model with an action made instantaneously when the deci-
sion variable z(t) passes a decision boundary. The speed-accuracy trade-off for this model is
represented by a plot of mean response time against the mean error rate while varying the deci-
sion boundary (Fig. 7, dashed black line). Because no action is necessary to make a decision,
unlike the following models, this baseline represents the best possible speed-accuracy trade-off
with this simulated sensory information; all of the other considered models will have speed-ac-
curacy trade-offs above baseline (i.e. worse mean errors for a given mean RT), with closeness
to the baseline indicating their overall performance.

Model 1. Because both targets are equidistant from the start location, the effect of action
initiation after decision completion is to increase the response times by a constant delay Ttarget

(time to reach a target; here 0.9 sec). Therefore, the speed-accuracy trade-off curve for this
model of ‘action initiation after decision completion’ has the same shape as the baseline drift-
diffusion model, but shifted to longer response times (Fig. 7, black curve). Clearly, no decisions
can be made quicker than the time-to-target Ttarget, which now defines a lower bound that the
speed-accuracy curve approaches with increasing mean decision error. Because mean errors
decrease with increasing mean response time, the rightwards shift of Model 1 compared with
the Baseline Model implies its speed-accuracy curve always lies above baseline.

Fig 7. Comparison of 4 decisionmaking with action models and a Baseline Model without action.
Each model is characterized by a speed-accuracy curve obtained from simulating (100000 samples) over a
range of decision boundaries, with mean decision error plotted against mean response time. The minimal
time-to-target Ttarget for action completion is also shown (dotted line). Note that curves for Model 3 (green line)
and Model 4 (red line) do not overlap, but span different response times.

doi:10.1371/journal.pcbi.1004110.g007
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Model 2. Simulation results for this model of ‘action initiation and changes of mind’
(Fig. 7; blue plot) reveal a better speed-accuracy trade-off than that of Model 1 (action initia-
tion after decision; no changes of mind) but poorer than the (unattainable) Baseline Model of
instantaneous action to target. The better performance with changes of mind indicates that the
improvements in decision accuracy compensate for the resulting slower response times in the
speed-accuracy tradeoff, consistent with the extra information during making an action now
being used rather than ignored. A second implication of permitting changes of mind is that the
least mean response time for Model 2 (* 1.2 sec) is farther above the time-to-target Ttarget

than Model 1; in accordance, the maximal mean errors in Model 2 (* 12%) are smaller than
those permitted in Model 1. These constraints can actually be a disadvantage in some ecological
scenarios, because it is not possible to sacrifice decision accuracy to achieve faster response
times in contexts where response speed is critical.

Model 3. Simulation results for this model of ‘action preparation’ (Fig. 7; green plot) show
that the speed-accuracy trade-off for Model 3 resembles but performs better than that for
Model 2 (action initiation and changes of mind), and is only slightly poorer than that of the
Baseline Model (instantaneous action). The resemblance to the performance of Model 2 is not
unexpected, because the above model of action preparation naturally allows changes of mind
when the focus point moves from one target to nearby the other. The performance benefits
over Model 2 are expected from the response time savings of the preparatory motor response.
Note that the minimum possible response time (0.9 sec) is attainable only by making random
choices and heading directly to a target; such random choices are not possible in Model 3, and
consequently the response times has a minimum bound (1.2 sec) and minimum accuracy
(12%). Thus, similarly to Model 2, the present model of action preparation also suffers from
not being able to sacrifice accuracy for faster response times, which could be crucial in situa-
tions relying on response speed.

Model 4. Simulation results for this model of action preparation and commitment (Fig. 7;
red plot) show that the speed-accuracy trade-off is again between the Baseline Model (instanta-
neous selection) and Model 1 (action initiation after decision), like Models 2 and 3 (changes of
mind and preparation). However, the commitment shifts the mean response time range to
faster than that of Models 2 and 3 (* 1–1.2 sec) at the expense of poorer accuracy (* 12–
25%); in particular, the speed-accuracy curve for Model 4 looks like continuation of Model 3 to
quicker response times. Hence, commitment solves the problem that changes of mind (in prep-
aration or otherwise) lead to relatively slow but accurate decision making, whereas some eco-
logical contexts may demand faster response times. The commitment enforces a quicker (but
more inaccurate) decision than would be possible otherwise by heading towards the final target
earlier in the decision process, but consequently disregarding the later information. Thus, with
commitment the accuracy is sacrificed to achieve greater decision speed, appropriate to situa-
tions where time is of the essence.

Theoretical support for embodied models. Our results show that the serial decision-
then-action system has the poorest speed-accuracy trade-off of all considered models, being
the slowest to reach decisions for comparable accuracy. This speaks against its application to
ecological scenarios where taking action rapidly can be crucial. Parallel decision-and-action
models permit faster responses than the serial model for the same accuracy. Our first parallel
model (Model 2), similar to the one suggested by [23], permits the revision of initial decisions
as changes of mind. A second parallel model (Model 3) includes an action preparation mecha-
nism that permits action initiation before the accumulated information passes a decision
bound. This latter model is more accurate than the first parallel model for comparable response
times, suggesting an advantage of acting upon partial information. Still, parallel models do not
include mechanisms for changing the ongoing decision based on the current action, and thus
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do not assign action a role in influencing decisions. Embodied choice models, here exemplified
by Model 4, include both action preparation and a feedback loop from action to decision sys-
tems that, while allowing changes of mind, also produce a commitment effect: changes of mind
become less likely as the action nears completion. A principal advantage of commitment is that
decision accuracy can then be traded for speed, allowing quicker response times than possible
in parallel or serial models. Embodied choice could thus yield particular advantage in ecological
situations where decision speed is at a premium.

Our approach here was to compare modifications of the drift-diffusion model in a simple
2AFC task where an action indicates the choice. Without action, the drift-diffusion model im-
plements optimal decision making, because for discrete time it is formally equivalent to the se-
quential probability ratio test (SPRT) [5], which minimizes a linear cost function of response
time and decision errors averaged over many decision trials [47]. With action, the speed-accu-
racy trade-off curve of the original drift diffusion model is unattainable, because actions have a
cost in delaying response time. Moreover, the minimum time to complete an action gives a
lower bound on decision speed that can only be attained with random choice. The optimal
speed-accuracy curve for decisions with action would thus extend from 50% accuracy at the
minimum action time down towards the curve of the original DDM with increasing decision
time. Here we found that a parallel model of action preparation (Model 3) early in the decision
process approached the performance of the original DDM for relatively long response times;
meanwhile, a feedback loop from action to decision gave a commitment effect necessary to
achieve response speeds close to the minimum action time (Model 4). It thus appears that ur-
gent situations are aided by a greater contribution of the motor feedback to the decision pro-
cess, whereas tasks demanding greater accuracy may demand a greater contribution from the
sensory information.

As described earlier in the section on ‘Support for embodied models’, we expect that the ef-
fect of the embodied motor feedback on the decision process may be task dependent. The re-
sults in this section reinforce that expectation because fast response times were only attained
for Model 4, with a large contribution of the motor feedback relative to the sensory informa-
tion; meanwhile, superior accuracies but with slower response times were attained in Model 3
with no motor feedback but a mechanism for preparation. Taken together, both preparation
and commitment within a framework of embodied choice are necessary for covering the full
speed-accuracy range.

Discussion
The embodied choice framework treats action as a proper part of the decision making process
rather than a way to report an already made choice (as in serial models) or a component where
the accumulated information drives movement during the decision process (as in continuous
flow, parallel models). Traditional decision making models were developed mainly to account
for laboratory tasks with simplified action choices, which we believe has hindered a full under-
standing of the importance of action for ecologically relevant decision making. Indeed, living
organisms evolved to deal with ecological decisions and the selection of life-or-death actions
(such as fight, flight and foraging) rather than laboratory tasks. Given this evolutionary back-
ground, it is plausible that decision making and sensorimotor control systems are highly inte-
grated in the brain [48, 49]. Embodied choice is a framework for situated decisions that have
similar characteristics to those found in ecologically valid environments, and in doing so
makes apparent the importance of action, its dynamics and its constraints within the decision
making process.
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At the moment, such embodied models are in their infancy. Here we presented a general
framework highlighting the importance of action for decision; within this framework, specific
models can be designed and tested that include mechanisms such as action preparation and
commitment that are currently not considered or considered only partially in current theories
of decision-making. Indeed, although we have constructed the present proposal around the
drift-diffusion model [1], we expect the overall formalism should be similar for any model
based on an evolving decision variable, whether that variable relates to leaky competing accu-
mulators [2], estimated probability [6, 7, 50–52] or an urgency signal [46]. Some empirical sup-
port for embodied models already exists but clearly much remain to be done to test current
embodied models of choice and develop better ones. The ultimate ambition of this framework
is to provide reference models to study ecologically valid choice, in the same way as drift-diffu-
sion and related models have provided (and still provide) a theoretical support to understand
perceptual decisions in the laboratory.

Although the results in this paper were characteristic of mouse tracking studies, similar re-
sults have been observed also for other behavioral paradigms. In a speeded reaching task where
subjects knew the target only probabilistically, their initial movement trajectory approached
the mean of the goal selection distribution and then veered toward the goal when revealed [53];
see also [54]. These findings cannot be explained by current parallel models (not even the
“changes of mind”model of [23]) because they lack a mechanism for action preparation and
use the evolving sensory representation only for decision-making and not also for movement
preparation and planning. Action preparation dynamics could also explain why the bio-
mechanical costs of movement and target distance influence choice, as reported in [29, 30].

Another key component of the embodied choice framework is a commitmentmechanism
that, once an action is initiated towards a decision choice, makes target revision less likely.
Such a mechanism might reflect both the situated aspects of the choice (e.g. biomechanical con-
straints) and the cognitive cost of changes of mind. A recent neurophysiological study of a two-
choice reaching task reported evidence of a commitment effect at both behavioral and neuronal
levels, with suppression of M1 activity tuned to the unselected target [38]. Other studies that
did not directly test the commitment hypothesis reported evidence that is congruent with this
idea. For example, it has been consistently reported that early evidence can have greater influ-
ence on the final perceptual choice: a primacy effect that can be explained within the leaky
competing accumulator framework by adding an inhibition dominancemechanism [55] or in
terms of hysteresismechanisms in dynamical systems models [3]. Yet this same evidence could,
in principle, also support the commitment hypothesis discussed here. That being said, the two
phenomena are different: inhibition dominance and hysteresis depend on processes that are in-
ternal to the decision system (e.g. attractor dynamics in neuronal populations), whereas com-
mitment would be due to the embodied and situated nature of the choice. In situated cognition
theories, the current movement trajectory can be considered an external memory of the ongo-
ing decision that both biases and facilitates the underlying choice computations by offloading
them onto the environment [56]. Overall, the exact relations between inhibition dominance
and hysteresis (due to neuronal dynamics) versus commitment (due to the embodiment of
choice) remain to be studied, and experiments that distinguish between them are required. For
example, a possible way to test the commitment hypothesis is to influence the initial stages of
action movements without directly changing the evidence accumulation process, such as by
studying whether (irrelevant) visuomotor priming can bias a perceptual decision.

Several aspects of the relation between decision and action remain to be investigated. For
the sake of simplicity, we reduced the complexity of action dynamics (assuming, for example,
constant velocity). A more realistic model of action and its biomechanics is required to fully
formalize a fully embodied model, by directly considering action costs (see [32]). For example,
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the present embodied choice models have action initiation at the start of the trial, whereas rele-
vant data (e.g. [29]) show a short deliberation period. Quantifying in more detail the action dy-
namics and the costs of action in the model of embodied choice should in principle allow the
movement initiation to depend on the evolving decision, because a movement that is initiated
too prematurely might be too costly to reverse afterwards. A comprehensive formalization
should also consider the situated characteristics of the task, such as the fact that different tasks
can differ in their intrinsic geometries for movement. For example, if two targets are at differ-
ent distances, the trajectory that makes them equiprobable is not straight but a curve ending at
their center-point.

More generally, the embodied choice framework suggests that choices are not insensitive to
the experimental paradigm used to study them. Different experimental set-ups with different
action constraints (e.g. buttons at various distances; the presence or absence of a deadline and
its length; differing kinematic costs for making a movement; using a keyboard, mousetracker,
tablet, etc.) can induce different choices or even different choice strategies with the same senso-
ry information. For example, the framework predicts that in set-ups with buttons at different
distance, the more uncertain choices should be biased towards the closest button, which re-
quires less biomechanical costs at least in conditions of high uncertainty. It also predicts that
once initiated an action should be harder to revise in the light of new evidence as an effect of
commitment. Recent studies provide preliminary empirical support for these predictions (see
[57–59]) although much remains to be investigated. Furthermore, experiments with different
deadlines and time constraints will change the way actions are executed; for example, an empir-
ical prediction of embodied choice that remains to be tested is that in urgent situations trajecto-
ries tend to be straighter. These considerations do not imply that decision making is a volatile
phenomenon or cannot be studied empirically, but rather that its full understanding at the con-
ceptual, computational and neuronal level cannot omit the action dynamics.

Another important direction of research is to link the embodied choice framework with
state-of-the-art formal theories of action control, such as optimal control [60], and so permit
modeling choice as the simultaneous optimization of decision and action. This view is shared
by recent theories suggesting that motor control is essentially a decision making process that
can be modeled with Bayesian decision theory [61, 62]. However, the proposal made here takes
a complementary approach in suggesting that action optimization is also part of the decision
making. In this way, it should balance the benefits of making the correct decision (e.g. clicking
the proper button) with its costs (time and biomechanical constraints to reach it). In general, it
is an open question how to attain decision optimality if action is required to make a choice—or
whether our brains do actually optimize the choice process or just use heuristics that are ‘good
enough’. Whatever the underlying mechanism, our results here indicate that elements of em-
bodied choice should be included to successfully model decisions in ecologically-
relevant scenarios.

The neuronal structures that could support embodied models of choice are incompletely
known. The proposal made here is largely consistent with recent decision making theories that
recognize the close connections between decision and action systems. For example, according
to the intentional framework, choice recruits sensorimotor circuits that are ultimately responsi-
ble for initiating actions or action plans [35]. Along similar lines, perceptual decision making
has also been proposed to be action selection [63]. Another recent proposal is that choice is im-
plemented as a distributed consensus between multiple brain circuits calculating outcome-relat-
ed and action-related aspects of a decision [64]. These ideas are convergent and largely
complementary to the proposed embodied choice framework and might offer testable propos-
als on the putative neuronal substrate underlying embodied choice. For example, in this article,
we have suggested that commitment effects could be implemented by biasing the fixation point
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to be closer to the currently closest target, but the neuronal underpinnings of this mechanism
remains unspecified. One possibility is that such biases are directly incorporated in a ‘biased
competition’ process between choice alternatives, as also suggested by the distributed consensus
model [64]. Another candidate mechanism is the use of corollary discharge and/or the action
trajectory as evidence for decision making (in addition to sensory evidence). These hypotheses
remain for empirical study.

To conclude, the embodied choice framework has wider scope than a theory of decision
making. Indeed, it is a clear example that embodied phenomena (here action movements) can
have causal influence on so-called central cognition (here perceptual choice). We make the
case that as cognitive processes are studied in ever more ecological contexts, the importance of
the cognitive embodiment will become increasingly apparent [65–67].

Models
This section describes the mathematical and computational details of the models of decision
making that were used to generate the results in this paper. All models are built on the drift-dif-
fusion model of Ratcliff and colleagues [1, 40]. A decision variable z(t) represents the sensory
information accumulated to time t from unbiased starting information z(0) = 0. For conve-
nience, we discretize time in uniform steps Δt, so that the update equation is

zðt þ DtÞ ¼ zðtÞ þ Dz; Dz � Nðm; s2Þ; ð7Þ

where Δz is the increment of sensory information received at time t, which is conventionally as-
sumed drawn from a (stationary) normal distribution N(μ, σ2) of mean μ and variance σ2. Here
we assume μ = 1/3 and σ = 1, with step-size Δt=50 ms. We then employ various criteria to
make decisions from this accumulated sensory information.

(i) Baseline Model: Drift-diffusion model without action: The decision criterion in the stan-
dard drift-diffusion model is that the accumulated sensory information crosses one of two deci-
sion boundaries, assumed equal and opposite at z = ±b. Here we consider values of b between
0.01 and 10 (considered in 31 increments of boundary value). We consider crossing the bound-
ary +b to represent a correct decision of error zero and crossing the boundary −b an incorrect
decision of error one. Results of the model simulations are averaged over 10000 runs, to de-
crease the variance in estimating the mean decision error and mean response time for each
boundary value.

(ii)Model 1: Action initiation after decision completion: We now require that an action
must be made to one of two equidistant targets to indicate the choice. For simplicity, we as-
sume a basic action model that moves a point (x, y) along a trajectory with constant speed
v = 2 units/sec, in a two-dimensional arena from starting point (0, 0) with targets 1,2 at posi-
tions (�1, 1.5). In this first model, we assume that the movement is initiated when the deci-
sion variable passes a decision boundary and the trajectory is a straight line to the target. This
action model can be represented by having an action focus that is coincident on the chosen
target for times t� tdec, as represented in equation (3). Prior to the decision time, there is no
choice and the agent cannot move (equivalently, the focus is at the start location). Then the
effect of action initiation after decision completion is to increase decision times by a constant

delay Ttarget ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 1:52

p
=2 ¼ 0:9 sec, the time to reach the target.

(ii)Model 2: Action initiation and changes of mind: We now consider a decision model in
which an action must be made to indicate the choice of a target, as in Model 1, but augmented
with a mechanism for ‘changes of mind’ during the movement to the target [23]. This is imple-
mented by updating the decision variable with new sensory information during the movement,
with the alternative target selected if the accumulated information z(t) passes the opposing
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decision barrier before the trajectory reaches a target. This action model can be represented by
having an action focus that is coincident on the currently chosen target, as represented in equa-
tion (4). Similarly to Model 1, if the accumulated information has not passed threshold, then
there is no choice and the agent cannot move.

(iii)Model 3: Action preparation: Next, we consider a model of preparatory motor response
from the start of the decision process, rather than waiting to reach a decision boundary to initi-
ate action [24]. Here we consider a preparatory move towards a focus point between the two
targets, to approach the most likely target prior to accumulating sufficient information to make
a decision. Mathematically, this focus point is defined as collinear between the two targets with
distance from each in the proportion jb + zj : jb − zj for −b� z� +b, and at target 1 for z� −b
or target 2 for z� b. Mathematically, we define the focus as collinear with the two targets with
distance from each in the proportion jb + zj : jb − zj for −b� z� b, as represented in equation
(5). This range is bounded such that the focus is coincident with a target if the
decision bound is passed. Hence, the decision bound no longer defines decision termination
directly, but rather the embodied choice follows indirectly from action completion (upon
reaching a target).

(iv)Model 4: Action preparation and commitment: Our final model considers both a prepa-
ratory motor response, as in Model 3, and commitment to an action when sufficiently engaged
in moving towards a target. Mathematically, we implement commitment by including an addi-
tional position-dependent term g(d1 − d2)/(d1 + d2) in the update equation (7), with d1, d2 the
distances to the two targets, as represented by equation (6) and g a gain for the degree of com-
mitment (here set to g = 4b). All other details are unchanged from Model 3.
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