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The advances of genomics, sequencing, and high throughput technologies have led to the creation of large volumes of
diverse datasets for drug discovery. Analyzing these datasets to better understand disease and discover new drugs is
becoming more common. Recent open data initiatives in basic and clinical research have dramatically increased the types
of data available to the public. The past few years have witnessed successful use of big data in many sectors across the
whole drug discovery pipeline. In this review, we will highlight the state of the art in leveraging big data to identify new
targets, drug indications, and drug response biomarkers in this era of precision medicine.

In 2013, the European Bioinformatics Institute hosted 15 peta-
bytes data in their shared file systems.1 This increased to 25 peta-
bytes in 2014, which is equal to the hard drive space of over
12,000 current-day typical personal laptops (each with a 2 tera-
byte drive). These data were distributed in over 120,000 datasets
available for searching and analysis in 2014. As voluminous as
this data sounds, these numbers simply reflect the complexity and
growth of the data from one single institute.
This growth in the digitalization of biomedical research is due

to the advances and decreasing costs of genomics, sequencing,
and the increasing use of high throughput technologies in the
research enterprise. Large volumes of biomedical data are being
produced every day, and much of these data are actually now
becoming publicly available, owing to the initiatives of open data.
Although the field of biomedical informatics is facing challenges
in the storage and management of these datasets, this field is also
embracing more exciting opportunities in the discovery of new
knowledge from these data.2 Big datasets are now not only rou-
tinely analyzed to inform discovery and validate hypothesis, but
also frequently repurposed to ask new biomedical questions.
However, researchers are facing so many datasets that sometimes
it is difficult to choose the appropriate one for their studies. In
this review, we will first describe the data types commonly used
in drug discovery and then list datasets publicly available. We will
highlight some remarkable datasets that led to the discovery of
new targets, drugs, or drug response biomarkers.

WHAT BIG DATA ARE AVAILABLE FOR DRUG DISCOVERY?
Drug discovery often starts with the classification and under-
standing of disease processes, followed by target identification

and lead compound discovery. One trend of disease classification
in drug discovery is moving from a symptom-based disease classi-
fication system to a system of precision medicine based on molec-
ular states.3,4 Building a new classification of diseases requires
molecular characterization of all diseases. In addition, an ideal
level of disease understanding would characterize all levels of
molecular changes, from DNA to RNA to protein, as well as the
effects of environmental factors.
Each level of molecular change can be characterized by the

analysis of relevant data points. Table 1 lists the data types fre-
quently used in drug discovery and their current relevant technol-
ogies. At the DNA level, single-nucleotide polymorphisms
(SNPs) that occur specifically in the disease population is one
type of DNA sequence variation widely used to characterize dis-
ease. Copy number variations (CNVs) reflect relatively large
regions of genome alterations, which may be also associated with
disease. Both SNPs and CNVs can be identified from the
genome-wide association studies (GWASs) and whole genome
sequencing approaches. Mutations, particularly somatic muta-
tions, are widely examined using next generation sequencing to
find driver genes in cancer that confer a selective growth advant-
age of cells.
At the RNA level, gene expression (primarily mRNA) is argu-

ably the most widely used feature for disease characterization. It
has been used extensively to understand disease mechanism owing
to the development of the microarray technology. The recent
development of RNA-Seq presents merits in the expanded cover-
age of transcripts and in the detection of low abundant tran-
scripts.5 Protein expression is another critical feature used to
characterize disease. Large-scale quantification of protein
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Table 1 Common data types for drug discovery

Data type Description Common techniques Public availabilitya

SNP A single nucleotide variation in a
genetic sequence

SNP array: most widely used ****

Whole genome sequencing

CNV Variation of the number of copies of
a particular gene in the genetic
sequence

SNP array: most widely used; less sample
DNA required; high probe density and
coverage

****

Comparative genome hybridization: high sen-
sitivity and specificity; low spatial resolution

Whole genome sequencing: can detect
smaller CNVs and novel types (e.g.,
inversions)

Mutation A permanent change of the nucleo-
tide sequence of the DNA; mostly
somatic mutation that occurs in any
of the cells except the germ cells

Whole exome sequencing: most widely used ****

Whole genome sequencing: more expensive
and more coverage

Gene expression Mostly expression of mRNA but also
includes expression of other
transcripts

Microarray: most widely used *****

RNA-Seq: can detect novel transcripts, low
abundant transcripts and isoforms

Fluorescent in situ hybridization: can detect
transcript abundance and spatial location in
cells for a small number of genes

RT-PCR: frequently used to confirm expression
for a small number of genes

Protein expression Can be expression of multiple
isoforms or variations due to
posttranslational modifications

Western blot: widely used to quantify protein
expression for a small number of proteins

***

ELISA: widely used to detect and quantita-
tively measure a protein in samples

Immunohistochemistry: can detect intracellu-
lar localization for a small number of proteins

Reverse phase protein array: can detect
expression for a few hundred proteins

Mass spectrometry: can detect expression for
a wide range of proteins

Protein-protein interaction Physical interactions between two or
more proteins

Two-hybrid screening: low-tech; high false-
positive rate

****

Mass spectrometry

Protein-DNA interaction Binding of a protein to a molecule of
DNA

ChIP-seq: combines chromatin immunopreci-
pitation with massively parallel DNA sequenc-
ing to identify the binding sites of DNA-
associated proteins

***

Gene silencing Effect of loss of gene function RNAi: established method; knocks gene down
at mRNA or non-coding RNA level; can have
transient effect (siRNA) or long-term effect
(shRNA)

**

CRISPR-Cas9: new method; modifies gene
(via knockout/knockin) at the DNA level;
causes permanent and heritable changes in
the genome

Gene overexpression Effect of gain of gene function cDNAs/ORFs: provide clones of sequence *

Table 1 Continued on next page
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expression is becoming possible recently because of the emerging
new high throughput technologies, such as reverse-phase protein
arrays and mass spectrometry, although their coverage and quality
remain limited. The interactions among DNA, RNA, and pro-
tein can be captured by ChIP-Seq, mass spectrometry, and other
techniques; however, most of those interactions have been cap-
tured only in cell lines or other in vitro models. More recently,
next generation sequencing approaches have allowed sequencing
environmental factors, such as microbial cells in the human body.
Today, a snapshot of the molecular changes in disease can be

quickly modeled by the variety of datasets collected using multi-
ple techniques. The recent development of single cell sequencing
adds another layer of molecular changes. The number of layers
dramatically increases as we consider the dynamic process of dis-
ease progression. Moreover, other than disease samples from
patients, diverse preclinical models (e.g., cell lines, animal models)
could be molecularly characterized in order to understand disease
and validate hypothesis.
On the drug side, molecular changes in disease models per-

turbed by chemical or genetic agents can be captured to under-
stand disease and drug mechanism. Gene function and gene
regulatory networks can be studied via genome-wide functional
screens, such as RNAi and clustered regularly interspaced short
palindromic repeats (CRISPR)-Cas9.6 In addition, cellular
responses of thousands of chemical compounds in a large of num-
ber of disease models can be quickly detected by high throughput
screening. Patient response upon drug intervention can be
tracked and analyzed recently owing to the availability of elec-
tronic medical records (EMRs) and clinical trials. In addition to
the molecular and clinical data, free-text data presented in litera-
ture are also useful in drug discovery.

WHAT BIG DATA SOURCES ARE PUBLICLY AVAILABLE?
No single laboratory, institute, or consortium is able to produce
the data fully capturing all the layers of the complex disease sys-
tems. In addition, understanding of these systems relies on a large
number of samples, such that statistical power could be reached.
Integrative analysis of multiple layers of data points from differ-
ent sources is thus essential to understand disease and discover

new drugs. Hence, it is of utmost importance that the data
should be open to the public, such that every piece of informa-
tion can be easily connected.
Many important reference datasets have recently been created

and released, and can be used for drug discovery.7 Notable exam-
ples are listed in Table 2. Arguably, public datasets can be used
to inform every step of preclinical drug discovery. Clinical data-
sets are becoming increasingly open as well.8 Figure 1 shows a list
of public datasets that can be leveraged to identify new targets,
drug indications, and drug response biomarkers. Not only have
public datasets been widely used as a source of reference, but also
they have been intensively analyzed to ask new questions, dis-
cover new findings, or even validate hypothesis. In this study, we
selectively review some outstanding cases in the past few years in
which discoveries were made primarily through the analysis of
big data and validated rigorously through experimental
approaches.

LEVERAGE BIG DATA TO IDENTIFY NEW TARGETS
FOR PRECLINICAL STUDIES
Using big data to select targets for preclinical studies often starts
with the identification of molecular changes between disease sam-
ples and healthy samples. The molecular changes are implicated
in gene expression change, genetic variation, or other features,
and are furthermore used to inform target discovery. Figure 2
illustrates three common big data approaches that use different
molecular features to discover targets, and basic experimental
approaches to validate targets. We will first discuss these three
approaches and then suggest that public datasets can be used to
validate targets before time-consuming experiments.

Target discovery using gene expression data
Among molecular features, gene expression is the most widely
used feature and has been extensively explored to inform target
selection. As an example, Grieb et al.9 found that MTBP was sig-
nificantly elevated in breast cancer samples compared with nor-
mal breast tissues by examining mRNA expression of 844 breast
cancer samples from The Cancer Genome Atlas (TCGA). Analy-
sis of survival data revealed that increased MTBP levels are

Table 1 Continued

Data type Description Common techniques Public availabilitya

Drug efficacy Effect of drug treatment; primarily
represented as IC50/EC50/GI50 in
vitro

HTS: rapidly assess the activity of a large
number of compounds in biochemical assays
or cell-based assays

***

MTT assay: often used to confirm activity for a
small number of compounds

Drug-target interaction Physical interaction between a drug
and a protein target

Affinity chromatography with mass spectrome-
try: most sensitive and unbiased method

***

SPR

EMR/EHR Patient response upon interventions Digitalization *

CNV, copy number variation; CRISPR, clustered regularly interspaced short palindromic repeats; ELISA, enzyme-linked immunosorbent assay; EMR/HER, electronic
medical/health records; HTS, high throughput screening; MTT, methylthiazol tetrazolium; RT-PCR, real-time polymerase chain reaction; SNP, single-nucleotide
polymorphism; SPR, surface plasmon resonance.
aIndicates the degree of public availability. For example, ***** shows researchers could easily access this type of data via public portals.
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Table 2 Common public databases for drug discovery

Database Description (as of October 2015) URL

dbSNP SNPs for a wide range of organisms, including >150M human
reference SNPs.

http://www.ncbi.nlm.nih.gov/snp

dbVar Genomic structural variations (primarily CNVs) generated
mostly by published studies of various organisms, including
>2.1M human CNVs.

http://www.ncbi.nlm.nih.gov/dbvar

COSMIC Primarily somatic mutations from expert curation and
genome-wide screening, including >3.5M coding mutations.

http://cancer.sanger.ac.uk/cosmic

1000 Genomes Project Genomes of a large number of people to provide a compre-
hensive resource on human genetic variation, including
>2.5K samples.

http://www.1000genomes.org

TCGA Genomics and functional genomics data repository for >30
cancers across >10K samples. Primary data types include
mutation, copy number, mRNA, and protein expression.

https://tcga-data.nci.nih.gov/tcga

GEO Functional genomics data repository hosted by NCBI,
including >1.6M samples.

http://www.ncbi.nlm.nih.gov/geo

ArrayExpress Functional genomics data repository hosted by EBI, including
>1.8M samples.

https://www.ebi.ac.uk/arrayexpress

GTEx Transcriptomic profiles of normal tissues, including >7K
samples across >45 tissue types.

http://www.gtexportal.org

CCLE Genetic and pharmacologic characterization of >1,000
cancer cell lines.

http://www.broadinstitute.org/ccle

Human Protein Atlas Expression of >17K unique proteins in cell lines, normal, and
cancer tissues.

http://www.proteinatlas.org

Human Proteome Map Expression of >30K proteins in normal tissues. http://humanproteomemap.org

StringDB Protein-protein interactions for >9M proteins from >2K
organisms.

http://string-db.org

ENCODE Protein-DNA interactions, including >1.4K ChIP-Seq experi-
ments across �200 cell lines.

http://genome.ucsc.edu/ENCODE

Project Achilles Genetic vulnerabilities across >100 genomically character-
ized cancer cell lines by genome-wide genetic perturbation
reagents (shRNAs or Cas9/sgRNAs), including >11.2K
genes.

http://www.broadinstitute.org/achilles

LINCS Cellular responses upon the treatment of chemical/genetic
perturbagen, including >1M gene expression profiles repre-
senting >5,000 compounds and >3,500 genes (shRNA and
overexpression) in >15 cell lines.

http://lincscloud.org

Genomics of Drug
Sensitivity in Cancer project

Drug sensitivity data of 140 drugs in >700 cancer cell lines. http://www.cancerrxgene.org

ChEMBL Bioactivities for drug-like small molecules, including >10K
targets, >1.7M distinct compounds, and >13.5M activities.

https://www.ebi.ac.uk/chembl

PubChem Chemical compounds and bioassay experiments, including
>60M unique chemical compounds and >1.1M assays.

http://pubchem.ncbi.nlm.nih.gov

CMap >6,000 drug gene expression profiles representing 1,309
compounds tested in 3 main cell lines.

http://www.broadinstitute.org/cmap

CTRP Links genetic, lineage, and other cellular features of cancer
cell lines to small-molecule sensitivity, including 860 cell
lines and 461 compounds.

http://www.broadinstitute.org/ctrp.v2.2

ImmPort Clinical assessments in immunology along with molecular
profiles, including 143 clinical studies/trials and 799 experi-
ments on >22.4K subjects.

https://immport.niaid.nih.gov

Table 2 Continued on next page
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significantly linked with poor patient survival. They further
stratified patients into clinically relevant subgroups: estrogen-
receptor positive, HER2 positive, and triple negative breast can-
cer (TNBC) tumors and observed thatMTBP is expressed higher
in the triple negative tumor subgroup than in the other two sub-
groups. Further knockdown of MTBP significantly impaired
TNBC tumor growth in vivo. In another example, analysis of
clear cell renal cell carcinoma samples from TCGA indicated
that TPL2 overexpression was significantly related to the pres-
ence of metastases and poor outcome in clear cell renal cell carci-
noma.10 Silencing of TPL2 inhibited cell proliferation,
clonogenicity, anoikis resistance, migration, and invasion capabil-
ities and inhibited orthotopic xenograft growth and lung metasta-
sis, demonstrating the significant role of TPL2 in disease
progression. In addition, public gene expression databases, such as
TCGA, were regularly used as a source of reference to confirm
gene expression. One example includes the confirmation of
HMMR in the study of glioblastoma.11

The targets in these previous examples were first proposed by
authors and were then confirmed by the analysis of public gene
expression data. By contrast, targets can also be directly discov-
ered through the primary analysis of gene expression data. With-
out any specific targets in mind, Hsu et al.12 sought for druggable
kinases, which are oncogenic in TNBC. By analyzing gene expres-
sion data from CCLE and National Cancer Institute-60 panel of
cancer cell lines, and gene expression profiles of breast tumor

initiating cells, they found 13 kinases with higher mRNA expres-
sion in TNBC cell lines than in non-TNBC cell lines. Subse-
quent protein expression validation reduced the candidate list to
eight kinases, which were further correlated to TNBC clinical
subtype samples in TCGA. Among these eight kinases, three
kinases (PKC-a, CDK6, and MET) with high expression were
associated with shorter overall survival in patients with TNBC,
suggesting their potential as prognostic markers and therapeutic
targets. In the subsequent functional validation, two-drug combi-
nations targeting these three kinases inhibited TNBC cell prolif-
eration and tumorigenic potential and a combination of PKC-
a2MET inhibitors attenuated tumor growth in vivo.
Analyzing the samples from a single data source may limit the

broader application of the findings because of biological and tech-
nical bias. Meta-analysis that is aimed at detecting consistent
changes across multiple data sources may increase statistical
power and further mitigate the bias. The availability of public
datasets enables researchers to perform meta-analysis of microar-
ray datasets for many diseases. Our colleagues Kodama et al.13

proposed a meta-analysis approach: a gene expression-based
GWAS that searches for genes repeatedly implicated in multiple
experiments. They carried out an expression-based GWAS for
type 2 diabetes by using 1,175 samples collected from 130 inde-
pendent microarray experiments and identified the immune-cell
receptor CD44 as the top candidate. They further validated that
CD44 deficiency ameliorated adipose tissue inflammation and

Table 2 Continued

Database Description (as of October 2015) URL

ClinicalTrials.gov Registry and results database of publicly and privately sup-
ported clinical studies, including >201.7K studies.

https://clinicaltrials.gov

PharmGKB Genetic variations on drug response, including >3K dis-
eases, >27K genes, and >3K drugs.

https://www.pharmgkb.org

CCLE, Cancer Cell Line Encyclopedia; CMap, Connectivity Map; CNVs, copy number variants; COSMIC, catalog of somatic mutations in cancer; CTRP, Cancer Therapeutics
Response Portal; dbSNP, Single Nucleotide Polymorphism Database; dbVar, database of genomic structural variation; EBI, European Bioinformatics Institute; ENCODE, Encyclo-
pedia of DNA Elements; GEO, Gene Expression Omnibus; GTEx, Genotype-Tissue Expression; IMMPORT, Immunology Database and Analysis Portal; LINCS, Library of Integrated
Network-based Cellular Signatures; NCBI, National Center for Biotechnology Information; SNPs, single-nucleotide polymorphisms; TCGA, The Cancer Genome Atlas.

Figure 1 Public datasets can be leveraged to identify new targets, drug indications, and drug response biomarkers.
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insulin resistance and anti-CD44 treatment decreased blood glu-
cose levels and adipose macrophage infiltration. In another exam-
ple, our colleagues Chen et al.14 analyzed 13 independent non-
small cell lung cancer (SCLC) gene expression datasets consisting
of 2,026 lung samples collected from Gene Expression Omnibus
(GEO). They identified 11 genes that were consistently overex-
pressed across all the samples, among which protein kinase PTK7
was found. Immunostaining revealed that PTK7 was highly
expressed in primary adenocarcinoma patient samples. They veri-
fied that RNA interference-mediated attenuation of PTK7
decreased cell viability and increased apoptosis in a subset of ade-
nocarcinoma cell lines and loss of PTK7 impaired tumor growth
in xenotransplantation assays, suggesting its potential as a novel
therapeutic target in non-SCLC.

Target discovery using somatic mutation data
Many complex diseases are caused by alterations of DNA
sequences. Targeting genetic alterations is thus an ideal
approach to find therapeutic solutions. Recent advances in
DNA sequencing technologies enabled large-scale characteriza-
tion of disease samples. Analyzing molecular data of these
samples plays an essential role in identifying alterations
responsible for disease. TCGA is one notable example that

molecularly characterized >10,000 tumor samples across over
30 cancers across multiple technologies.15 The large-scale anal-
ysis of tumor samples suggested that an average of 33 to 66
genes harbor somatic mutations that could alter the function
of their protein targets and �140 genes can promote tumori-
genesis.16 Most human cancers are caused by two to eight
sequential alterations that lead to a selective growth advantage
of the cell where it resides.16 These alterations have been
widely explored as therapeutic targets. Representative examples
include EGFR amplification in lung cancer,17 BRAF mutation
in melanoma,18 and ALK translocations in lung cancer.19

A cancer that possesses a genomic alteration may be treated by
a drug that targets this alteration, even though this drug was not
originally discovered for this tumor type. For instance, KIT was
discovered as a target for chronic myelogenous leukemia and later
it was discovered as a target in gastrointestinal stromal tumors,
leading to the repositioning of the KIT inhibitor, Imatinib, for
treating patients with KIT-positive gastrointestinal stromal
tumors.20 Rubio-Perez et al.21 recently collected and analyzed
somatic mutations, copy-number alterations, fusion genes, and
RNA-Seq expression data of 4,068 tumors in 16 cancer types in
TCGA and collected somatic mutations for 2,724 additional
tumors. They identified 459 mutational driver genes and 38
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drivers acting via copy-number alterations or fusions. After map-
ping these driver genes to drug databases, including ChEMBL
and ClinicalTrials.gov, they found that up to 73.3% of patients
could benefit from agents in clinical stages. This in silico analysis
showed the potential of targeting genomic alterations for individ-
ual tumors, yet experimental validation is expected for wide clini-
cal applications. The recent launch of the National Cancer
Institute-Molecular Analysis for Therapy Choice program that
aims to identify targets and therapeutics for individual patients
solely based on mutations demonstrates a broad interest of this
approach in target selection.
Analysis of genomic features from a wide range of cancers

revealed that a large fraction of driver genes are either undruggable
or are tumor suppressors, which usually cannot be interfered by
drugs.16 Targeting their downstream or upstream-dependent com-
ponents may bypass this problem. For example, inactivating muta-
tions of the tumor suppressors BRCA1 or BRCA2 lead to
activation of a downstream pathway required to repair DNA dam-
age. Poly ADP-ribose polymerase, a family of protein involved in
the DNA repair, was subsequently developed as a therapeutic tar-
get for those with absence of BRCA function.22 In addition to
BRCA, defects in the DNA-damage response, a complex network
of proteins required for cell-cycle checkpoint and DNA repair,
have been associated with tumorigenesis, yet are undruggable.
Squatrito et al.23 assessed genes encoding key components of the
DNA-damage response from the glioma samples in TCGA and
found that 3.2% of these samples showed somatic mutations in
ATR, ATM, or CHEK1 and 36% of these samples presented
genomic loss of at least one copy of ATR, ATM, CHEK1, or
CHEK2, suggesting tumor suppressor activity of the ATM/Chk2/
p53 pathway. Further experiments confirmed that the loss of
ATM/Chk2/p53 pathway components accelerate tumor develop-
ment. Hence, it would be interesting to target the components
involved in this pathway.

Target discovery using genetic association data
Recent GWASs have identified common DNA sequence variants
that contribute to many human diseases. An increasing number
of studies demonstrate that genes with disease-associated alleles
may be promising drug targets as shown by the list of targets vali-
dated by genetics.24 In one example, the analysis of patients with
familial hypercholesterolemia reveals mutations in the low-
density lipoprotein receptor gene causes high levels of low-density
lipoprotein cholesterol and an increased risk of heart disease,
leading to the subsequent discovery of the statin class of HMG-
CoA reductase inhibitors. In another example, rare gain-of-
function mutations in the PCSK9 gene were found in the
families with high low-density lipoprotein levels and an increased
incidence of coronary heart disease, and subsequent functional
studies and clinical trials revealed that the loss of function of
PCSK9 significantly reduced low-density lipoprotein cholesterol
levels.
By evaluating �10 million SNPs, Okada et al.25 recently per-

formed a GWAS meta-analysis in a total of >100,000 subjects of
European and Asian ancestries comprising 29,880 rheumatoid
arthritis cases and 73,758 controls. They discovered 42 novel

rheumatoid arthritis risk loci, adding up to a total of 101 total
rheumatoid arthritis risk loci. These loci were connected to 98
genes. They demonstrated the gene list expanded from those 98
genes via protein-protein interaction networks significantly over-
lap with the targets of the drugs approved for rheumatoid arthri-
tis. This suggested that other targets among those 98 genes might
be therapeutic targets. Nelson et al.26 performed a large-scale
evaluation of genetic support in target selection. They collected
16,459 gene-medical subject heading pairs consisting of 2,531
traits and 7,253 genes associated with traits from public genetic
databases, and collected 19,085 target-medical subject heading
pairs from drug databases. The significant enrichment of
known targets in the list of variant genes suggested that select-
ing genetically supported targets could increase the success rate
in clinical development.
Because GWASs are often not able to identify the causal rela-

tion between variant and disease, combining genetic analysis with
other types of evidence may increase the likelihood of selecting a
good target. We recently integrated gene expression with disease-
associated SNPs and therapeutic target datasets across a diverse
set of 56 diseases in 12 disease categories.27 We systematically
evaluated how successful differentially expressed genes, disease-
associated SNPs, or the combination of both could recover
known disease targets. We observed the combination of differen-
tially expressed genes and SNPs has more predictive power than
each feature alone. This suggested that linking differentially
expressed genes with SNPs improves the accuracy of prioritizing
candidate targets.

Leveraging public datasets for target validation
The de novo analysis of data discussed above can be used to
produce a list of candidate targets. In order to prioritize tar-
gets for time-consuming experimental validation, one needs to
first assess their novelty and commercialization potential.28 In
addition, a good target in a preclinical study should satisfy
the following criteria: (1) it should be druggable; (2) it should
be expressed only in the abnormal cells of clinical samples
and not, or barely, expressed in normal cells; and (3) the
modulation of the target has the potential to reverse disease
phenotype.
Public datasets can be leveraged to assess these criteria. The

druggability can be assessed through an integrative analysis of
protein functional class, homology to targets of approved drugs,
three-dimensional structure, and the existence of published
active small molecules.29 We may search its mRNA expression
in cell-lines (data from CCLE and ref. 30), patients (data from
TCGA and GEO), and normal tissues (data from GTEx). We
may also search its protein expression in cell lines (data from
The Human Protein Atlas), patient tissues (data from The
Human Protein Atlas and TCGA), and normal tissues (data
from The Human Protein Atlas and the Human Proteome
Map31). We may further infer its function through the recent
high throughput experiments. For example, Cowley et al.32 used
a genome-scale, lentivirally delivered shRNA library to perform
massively parallel pooled shRNA screens in 216 cancer cell lines
and identified genes that are essential for cell proliferation and/
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or viability. Essential genes in 72 breast, pancreatic, and ovarian
cancer cell lines were inferred using a lentiviral shRNA library
targeting �16,000 genes.33 Essential genes in a few human can-
cer cell lines were also characterized recently using the bacterial
CRISPR system.34 Target function can be even inferred
through the measurement of gene expression changes upon
genetic perturbation (data available in Library of Integrated
Network-based Cellular Signatures).

Outstanding challenges
First, measurements made from disease samples may have poor
quality. Recent studies indicated that a large number of tumor
samples are impure because of the mixed immune cells and stro-
mal cells.35 Second, large technical and biological variation of
samples exists. Third, the quality of reagents, especially antibod-
ies, varies widely.36 The misuse of antibodies may directly lead to
the failure of experiments. Last, although the dataset from high
throughput experiments is useful either as a reference tool to
detect expression or as a tool to infer biological function, they
occasionally give false signals, resulting in the misclassification of
potentially good targets.

LEVERAGE BIG DATA TO IDENTIFY NEW DRUG
INDICATIONS FOR PRECLINICAL STUDIES
Since discovering a new chemical entity is a very long and compli-
cated process, we will mainly discuss the reuse of existing drugs
(referred as drug repositioning), which offers a relatively short
approval process and straightforward path to clinical translation.
Computational approaches for drug repositioning have been
reviewed previously.37,38 Figure 3 illustrates three common big
data approaches that use different features to discover new drug
indications, and basic experimental approaches to validate them.
We will first discuss these three approaches and then discuss the
discovery of new drug combinations. Finally, we will argue that
public datasets can be used to validate drug indications before
time-consuming experiments.

Indication discovery using drug-target data
Targeting an individual alteration using either a small or a large
molecule remains the main paradigm in drug discovery. This
approach has led to the discovery of many successful drugs, such
as trastuzumab (HER2 in breast cancer), crizotinib (ALK in
non-SCLC), and dabrafenib (BRAF in melanoma). When a new

Figure 3 An illustration of big data approaches to identifying new drug indications.
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target is proposed for a disease, existing drugs that interfere with
this target can be searched from the literature or drug-target data-
bases (e.g., DrugBank39 and ChEMBL) and their potential new
usage is further validated by experiments. This approach is com-
monly practiced. If there is no drug available for this target,
structure-based design, such as homology modeling, can be used
to infer new drug hits.

Indication discovery using gene expression data
Another common approach is to look for inverse drug-disease
relationships by comparing disease molecular features and drug
molecular features, such as gene expression. This approach starts
with the creation of a disease gene expression signature by com-
paring disease samples and normal tissue samples, followed by
querying drug-gene expression databases, such as Connectivity
Map (CMap) and Library of Integrated Network-based Cellular
Signatures. For example, our colleagues Dudley et al.40 and Sirota
et al.41 performed large-scale analysis of gene expression profiles
across over 100 diseases using microarray data from GEO and
mapped disease signatures to over 100 drugs signatures in CMap.
Using this system’s approach, they repurposed the anticonvulsant
topiramate for the treatment of inflammatory bowel disease and
the antiulcer drug cimetidine for the treatment of lung adenocar-
cinoma. Our colleagues Jahchan et al.42 used a similar systematic
drug-repositioning bioinformatics approach to query a large com-
pendium of gene expression profiles using a SCLC expression sig-
nature derived from GEO. They predicted antidepressant drugs
for the treatment of SCLC and validated that this group of drugs
potently induce apoptosis in both chemotherapy naive and chem-
otherapy resistant SCLC cells in culture, in mouse and human
SCLC tumors transplanted into immunocompromised mice, and
in endogenous tumors from a mouse model for human SCLC.
This finding even led to the launch of a clinical trial
(NCT01719861).
Van Noort et al.43 systematically assessed how well the known

disease-drug indications were recapitulated by the expression-
based inverse correlation of disease-drug relations for 40 individ-
ual diseases. They found that colorectal cancer is one of the
diseases in which known disease-drug indications could be well
recapitulated. This finding, together with the unmet clinical need
in the treatment of metastasized colorectal cancer, led them to
look for drugs that inhibit metastasis in colorectal cancer. Instead
of a signature built by comparing disease samples and normal
samples, they built a gene signature of metastatic potential by
comparing nonmetastatic tumors vs. metastatic primary tumors.
By querying the CMap V2 using this signature, they predicted
three novel compounds against colorectal cancer: citalopram, tro-
glitazone, and enilconazole, and verified these compounds by in
vitro assays of clonogenic survival, proliferation, and migration
and in a subcutaneous mouse model.
Although drugs in these previous examples were validated in

preclinical models, the question of whether the disease gene
expression was really reversed in disease models remains
unknown. A recent study in a mouse model of dyslipidemia
found that treatments that restore gene expression patterns to
their norm are associated with the successful restoration of physi-

ological markers to their baselines, providing a sound basis to this
computational approach.44

Other studies have used slightly different approaches. For
example, instead of building a universal signature for one disease,
Zerbini et al.45 considered the variation of individual patients.
They built a disease signature for individual patients with clear
cell renal cell carcinoma and predicted drugs for individual
patients. Pentamidine, one of the common drugs shared by all
the patients, showed its efficacy in vitro and in the 786-O human
clear cell renal cell carcinoma xenograft mouse model. Brum
et al.46 profiled gene expression in human mesenchymal stromal
cells toward osteoblasts and created significantly regulated genes.
They found that the signature of parbendazole matches the
expression changes observed for osteogenic human mesenchymal
stromal cells, suggesting that parbendazole could stimulate osteo-
blast differentiation. They further validated that parbendazole
induced osteogenic differentiation through a combination of
cytoskeletal changes.

Indication discovery using other sources
Many other molecular and clinical features, including side effect,
genetic variation, and chemical structure, have been leveraged for
drug repositioning. We highlight some exciting findings here and
refer other findings to our recent review on the trend of compu-
tational drug repositioning.38 Our colleagues Paik et al.47

extracted clinical features from over 13 years of EMRs, including
>9.4 M laboratory tests of >530,000 patients, in addition to
diverse genomics features. With these features, they computed
drug-drug similarity and disease-disease similarity. Based on the
assumption that similar diseases can be treated with similar drugs,
they inferred 3,891 new indications that were previously not
known to be associated. Among those new indications, terbuta-
line sulfate was indicated as a potential drug for amyotrophic lat-
eral sclerosis treatment and was further validated in an in vivo
zebrafish model of amyotrophic lateral sclerosis.
Iorio et al.48 built a drug-drug similarity matrix using the gene

expression data from CMap and verified an unexpected similarity
between CDK2 inhibitors and topoisomerase inhibitors. They
also found that a Rho-kinase inhibitor might be reused as an
enhancer of cellular autophagy, potentially applicable to several
neurodegenerative disorders. This work was further extended in
a recent study in which glipizide and splitomicin were found
to perturb microtubule function through a semisupervised
approach.49

Discovery of new drug combinations
As many diseases are driven by complex molecular and environmen-
tal interactions, targeting a single component may not be sufficient
to disrupt these complex interactions; thus, there is increasing inter-
est in targeting multiple molecules using combined drugs or multi-
target inhibitors. Using big data to predict drug synergy is
appealing, yet challenging. In a recent community-based open chal-
lenge for drug synergy predictions, among the 31 submitted meth-
ods, only three methods performed significantly better than
random chance.50 Nevertheless, a few interesting combinations
have been found through a big data mining approach. Mitrofanova
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et al.51 assumed that if a drug could downregulate the activated tar-
get genes and upregulate the repressed targets of a master regulator
(e.g., a key transcription factor), then the drug could reverse the
activity of the master regulator. Using the drug signatures derived
from genetically engineered mouse models, they identified drugs to
reverse the master regulator pair, FOXM1/CENPF, which is essen-
tial for prostate tumor malignancy. They further extended the con-
cept that effective drug combinations should induce a more
significant reversal of master regulator-specific regulon expression,
compared to the individual drugs. The combination of rapamycin
1 PD0325901 was predicted to have the strongest reversion of the
FOXM1/CENPF activity, both with respect to the total number
of targets affected by both drugs and the number of unique targets
affected by each drug. Their synergistic effect was validated in
mouse and human prostate cancer models. Sun et al.52 demon-
strated that using genomic and network characteristics could lead
to a good performance of predicting synergistic drugs for cancer.
They confirmed 63.6% of their predictions for breast cancer
through experimental validation and literature search, and identi-
fied that the combination of erlotinib and sorafenib has strong syn-
ergy and low toxicity in a zebrafish MCF7 xenograft model.

Leveraging public datasets to validate new drug indications
Public datasets can be leveraged to validate drug hits and under-
stand drug mechanisms. For example, drug efficacy and toxicity
in vitro or in vivo may be searched from the drug-sensitivity data-
bases (e.g., CCLE, ChEMBL, canSAR53) and toxicity databases
(e.g., CTD54), respectively. Drug efficacy can be inferred from
EMRs as well. Xu et al.55 recently demonstrated the usage of
EMRs in the validation of drug-disease pairs through a case study
of metformin associated with reduced cancer mortality. Our
colleagues Khatri et al.56 validated the beneficial effect of atorvas-
tatin on graft survival by retrospective analysis of EMRs of a
single-center cohort of 2,515 renal transplant patients followed
for up to 22 years.
To understand drug mechanisms, the models,57,58 which were

built by leveraging public datasets, can be used. Woo et al.58

recently built a computational model called DEMAND to infer
drug targets in a disease model (e.g., cell line) by using drug-gene
expression profiles and a regulatory network of the disease model.
Their model recovered the established proteins involved in the
mechanism of action for 70% of the tested compounds and
revealed altretamine, an anticancer drug, as an inhibitor of GPX4
lipid repair activity.

Outstanding challenges
First, selecting appropriate preclinical models from a large num-
ber of available models is often challenging during the validation
stage, as some validation models may not be reliable per se, or the
molecular features of some models may be quite different with
those used for the prediction.59 We recently identified that half
of the hepatocellular carcinoma cell lines are not significantly cor-
related to the hepatocellular carcinoma tumors from TCGA
using gene expression features.60 Domcke et al.61 identified a few
rarely used ovarian cancer cell lines that more closely resembled
ovarian tumors than commonly used cell lines by analyzing a vari-

ety of genomic features. In addition to choosing the appropriate
preclinical models, moving preclinical findings into the clinic is
challenging. One drug or one drug combination validated success-
fully in preclinical models may fail to translate into the clinic
because of the concerns of high toxicity, high cost, low bioavaila-
bility, or many other factors. Our recent following analysis of the
previous work on drug combinations in clinical trials62 revealed
that a drug is more likely to be combined with existing therapies
and a brand name drug is rarely combined with another brand
name drug (unpublished), suggesting the necessity of considering
the characteristics of clinical trials during preclinical studies.

LEVERAGE BIG DATA TO IDENTIFY DRUG RESPONSE
BIOMARKERS IN THE ERA OF PRECISION MEDICINE
Because drugs are mostly discovered based on disease molecular
features, it is natural that they should be applied to those patients
possessing these molecular features. A number of existing drugs
have been proven to be effective only for a group of patients with
specific molecular features: for example, trastuzumab for patients
with HER2-positive breast cancer. Identifying molecular features
(or biomarkers) for predicting drug response is critical to identify
the right patient populations for any drug under investigation.63

Figure 4 shows two big data approaches to identify biomarkers
for predicting drug response, and experimental approaches to val-
idate biomarkers.

Biomarker discovery using genomic and pharmacogenomics
data from preclinical samples
The recent large-scale generation of pharmacogenomics data in
preclinical disease models (especially cell lines) and molecular
characterization of these models enable researchers to identify
biomarkers for predicting drug response. By integrating pharma-
cological profiles for 24 anticancer drugs across 479 cell lines
with the gene expression, copy number, and mutation data of
these cell lines, Barretina et al.64 identified genetic, lineage, and
gene-expression-based biomarkers of drug sensitivity. They high-
lighted a few cases: plasma cell lineage for IGF1 receptor inhibi-
tors, AHR expression for MEK inhibitors, and SLFN11
expression for topoisomerase inhibitors. Kim et al.65 identified
three distinct target/response-indicator pairings including
NLRP3 mutation/inflammasome activation for FLIP addiction,
co-occurring KRAS and LKB1 mutation for COPI addiction,
and a seven-gene expression signature for a synthetic indolotria-
zine. Basu et al.66 quantitatively measured the sensitivity of 242
molecularly characterized cancer cell lines to 354 small mole-
cules and created the Cancer Therapeutics Response Portal that
enables researchers to correlate genetic features to sensitivity.
Using their portal, they identified that activating mutations in
the oncogene b-catenin could predict sensitivity of the BCL-2
family antagonist navitoclax. Their subsequent work expanded
the portal to 860 cell lines and 481 compounds including 70
US Food and Drug Administration-approved agents, 100 clini-
cal candidates, and 311 small-molecule probes,67 allowing
researchers to identify biomarkers for a larger number of drugs.
Several other similar sources include 77 therapeutic compounds
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in �50 breast cancer cell lines68 and 90 drugs in 51 stable can-
cer cell lines.69

Biomarker discovery using genomic data
from clinical samples
Biomarkers can be also detected by comparing genomic profiles
of clinical samples. Outstanding examples include the finding of
EGFR mutations as a predictor of sensitivity to gefitinib,70 and a
12-gene colon cancer recurrence score as a predictor of recurrence
in patients with stage II and III colon cancer treated with fluo-
rouracil and leucovorin.71 O’Connell et al.71 performed quantita-
tive reverse transcription polymerase chain reaction of 375 genes
in four independent cohorts consisting of 1,851 patients with
stage II or III colon cancer. These patients were either treated
with surgery alone or surgery plus fluorouracil/leucovorin and
their recurrence-free interval at three years were observed. Of 375
genes, 48 genes were significantly associated with risk of recur-
rence and 66 genes were significantly associated with fluoroura-
cil/leucovorin benefit. From these genes, seven genes were
selected based on their biology and the strength of association
with outcomes. Expression of these seven genes was normalized

against five reference genes, leading to the development of a
recurrence score used to predict the risk of recurrence. The recur-
rence score was subsequently validated in independent clinical
studies.72

Outstanding challenges
Lack of effective biomarkers may lead to the failure of clinical tri-
als, whereas biomarkers are only detected or confirmed through
clinical trials. The complexity and large variation of clinical trials
may cause some important biomarkers to be missed in the origi-
nal study. This issue can be mitigated through an integrative anal-
ysis of clinical trials across multiple studies. Unfortunately, a large
number of trials are still not available to the public. Open clinical
trial data becomes necessary in order to identify more effective
biomarkers for current therapies or even rescue failed drugs via
identifying the right patient populations.

PERSPECTIVES
One belief of the current drug discovery paradigm is that thor-
oughly understanding molecular changes of diseases will ulti-
mately lead to the discovery of new therapeutics. In order to

Figure 4 An illustration of big data approaches to identifying new drug response biomarkers.
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capture molecular changes of disease and changes upon drug
interventions, the molecular profiles have to be presented in an
accessible format, which we now consider big data. There is no
doubt that the profiles we have created will quickly become small
sets because of rapid advances in technologies. In the near future,
much larger volumes and complex datasets will be created to
characterize disease systems: from single cells to organs, from can-
cer cells to microorganisms, from cell lines to genetically modified
mice to individual patients, and from one time point to the lon-
gitudinal course of treatment. The incredible number of targets,
drugs, and biomarkers discovered by leveraging big datasets in the
past years suggests an unprecedented opportunity to leverage
them to transform discovery now.
Given the volumes and complexity of datasets for drug discov-

ery, no single person or team could comprehend or use all of
them; therefore, it is necessary to reengineer the entire pipeline of
drug discovery, where every step is driven by data and rigorous
data models. Example steps include the selection of appropriate
tissue samples to profile, the selection of appropriate models to
validate hypothesis, etc. In addition, high performance comput-
ing allows us to generate hypotheses very quickly, but the current
experimental settings limit the validation efforts. It is often true
that the validation of a drug in preclinical models takes over 10
times longer than the prediction. New sharing economy inspired
sources for biomedical research, such as Science Exchange
(http://scienceexchange.com) and Assay Depot (http://assayde-
pot.com) could facilitate running experiments using external
sources. More efficient ways are expected to quickly transform
big data discoveries into clinical applications.
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