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The SARS-CoV-2 spike protein is the first contact point between the SARS-CoV-2 virus and host cells and
mediates membrane fusion. Recently, a fatty acid binding site was identified in the spike (Toelzer et al.
Science 2020). The presence of linoleic acid at this site modulates binding of the spike to the human
ACE2 receptor, stabilizing a locked conformation of the protein. Here, dynamical-nonequilibrium molec-
ular dynamics simulations reveal that this fatty acid site is coupled to functionally relevant regions of the
spike, some of them far from the fatty acid binding pocket. Removal of a ligand from the fatty acid binding
site significantly affects the dynamics of distant, functionally important regions of the spike, including the
receptor-binding motif, furin cleavage site and fusion-peptide-adjacent regions. Simulations of the
D614G mutant show differences in behaviour between these clinical variants of the spike: the D614G
mutant shows a significantly different conformational response for some structural motifs relevant for
binding and fusion. The simulations identify structural networks through which changes at the fatty acid
binding site are transmitted within the protein. These communication networks significantly involve
positions that are prone to mutation, indicating that observed genetic variation in the spike may alter
its response to linoleate binding and associated allosteric communication.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic, which is having a devastating social
and economic impact worldwide, is caused by the severe acute res-
piratory syndrome 2 (SARS-CoV-2) coronavirus. Since the initial
outbreak in late 2019, SARS-CoV-2 has caused >261 million con-
firmed cases of COVID-19 disease and >5.2 million deaths [1] (per-
haps as many as 7–13 million [2] worldwide as of 29th November
2021. SARS-CoV-2 is an enveloped, single-stranded RNA virus that
belongs to the Betacoronavirus genus of the Coronaviridae family
which includes pathogenic human coronaviruses that cause SARS
severe acute respiratory syndrome) and MERS (Middle East respi-
ratory syndrome) [3,4]. It initially infects respiratory epithelial
cells by binding to the angiotensin-converting 2 enzyme (ACE2)
[5,6]. When it first emerged as a human pathogen, SARS-CoV-2
was thought to cause predominantly respiratory disease, particu-
larly pneumonia and severe acute respiratory distress syndrome
[7,8]. However, it is now known that its effects are not limited to
the respiratory tract: COVID-19 can cause severe inflammation
and damage in other organs [9–11], including the heart, kidneys,
liver and intestines, and can lead to neurological problems [12].
In common with other enveloped viruses, SARS-CoV-2 fuses its
viral envelope with a host cell membrane to infect cells. Membrane
attachment and fusion with the host cell is mediated by the
SARS-CoV-2 spike protein, which primarily binds to the host
ACE2 receptor [5,6]; however, the spike can also interact with
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neuropilin-1 [13,14] and potentially with other receptors [15,16].
The spike is a glycoprotein [17,18] and is found on the surface of
the virion, in a trimeric form Fig. 1A).

Each monomer is formed of three regions: a large ectodomain, a
transmembrane anchor and a short cytoplasmic tail [18]. The ecto-
domain comprises two subunits: S1 is responsible for binding to
ACE2 [6,18], and S2 for viral-host membrane fusion [18,20]. The
SARS-CoV-2 spike contains two proteolytic cleavage sites [18]:
one ’furin protease recognition’ site at the S1/S2 boundary, thought
to activate the protein [21], and a second in the S2 subunit S2́) that
releases the fusion peptide [18,20]. The SARS-CoV-2 spike contains
three free fatty acid (FA) binding sites, each located at the interface
between every two neighbouring receptor-binding domains
(Fig. 1A and S3) [19]. The FA binding sites are lined by aromatic
and hydrophobic residues (Fig. 1B) and a positively charged resi-
due from a neighbouring monomer, namely R408, which acts as
an anchor for the FA carboxylate headgroup [19]. The open spike
conformation, with at least one RBD pointing upwards, is needed
to interact with ACE2 receptors on the human host cell. It was
shown by surface plasmon resonance that the presence of the FA
linoleic acid (LA) reduces binding of the spike to ACE2 [19]. LA sta-
bilizes the locked spike conformation, in which the receptor-
binding motif (RBM) is occluded and cannot bind to the human
ACE2 receptor [19], but there is no obvious connection between
the FA sites and other structural motifs relevant for membrane
fusion, or with antigenic epitopes. MD simulations showed persis-
tent and stable interactions between LA and the spike trimer
[19,22]. These simulations also revealed that LA rigidifies the FA
binding site, and these effects extend to the N-terminus domain
[22]. The cryo-EM structure of the spike from pangolin coronavirus
(which is closely related to SARS-CoV-2) shows that the spike also
binds LA in an equivalent FA pocket [23]. An equivalent FA binding
Fig. 1. Cryo-EM structure of the ectodomain of the SARS-CoV-2 spike trimer with linoleic
of the complex of the locked (in which all receptor-binding motifs (RBMs) are occluded) e
The spike protein is a homotrimer [18]: each monomer is shown in a different colour, na
acid (FA) binding site is located at the interface between two neighbouring monomers, a
view of the FA binding site: this pocket is lined by hydrophobic and aromatic residues,
references to colour in this figure legend, the reader is referred to the web version of th
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site has also been found on the Novavax SARS-CoV-2 construct
expressed and purified from insect cells [24].

Simulations, particularly atomistic molecular dynamics (MD)
simulations, have provided crucial atomic-level insight into the
structure, dynamics and interactions of the SARS-CoV-2 spike
[13,19,22,25–33]. Here, we apply dynamical-nonequilibrium MD
simulations [34–37] to investigate the response of the SARS-CoV-
2 spike to LA removal. We have shown this approach to be effective
in identifying structural communication pathways in a variety of
proteins, e.g. in identifying a general mechanism of interdomain
signal propagation in nicotinic acetylcholine receptors [38,39]
and mapping the networks connecting the allosteric and catalytic
sites in two clinically relevant b-lactamase enzymes [40]. This
approach is based on equilibrium simulations of the system in
question, which generate configurations for multiple dynamical-
nonequilibrium simulations, through which the effect of a pertur-
bation can be studied. Running a large number of nonequilibrium
simulations allows for the determination of the statistical signifi-
cance of the structural response observed [37].

2. Dynamic response of the wild-type spike

A model of the locked wild-type spike was created from the
cryo-EM structure (PDB code: 6ZB5) of the SARS-CoV-2 spike pro-
tein bound to three linoleate molecules [19]. Missing loops were
built to generate the wild-type sequence according to the Uniprot
accession number P0DTC2 for the unglycosylated ectodomain of
the spike bound with LA (for details, see Supplementary Material).
The locked structure had 42 disulphides per trimer. It remained
intact and faithfully retained the structure and overall fold of the
cryo-EM structure over the equilibrium simulation time [19,22].
Three equilibrium MD simulations (Fig. S1), 200 ns each, were per-
acid (LA) bound to the fatty acid-binding sites [19]. (A) Three-dimensional structure
ctodomain of the SARS-CoV-2 spike trimer with linoleic acid (PDB code: 6ZB5) [19].
mely green, orange and blue. LA molecules are highlighted with spheres. Each fatty
nd is formed by residues from two adjacent receptor-binding domains. (B) Detailed
and the LA acidic headgroup is close to R408 and Q409. (For interpretation of the
is article.)
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formed for the locked form of the unglycosylated and uncleaved
(no cleavage at the S1/S2 interface) ectodomain of the spike bound
with LA and used as starting points for 90 dynamical-
nonequilibrium simulations (Fig. S2). Here, we used models of
the uncleaved spike ectodomains in order to detect any potential
effects on structurally distant sites influenced by ligand in the FA
sites in the intact spike. In the nonequilibrium simulations, all LA
molecules were (instantaneously) annihilated. This triggers a
response of the protein, as it adapts to LA removal. This annihila-
tion is carried out for multiple configurations sampled from equi-
librium MD (top panel in Figure S2), and comparison between
the equilibrium and short dynamical-nonequilibrium MD trajecto-
ries identifies the structural response of the protein. Running mul-
tiple (in this case, 90) dynamical-nonequilibrium simulations
reduces the noise associated with the structural response of the
protein and allows for the determination of the statistical signifi-
cance of the observed response. Nonequilibrium simulations of this
type are emerging as an effective tool to study signal transmission
and identify communication networks within proteins [38–42].
Here, the direct comparison between the equilibrium LA-bound
and nonequilibrium apo spike simulations using the Kubo-
Onsager approach [34–37] (bottom panel in Figure S2), and the
average of the results over all the 90 replicates, allows for identifi-
cation of the temporal sequence of conformational changes associ-
ated with the response of the spike to LA removal (Figs. 2 and S4),
and also the determination of their statistical significance (Fig-
ure S5). The structure that we simulate here corresponds to the
unglycosylated wild-type spike (Uniprot accession number
P0DTC2), not cleaved at the ’furin recognition/cleavage’ site. It
was built based on the cryo-EM structure that originally revealed
the FA binding site (PDB code: 6ZB5) [19]. Although a few glycans
(e.g. at positions N165, N234, and N343) have been shown to be
involved in the spike infection mechanism by altering the dynam-
ics of receptor binding domain opening [25,43], and the glycan
shield plays a vital role in the biological function of the spike, the
internal networks and response of the protein scaffold identified
here are not likely to be qualitatively altered by the glycans, which
predominantly cover the exterior of the spike. The spike structure
used for these simulations, namely the tightly packed closed struc-
ture [19], is only glycosylated on the outside, and as such, glycans
are unlikely to affect the protein’s internal allosteric communica-
tion networks. As Casalino et al. have shown, glycan dynamics
are fast relative to the dynamics of the protein [25]. Note that
the perturbation introduced here (LA annihilation) is not intended
Fig. 2. Average Ca-positional deviation for the first monomer in the five nanoseconds af
were calculated using the Kubo-Onsager approach [34–37] for the pairwise comparis
simulations and averaged over all 90 replicates. A similar response to LA removal is obser
grey, namely N-terminal domain (NTD), receptor-binding domain (RBD), receptor-bindi
repeat 1 (HR1), central helix (CH) and connector domain (CD).
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to mimic the physical process of LA (un)binding, but rather to pro-
mote a rapid response and force signal transmission within the
protein, thus mapping the mechanical and dynamic coupling
between the structural elements involved in this response. Note
also that, due to the non-physical nature of the perturbation, the
timescales observed for the protein’s response do not represent
the physical timescales of conformational change, however, the
responses of similar systems (e.g. wild-type and D614G spike)
can be meaningfully compared.

Despite small variations in amplitude, the structural response
to LA removal is similar for the three monomers (Figs. 2 and S4).
Figs. 2 and S4 show the time evolution of the average Ca-
positional deviation of each individual monomer in the 5 ns follow-
ing LA. Comparing these figures shows that all the monomers
respond similarly, with the same motifs and order of events asso-
ciated with signal propagation observed for each.

The simulations show that the structural response to LA
removal occurs in very specific and well-defined regions of the
spike. It is striking that some functional motifs, including regions
distant from the FA site, are particularly affected by LA removal
(Figs. 2 and S4). Some of these conformational changes occur in
solvent-exposed, flexible regions of the protein (Figs. S6-S8). This
might initially be surprising, but it should be noted that flexibility
means that little energy is required to induce the conformational
rearrangement. This is one reason why loops often play essential
roles in protein function and allostery (e.g. [44]), and are frequently
involved in signal propagation in proteins (e.g. [38–41]). Upon LA
removal, the response within the spike starts in the FA binding
pocket region, and it rapidly propagates through the receptor-
binding domain (RBD) to the N-terminal domain (NTD), furin
cleavage/recognition site and residues surrounding the fusion pep-
tide (FP). All of the monomers are closely intertwined, and there-
fore signal propagation does not occur simply within an
individual monomer, but rather involves a complex network of
conformational changes spanning all three chains (Figs. S6-S8).
For example, LA removal from the FA pocket formed by monomers
A and C induces structural responses in the NTD of monomer B
(NTDB), the RBD of monomer C (RBDC) and the furin cleavage/
recognition site of monomer A, as shown by the propagation of
the signal from the first site to these regions (Figs. S6-S8).

Upon LA removal, the hydrophobic and aromatic residues lining
the FA site reorient their side chains towards the inside of the FA
site (Fig. S9), as part of the contraction and collapse of this site
(Figs. S9-S10). Furthermore, in the absence of the partnering
ter LA removal from the FA sites in the SARS-CoV-2 spike. The structural deviations
on between the equilibrium LA-bound and dynamical-nonequilibrium apo spike
ved for the other two monomers (Figure S4). Some relevant motifs are highlighted in
ng motif (RBM), fusion peptide (FP), fusion-peptide proximal region (FPPR), heptad
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carboxylate headgroup of LA, R408 establishes alternative hydro-
gen bond interactions with nearby polar residues, such as Q404
and S375 (Fig. S11).

FA sites modulate key motifs for membrane fusion or anti-
genic epitopes in the spike

The RBMs respond rapidly to LA removal (Fig. 3 and S12-S13),
due to their close proximity to the FA sites. From the time evolu-
tion of the protein response, signal transmission from the FA sites
to the RBMs is apparently mediated by S366-A372 and R454-K458
(Fig. S14). The structural changes induced by LA removal in S366-
A372 (a segment containing some of the residues lining the FA
sites) are directly transmitted to R454-K458, and from there to
the rest of the RBMs. 0.1 ns after LA removal, significant structural
rearrangements are already apparent in the RBMs, mainly in the
A475-C488 segment (Fig. 3 and S12-S13). Subsequently, a gradual
increase in deviations is observed for A475-C488. The RBM lies
between the b4 and b7 strands of the RBD and contains most of
the residues that directly interact with ACE2 [45,46]. This motif
is one of the most variable regions of SARS-CoV-2 spike [47] and
a major target for neutralising antibodies [48–50].

The NTDs also show a fast and significant response to LA
removal, in particular, H146-E156 and L249-G257 (Fig. 4 and
S15-S16). The communication pathway connecting the FA sites to
the NTDs apparently involve P337-A348 (a segment comprising
some of the residues that directly interact with LA), W353-I358
and C166-P174 (Figure S17). The rearrangements induced by LA
removal in the P337-A348 region promptly spread to W353-I358
and from there to the NTDs via the C166-P174 region (Figure S17).
The NTD of the spike is a surface-exposed domain structurally
linked to the RBD of a neighbouring monomer [19,45]. Although
directly coupled to the RBD, the NTD does not bind to ACE2 [5,6]
and its function in SARS-CoV-2 infection remains unclear. The
spike NTDs of other related coronaviruses have been suggested
to play a role in infection [51–53] and are known epitopes for neu-
tralising antibodies [16,53]. Human antibodies targeting the NTD
Fig. 3. The FA site allosterically affects the RBM in the SARS-CoV-2 spike. Average
Ca-positional deviation around the first FA site at times 0, 0.1, 1, 3 and 5 ns
following LA removal from the FA binding pockets. The Ca deviations between the
simulations with and without LA were determined for each residue and averaged
over the 90 pairs of simulations (Figs. 2 and S4). The Ca average deviations are
mapped onto the structure used as starting point for the LA-bound equilibrium
simulations. Both the structure colours, and the cartoon thickness, relate to the
average Ca-positional deviation values. The location of the LA binding site is
highlighted with grey spheres. The subscript letters in the labels correspond to the
monomer ID. This figure shows the response around the first FA binding site, which
is formed by monomers A and C. Results for the other sites show similar
connections between the FA sites and the RBMs (see Figs. S12-S13 for the responses
observed for the other two FA sites).
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of the SARS-CoV-2 spike have been isolated from convalescent
COVID-19 patients e.g. [16,54,55]) and this region was shown to
be a super-antigenic site [56]. A cryo-EM structure of the complex
between the spike and the 4A8 monoclonal antibody shows that
the NTD loops L141-E156 and R246-A260 (two of the regions that
show the largest responses to LA removal in Fig. 4 and S15-S16)
directly mediate the interaction between the proteins [54]. Both
of these loops are candidates for vaccine and therapeutic develop-
ments [54]. The conformational changes in the H146-E156 and
L249-G257 segments are further transmitted, over the following
5 ns, to other parts of the NTD, namely S71-R78, N122-N125 and
F175-F186. The N122-N125 segment is a conserved NxxN
sequence motif present in the NTD of spikes from several coron-
aviruses, and its function remains unknown [57]. The F175-F186
region is located immediately before a recently identified epitope
for human antibodies [55]. The S71-R78 segment is part of the
GTNGTKR insertion shared by the SARS-CoV-2 and bat-CoV
RaTG13 spikes but not the SARS-CoV spike [57]. This motif, which
is also found in structural proteins of several other viruses, and
proteins from other organisms, has been suggested to allow the
SARS-CoV-2 spike to bind to other receptors besides ACE2 [57].
The coupling identified here between the FA site and specific
regions of the NTD is remarkable and highlights the complex allos-
teric connections within the spike, with distant sites apparently
able to modulate the response of the NTDs.

Both the furin cleavage/recognition site and V622-L629 region,
which are >40 Å away from the FA site, respond notably to the
removal of LA (Fig. 5 and S18-S19). Both regions respond rapidly,
with a significant conformational response observed almost imme-
diately after LA removal. The furin cleavage/recognition site is
located at the boundary between the S1 and S2 subunits [18,19]
and furin cleavage is thought to be important for the activation
of the spike [21]. This site contains a polybasic PRRA insertion
not found in other SARS-CoV-related coronaviruses [58]. Cell-
based assays show that deletion of the PRRA motif affects virus
infectivity [21,58–62]. Note that in the simulations presented here,
the furin cleavage/recognition site (located between R685 and
S686) is not cleaved (see Supplementary Material). From the time
evolution of the protein response to LA removal, signal propagation
from the FA site to the furin cleavage/recognition site appears to
occur via the C525-K537, F318-I326, and L629-Q644 regions (Fig-
ure S20). Upon LA removal, the structural changes in the FA site
are first propagated to C525-K537 and then sequentially transmit-
ted to F318-I326 and L629-Q644, ultimately reaching V622-L629
and the furin site. The furin cleavage/recognition site and V622-
L629 region are among the spike regions most affected by LA
removal and show increasingly large deviations (larger than most
other loop regions of the protein) over the simulations. The confor-
mational changes in these regions propagate to segments immedi-
ately adjacent to the fusion peptide, namely the downstream
fusion peptide proximal region (FPPR) and the upstream D808-
S813. The FPPR is a � 25-residue segment located in S2 immedi-
ately downstream of the fusion peptide, which has been suggested
to play an essential role in the structural transitions between pre-
and post-fusion conformations of the spike [20]. The D808-S813
region is located upstream of the fusion peptide (FP), immediately
preceding the S20 protease recognition and cleavage site R815)
[60]. Both proteolytic sites in the SARS-CoV-2 spike are known epi-
topes for neutralising antibodies [63,64].

The close connection between the furin cleavage/recognition
site, V622-L629, and the regions adjacent to the FP, identified here
for the intact, wild-type spike is remarkable. Due to this crosstalk,
mutations in or close to the furin cleavage/recognition site or
V622-L629 are likely to affect signal transmission to the FP-
surrounding regions, i.e. the FPPR and the S20 cleavage site. This
is worthy of experimental investigation.



Fig. 4. The FA site allosterically affects the NTD in the SARS-CoV-2 spike. Average Ca-positional deviation around the first FA site at times 0, 0.1, 1, 3 and 5 ns following LA
removal from the FA binding pockets (see Figs. 15-S16 for the responses observed for the other two FA sites). This figure shows the response around the first FA binding site,
which is formed by monomer A and C. Similar results are observed for the other two FA sites and the NTD (Figs. S15-S16). For more details, see the legend of Fig. 3.

Fig. 5. The FA site allosterically affects the furin cleavage/recognition site, the fusion peptide proximal region (FPPR), and the residues immediately preceding the S20 cleavage
site in the SARS-CoV-2 spike. Average Ca-positional deviations around the first FA site at times 0, 0.1, 1, 3 and 5 ns following LA removal from the FA binding pockets. This
figure shows the response around the first FA binding site, which is formed by monomers A and C. A similar response is observed for all three monomers (see Figs. S18-S19 for
the responses observed for the other two FA sites). Analogous connections between the other two FA sites and the furin cleavage/recognition sites, FPPR and S20 cleavage sites
are also observed (Figs. S17-S18). For more details, see the legend of Fig. 3.
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Fig. 6. Response of the wild-type and D614G spike to LA removal. Average Ca-positional deviations around the first FA site at times 0, 0.1, 1, 3 and 5 ns following LA removal
from the FA binding pockets (see Figs. S33-S34 for the responses observed for the other two FA sites). The Ca deviations between the simulations with and without LA were
determined for each residue, and the values averaged over the 90 pairs of simulations (Figs. 2, S4 and S25). The structure colours, and cartoon thickness, relate to the average
Ca-positional deviations. The location of the LA binding site is highlighted with grey spheres. The subscript letters in the labels correspond to the monomer ID.
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Simulations of the D614G spike

We also performed equilibrium and dynamical-nonequilibrium
simulations of the D614G mutant spike. The D614G mutation is
now dominant in SARS-CoV-2 lineages circulating worldwide
[65] and confers increased transmissibility. Other variants are
emerging as increasing numbers of infections provide further
opportunities for mutations to arise. The B.1.1.7 (also known as
Alpha) variant, largely responsible for the surge in cases in the
UK in the winter of 2020/21, has increased infectivity without
the D614G mutation [66,67]. However, three of the four variants,
involved in the April 2021 surge of cases in India as well as the
B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants do include
D614G among the mutations (COVID-19 Genomics UK Consortium,

https://www.cogconsortium.uk and https://www.ecdc.europa.eu/).
That a single amino acid replacement of the aspartate residue in
position 614 by a glycine leads to more efficient viral transduction
into host cells and greater infectivity [68–71] is worthy of mecha-
nistic exploration. Here, three equilibrium 200 ns MD simulations
were performed for the locked form of the unglycosylated and
uncleaved ectodomain region of the D614G spike modelled from
a wild-type model [19,22] based on the cryo-EM structure 6ZB5
[19] with and without LA bound (see Supplementary Material).
Note that D614G has the same sequence as the wild-type except
for the residue in position 614, which was mutated from an aspar-
tate to a glycine. In the original wild-type spike, D614 is located at
the interface between monomers, with its sidechain directly inter-
acting with residues across the subunit interface [61]. Root mean
square fluctuation (RMSF) profiles from equilibrium MD for the
wild-type and D614G apo spikes are similar (Figure S21). However,
unlike the wild-type with or without LA, a single chain in one repli-
cate of the D614G with LA bound exhibits greater fluctuation in the
middle of the RBM corresponding to exposed loop residues Q474-
N487 (Figure S21). The RBM loop flipped orientation coincident
with a transient loss of a salt bridge on the stem of this loop
between K458 and E471 of the same chain.
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The Q474-N487 loop is interesting because, although the RBD in
the closed conformation remains inaccessible for binding to ACE2,
residues Q474-N487 of the RBM (shown in magenta in the insert in
Figure S21F) it includes the epitope Y473-P479 (YQAGSTP) [72],
which may still provide a target for neutralizing antibodies in the
closed conformation, depending on the degree of glycan shielding
[73] (being close to the S349 O-glycosylation site [21]). This beha-
viour, albeit in a single chain of our equilibrium MD simulations of
the unglycosylated, uncleaved wild-type and D614G LA-bound
spikes, suggests that the D614G may influence mobility in this
important region. There is some evidence that local flexibility
and local sequence context can affect the fraction of occupancy
of glycosylation sites in different proteins [74]. Spike glycosylation
occurs co-translationally and it is also thought that LA binds co-
translationally. LA and the D614G mutation may affect glycosyla-
tion [75].

The trans-interface interactions of the carboxylate of D614 in
the wild-type involve four potential candidate residues, K854,
K835, Q836 and T859. In the equilibrium MD simulations, T859
came within 5 Å of D614 across an interface and made transient,
weak interactions throughout the simulations of the apo and LA-
bound spike systems Figure S22). The carboxylate of D614 and
NZ of K854 remains within salt-bridging distance throughout the
wild-type simulations (Figure S23). The D614-K854 trans-subunit
interface interaction dominates throughout the simulation time,
regardless of the presence of bound LA (Figure S22). In the
200 ns open wild-type apo spike simulations, the trans-subunit
interaction between D614 and K854 persisted for 99% (standard
deviation 0.57%) of the frames across eight of the nine subunit
interfaces. This contact was lost at only one interface and that
was between an open and closed chain in one of the repeats
(Figure S22).

An analogous analysis was performed on the D614G mutant to
establish whether K854 makes alternative hydrogen-bond or
salt-bridge contacts across the 3 subunit interfaces (averaged
over 3 � 200 ns replicates) in the absence of a partnering D614

https://www.cogconsortium.uk
https://www.ecdc.europa.eu/
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carboxylate. In the D614G spike, K854 fails to find any alternative
salt-bridge and only occasionally comes within hydrogen-bonding
distance of residues Q613 and N317 (Figure S24). This supports the
inference drawn from cryo-EM structures of the head region of the
D614G spike that this mutation disrupts the inter-monomer salt-
bridge and hydrogen bond networks in this region, which may
cause reduced stability of the trimer. This corresponds to the
observation that the D614G mutant was mostly in an open confor-
mation on the EM grids and suggests that loss of the D614-K854
interaction somehow destabilises the closed conformation (e.g.
[76,77]).

Dynamical-nonequilibrium simulations of the D614G variant
were also performed to test whether the D614G mutation affects
the response of the spike to LA. A distribution of conformations
taken from the equilibrium simulations of the locked form of the
unglycosylated and uncleaved D614G spike with LA bound was
used as the starting point for the dynamical-nonequilibrium simu-
lations. The same perturbation as for the wild-type spike was
applied to the system, namely LA removal. The Kubo-Onsager
approach [34–37] was again used to extract the response of the
system (Figure S25) and determine the statistical significance of
the observed responses (Figure S26). In the D614G variant, there
is notably less symmetry across the monomers in the response of
the spike to LA removal, compared to the wild-type (Fig. 6 and
S27-S34). For instance, the amplitude of the structural response
of the V266-L629 and furin cleavage/recognition site regions in
monomer C (Figure S33) of the D614G is substantially smaller than
in monomers B and A (Fig. 6 and S34).

The conformational responses of the wild-type and D614G
spikes can be directly compared because the same perturbation
was used for both in the dynamical-nonequilibrium simulations.
The conformational response of the NTDs and RBDs to LA removal
is generally similar in the wild-type and D614G spike (Figs. S27-
S33) with small variations in the amplitude of the structural rear-
rangements of some functional motifs, e.g. RBMs. However, the
D614G mutation significantly affects inter-monomer communica-
tion, with reduction of signal transmission from the furin cleav-
age/recognition site and V622-L629 of one monomer to the FPPR
of another (Fig. 6 and S33-S34) compared to the wild-type (Fig. 5
and S18-S19). In the D614G spike, only minor deviations of the
FPPR are observed. Furthermore, the region located upstream of
the fusion peptide, namely D808-S813, also shows different rates
of signal propagation between the wild-type and D614G proteins
(Fig. 6 and S33-S34). The differences identified here may relate to
functionally important differences between the wild-type and
D614G spikes. The results here show that the D614G mutation
alters the allosteric networks connecting the FA site to the regions
surrounding the FP, particularly the FPPR. There is reduced com-
munication between the monomers in the D614G spike. As noted
above, the response of the D614G spike to LA is also less symmet-
rical than the wild-type.
3. Conclusions

Our findings show that changes in ligand occupancy at the FA
site influence the dynamic behaviour of functionally important
motifs distant from the FA site. The simulations identify a complex
network of structural pathways connecting the FA sites to key
structural motifs within the SARS-CoV-2 spike. These networks
extend far beyond the regions surrounding the FA sites, with struc-
tural responses being observed in the RBM, NTD, furin cleavage/
recognition site and FP-adjacent regions (Movie 1). The results also
show strong crosstalk between the furin cleavage/recognition site,
V622-L629 and the regions adjacent to the FP. Disrupting or alter-
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ing these communication networks may be a novel strategy for
drug development against COVID-19.

Simulations of the D614G spike show that this mutation affects
communication between the FA site and the FPPR and the S20

cleavage site. The D614G mutant shows reduced response of the
FPPR and a slower rate of signal propagation to the S20 cleavage site
compared to the wild-type protein (Movie 2). These results indi-
cate that the D614G mutation affects the allosteric behaviour and
the response to LA of the spike, which may be related to the
changes in viral fitness associated with this mutation [78].

The results here further highlight the potential of dynamical-
nonequilibrium simulations for identifying pathways of allosteric
communication [38–40] and suggest that this approach may be
useful in analysing mutations and differences in functionally
important dynamical behaviour, and possibly different effects of
LA, between SARS-CoV-2 spike variants of clinical relevance, such
as the Alpha, Beta, Gamma, and Delta, and (now) Omicron.
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