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Abstract

A class of NAD-dependent protein deacetylases, the Sirtuin (SIRT) family of proteins is involved in aging, cell survival,
and neurodegeneration. Recently, SIRT proteins, including SIRT6, have been reported to be important in learning and
memory. However, the role of SIRT6 in excitatory brain neurons in cognitive behaviors is not well characterized. We
investigated how cognitive behaviors are affected by genetic SIRT6 depletion in excitatory neurons in the mouse
forebrain. We generated a conditional knockout (cKO) mouse line by mating two transgenic lines, Floxed SIRT6 and
CaMKIIa-Cre. SIRT6 was thus deleted by Cre recombinase in CaMKIIa-expressing excitatory neurons. We
performed cognitive behavioral tests, focusing on learning and memory, including contextual fear conditioning
and Morris-water maze. The freezing level of SIRT6 cKO before the fear conditioning was comparable to that of
wild-type littermate controls, while the freezing level after the conditioning was higher in SIRT6 cKO mice. In
contrast, the mice showed normal spatial learning and memory in the Morris-water maze. In addition, anxiety
and locomotion were also normal in SIRT6 cKO mice. SIRT6 genetic depletion enhanced contextual fear memory
without affecting spatial memory. Since a previous report showed that overexpression of SIRT6 reduced contextual
fear memory, our results suggest that the expression level of SIRT6 bi-directionally regulates contextual fear memory in
mice.
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Main text
Sirtuins (SIRTs) are a class of nicotinamide adenine di-
nucleotide (NAD)-dependent deacetylases that have
been found to be involved in aging and cellular stress in
various species [1–3]. There are seven mammalian SIRT
proteins with varying localizations and functions. Among
the SIRT proteins, SIRT6 is prominently localized in the
nucleus and its insufficiency promotes genomic instabil-
ity and aging [3, 4]. Furthermore, SIRT6 plays neuropro-
tective roles, preventing neurodegenerative events [5].
SIRT6 deacetylates histone H3 lysine 9 (H3K9) and this
modulates the protective roles [6]. Since epigenetic regu-
lations such as DNA methylation and histone acetylation
also mediate learning and memory, SIRT6 would be in-
volved in the processes [7, 8].

Supporting this, SIRT proteins have been implicated in
learning and memory. For instance, mice deficient in
SIRT1, another SIRT localized in the nucleus as well as
the cytoplasm, show deficits in memory and synaptic
plasticity such as long-term potentiation [9]. Insuffi-
ciency of SIRT3, which is expressed in mitochondria and
involved in neuroprotection, results in deteriorated re-
mote memory [10]. The loss of SIRT6 in neuronal pro-
genitors resulted in the accumulation of toxic tau
proteins and severe deficits in both associative and
non-associative memory [5]. Therefore, SIRT6 is thought
to be important for learning and memory. Interestingly,
however, overexpression of SIRT6 also impaired long-
term contextual fear memory [11].
To further examine the relationship between SIRT6 and

learning and memory, we generated a conditional SIRT6
knockout (SIRT6 cKO) by mating Floxed SIRT6 mice with
mice expressing Cre recombinase under the control of the
Ca2+/calmodulin-dependent kinase IIa (CaMKIIa)
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promoter. CaMKIIa is a marker of excitatory neurons of
the forebrain; hence, CaMKIIa-promoter-driven Cre de-
letes SIRT6 in those neurons. Mice with a genotype of
SIRT6 fl/fl; CaMKIIa-Cre +/− were used as SIRT6 cKO
since SIRT6 can be deleted in Cre expressing neurons.
Littermate mice with a genotype of SIRT6 fl/fl;
CaMKIIa-Cre −/− were used as WT controls
(Additional file 1: Figure S1). All the experimental
procedures including animal cares are presented in
the Additional file 2.
At first, we examined contextual fear memory in

SIRT6 cKO mice. We assessed the percentage of the
time spent freezing (freezing levels) before and 1 day
after shock conditioning. While the freezing levels before
shock conditioning were comparable between SIRT cKO
and control mice, the post-conditioning freezing level of
the cKO mice was higher than that of the WT mice
(Fig. 1a, Student’s t-test and two-way ANOVA; genotype
x shock, p < 0.05). There was no significant interaction
in the two-way ANOVA test, but the effect of genotype
was significant.
In addition, we performed a Morris-water maze test to

assess spatial learning and memory. In the training ses-
sion, the escape latency of cKO mice on day 3 was
tended to be lower than that of WT, but the difference
was not significant and the latency value was too high,
so we trained the mice two more days. The learning

curve of the cKO mice during the 5 days of training was
comparable to the WT controls, as was their memory
in a probe test performed 1 day after the final training
day (Recent; Fig. 1b, left and middle, Additional file 3:
Figure S2). We performed another probe test 28 days
post-training (Remote) because SIRT3 KO mice were
reported to have a remote memory deficit. However, re-
mote memory in SIRT6 cKO mice was also comparable
to that of WT mice (Fig. 1b, right, Additional file 3:
Figure S2).
Finally, we assessed anxiety and locomotive behaviors

since the factors can affect various behaviors such as the
freezing level. SIRT6 cKO mice showed comparable
levels of anxiety in both elevated zero maze and open
field tests (Fig. 1c, d). Locomotion in SIRT6 cKO mice
also was not significantly different from that in WT mice
(Fig. 1d).
In the present study, we assessed the effect of genetic

SIRT6 depletion in excitatory neurons on behaviors re-
lated to learning and memory. Contextual fear memory
was elevated by SIRT6 depletion, contrary to a previous
report showing memory impairment following genetic
SIRT6 inactivation in neuronal progenitors [5]. However,
since the other group targeted total neuronal populations
rather than excitatory neurons, the discrepancy may be at-
tributable to SIRT6 depletion in inhibitory neurons result-
ing in memory impairments. Furthermore, because

Fig. 1 Sirtuin 6 (SIRT6) genetic inactivation in excitatory forebrain neurons enhances contextual fear memory without affecting spatial memory,
anxiety and locomotion in mice. a Fractions of time spent freezing (freezing levels) before and 1 day after conditioning in a contextual fear
conditioning test (n = 20 for WT mice, and n = 19 for SIRT6 cKO mice). b Left, latency to find the platform in a Morris water maze during the
training period. Middle, Proportions of time spent in each quadrant in a probe test 1 day after training. Right, proportions of time spent in each
quadrant in a probe test 28 days after training (n = 8 per group). c Time spent in the open segments of an elevated zero maze, a measure of
anxiety (n = 8 per group). d Left, time spent in the center of the open field box, another measure of anxiety. Right, distance traveled in each
5-min interval during the open field test (n = 8 per group). All graphs show means ± SEM. *, P < 0.05 (Student’s t-test)
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another report [11] showed that SIRT6 overexpression in
the CA1 region of the hippocampus impaired contextual
fear memory, the memory enhancement observed in our
study may indicate specific involvement of SIRT6 function
in excitatory CA1 neurons in memory processes in mice.
Moreover, because SIRT6 overexpression impaired the In-
sulin like growth factor (IGF)/Akt signaling pathway,
which activates cAMP response element-binding protein
(CREB), this pathway may be activated and contribute to
the contextual fear memory enhancement in SIRT6 cKO
mice [11, 12].
Interestingly, unlike contextual fear memory, spatial

memory was not affected in SIRT6 cKO mice. Dysregu-
lation of conditioned fear responses are involved in
post-traumatic stress disorder (PTSD), hence the select-
ive enhancement of negative memory of SIRT6 cKO
mice suggests that reduced SIRT6 activity may be impli-
cated in the disorder. However, in relation with the
spatial memory, the possibility of over-training in the
Morris-water maze test or another type of spatial mem-
ory tests, such as 8 arm maze test can be examined.

Additional files

Additional file 1: Figure S1. The breeding scheme of cKO and its
littermate controls. (TIF 61 kb)

Additional file 2: Material and Methods. (DOCX 133 kb)

Additional file 3: Figure S2. Various measures of spatial memory in the
probe tests of the Morris-water maze. (TIF 56 kb)
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