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The very small fraction of putative binding sites (BSs) that are occupied by transcription factors (TFs) in vivo can be highly

variable across different cell types. This observation has been partly attributed to changes in chromatin accessibility and

histone modification (HM) patterns surrounding BSs. Previous studies focusing on BSs within DNA regulatory regions

found correlations between HM patterns and TF binding specificities. However, a mechanistic understanding of TF–

DNA binding specificity determinants is still not available. The ability to predict in vivo TF binding on a genome-wide scale

requires the identification of features that determine TF binding based on evolutionary relationships of DNA binding pro-

teins. To reveal protein family–dependent mechanisms of TF binding, we conducted comprehensive comparisons of HM

patterns surrounding BSs and non-BSs with exactly matched core motifs for TFs in three cell lines: 33 TFs in GM12878,

37 TFs in K562, and 18 TFs in H1-hESC. These TFs displayed protein family–specific preferences for HM patterns surround-

ing BSs, with high agreement among cell lines. Moreover, compared to models based on DNA sequence and shape at flank-

ing regions of BSs, HM-augmented quantitative machine-learning methods resulted in increased performance in a TF

family–specific manner. Analysis of the relative importance of features in these models indicated that TFs, displaying larger

HM pattern differences between BSs and non-BSs, bound DNA in an HM-specific manner on a protein family–specific basis.

We propose that TF family–specific HM preferences reveal distinct mechanisms that assist in guiding TFs to their cognate BSs

by altering chromatin structure and accessibility.

[Supplemental material is available for this article.]

Unraveling the mechanisms of how transcription factors (TFs)
achieveDNAbinding specificities in vivo is vital for understanding
transcriptional regulation. The relatively short core-bindingmotifs
of TFs can appear numerous times in a genome, but only a very
small fraction of these putative binding sites is functional
(Landolin et al. 2010; Spitz and Furlong 2012). TFs can precisely
identify their functional binding sites from among the other
99.8% of putative binding sites in a cellular environment in vivo
(Wang et al. 2012). Given the multiple layers that contribute to
in vivo binding (Levo and Segal 2014; Slattery et al. 2014;
Zentner et al. 2015; Mathelier et al. 2016b), it is clear that DNA se-
quence and shape at core binding sites, which in vitro experiments
have identified as determinants of DNA binding specificity (Zhao
and Stormo 2011; Gordân et al. 2013; Abe et al. 2015; Levo et al.
2015; Zhou et al. 2015; Yang et al. 2017), are not sufficient to ex-
plain TF binding in vivo. An important question is how TFs distin-
guish their functional binding sites (BSs) in one region of the
genome from putative non-BSs with exactly matched core motifs
in other regions in vivo. Multiple factors that may explain this
behavior include chromatin accessibility, cooperativity, epigenetic
marks, and sequence context (Slattery et al. 2014; Dror et al. 2016;
Inukai et al. 2017). Among these factors, chromatin inaccessibility
can largely explain non-BSs because motifs occupied by histones
are generally not accessible to TFs (Song et al. 2011). Base pairs
in flanking regions of core BSs can affect TF binding through their
effects on local DNA structure (Rohs et al. 2010; Levo and Segal
2014). Nucleosome occupancy exerts additional influence on TF

binding (Kornberg and Lorch 1999; Pique-Regi et al. 2011).
Epigenetic marks are cell-type–specific signatures (He et al. 2017)
that contribute to cell-type–specific protein binding events (Zhu
et al. 2013).

Epigenetic studies suggested that posttranscriptional histone
modifications (HMs) play a central role in transcriptional regula-
tion and revealed substantial overlaps between TF BSs and HM
marks (The ENCODE Project Consortium 2012). Recent work in-
troduced approaches for the quantitative modeling of relation-
ships between TF binding and HM patterns (Benveniste et al.
2014; Liu et al. 2015). Despite the reported relationship between
TF binding and HMpatterns, mechanisms that cause this relation-
ship are still unknown. Moreover, it is unclear whether this
relationship varies between TF families, or if it can reveal mecha-
nisms of TF binding on a protein family–specific basis. HMs are
small changes at nucleosome surfaces that can significantly affect
the chromatin tertiary structure and compaction (Lu et al. 2008;
Glatt et al. 2011). From a structural perspective, one may ask
whether HM patterns are conserved around the in vivo BSs of
TFs and whether this relationship varies among protein families.
However, genomic data will need to be analyzed to answer these
questions, given the paucity of structural information about
proteins bound to nucleosomes with HM marks. Although HM
patterns in the BS environment are known to contribute to TF
binding, this relationship is not yet understood from a mechanis-
tic perspective.

In this work, we performed a large-scale analysis of how HM
patterns contribute to TF binding specificities for many protein
families. We asked whether certain TFs or TF families exhibit
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different HM patterns between BSs and
non-BSs compared to other TFs or TF
families. To answer this question, we
built machine-learning models to distin-
guish BSs and non-BSs by using combi-
nations of DNA sequence and shape
features at flanking regions and HM pat-
terns surrounding DNA binding motifs.
Based on the extent towhich these differ-
ent features contribute to TF binding
specificities, we discuss whether TF fami-
lies utilize different bindingmechanisms
at regions extending beyond their core
motifs. Our work represents a step to-
ward a better understanding of the rela-
tionship between histone modifications
and TF binding.

Results

HM patterns surrounding TF BSs and

non-BSs show conserved patterns in vivo

To study the different HM patterns sur-
rounding TF BSs and non-BSs and the
conservation of these patterns, we down-
loaded data from the ENCODE Con-
sortium (Supplemental Table S1; http://
genome.ucsc.edu/ENCODE/downloads.
html) for three human cell lines: B-
lymphoblastoid cells (GM12878), eryth-
rocytic leukemia cells (K562), and embry-
onic stem cells (H1-hESC). We collected genome-wide TF binding
profiles for 44 TFs in GM12878, 43 TFs in K562, and 24 TFs in H1-
hESC cells, and considered 10 HMs at histone tails (H3K4me2,
H3K27ac, H3K4me1, H3K4me3, H3K79me2, H3K9ac, H3K9me3,
H4K20me1, H3K27me3, and H3K36me3). These TF binding pro-
files andHMprofileswere generated by chromatin immunoprecip-
itation combined with sequencing (ChIP-seq) assays (Bernstein
et al. 2005).

To make reasonable comparisons of HM patterns around TF
BSs and non-BSs, our experiments focused on BSs and non-BSs se-
lected from regions that had similar levels of chromatin accessibil-
ity and exactly matched core motifs (Methods). We performed
motif discovery on ChIP-seq peaks by using FIMO (Grant et al.
2011), obtaining a set of BSs for each TF, and selected non-BSs
with the following assumptions. First, BSs and non-BSs in the hu-
man genome were assumed to be located in regions with different
levels of chromatin accessibility (Wang et al. 2012). To exclude this
effect for a valid control, non-BSs were selected to have distribu-
tions of chromatin accessibility that were similar to those of the
BSs of a given TF (Supplemental Fig. S1). Chromatin-accessible re-
gions were obtained with the DNase-seq technique (Hesselberth
et al. 2009; Boyle et al. 2011). Second, to avoid the effect of primary
sequence preference at core motifs, non-BSs were chosen based on
their having exactly matched core motifs with the BSs. Third, se-
lected non-BSs were located at distinct genomic locations and had
sample sizes that were similar to those of the BSs formodeling con-
sistency. A flowchart describing the analysis is shown in Figure 1.
This experimental setup for defining BSs and non-BSs enabled us
to focus directly on HM pattern differences between BSs and
non-BSs.

We removed TFs that had fewer than 132 genomic binding lo-
cations or lacked binding motifs at the ChIP-seq peaks so that
they could be aligned (Methods; Supplemental Methods). As a re-
sult, 33, 37, and 18 TFs remained for further analysis in the
GM12878, K562, and H1-hESC cell lines, respectively. With these
data, we were first interested in the HM pattern differences around
aligned BSs and non-BSs for each TF in the GM12878 cell line. We
examined HM patterns at single-base-pair resolution within re-
gions of 1 kb upstream of and downstream from the BSs and non-
BSs, and then calculated the averageHMpatterns. For these consid-
ered TFs, the average HM levels of H3K27me3, H3K36me3, and
H4K20me1 were reduced by 21%, 9.6%, and 17%, respectively, in
the environment of BSs compared to non-BSs. Average HM levels
of H3K4me2, H3K27ac, H3K4me3, H3K79me2, and H3K9ac were
elevated by 18%, 52%, 19%, 8%, and 31%, respectively, for regions
containing BSs compared to non-BSs (Fig. 2B). These substantial
differences in HM patterns for TFs could not be detected when
we randomly shuffled the labels between BSs and non-BSs.

We evaluated the statistical significance of HM pattern differ-
ences between BSs and non-BSs (Methods) and clustered TFs based
on Pfambinding domains (Finn et al. 2014). Evolutionarily related
TFs displayed similarly substantial HM pattern differences.
Specifically, TFs from the ETS (three of five) and bHLH (seven of
seven) families showed larger HM pattern differences between
BSs and non-BSs, whereas TFs from the bZIP (three of four), home-
odomain (HD; two of two), and C2H2 (four of six) families dis-
played smaller HM pattern differences in the GM12878 cell line
(Fig. 2A). This observation indicates that TFs with evolutionarily
related DNA binding domains sample putative BSs with similar
HM pattern environments.

Figure 1. Flowchart describing the approach of modeling BSs and non-BSs with DNA sequence, DNA
shape features at flanking regions, and HM features. In each cell line, chromatin-accessible regions de-
rived from DNase-seq data were genomic regions of interest. For each TF, sequences at ChIP-seq peaks
were first aligned using position frequency matrices (PFMs) to obtain BSs. For each BS, an exactly
matched motif was found from chromatin-accessible and distinct genomic regions as a motif pool.
Within themotif pool, motif sets with similar chromatin accessibility distributions as the BSs were selected
as non-BSs. With a set of BSs and non-BSs, DNA sequence and four DNA shape features, as well as 10 HM
patterns, were calculated for flanking regions and fed to downstream modeling to distinguish BSs and
non-BSs.
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To investigate the conservation of HMpattern preferences for
TFs from various protein families, we applied a similar analysis to
the K562 and H1-hESC cell lines. We found that HM preferences
were conserved for the MADS-domain, ETS, bHLH, bZIP, and
C2H2 families (Supplemental Figs. S2, S3). In addition, the GATA
and STAT families displayed HM pattern differences that were sim-
ilar to preferences of the bHLH family in the K562 cell line.Within
TF families, the bZIP and C2H2 families showed more diverse HM
pattern differences than the MADS-domain, ETS, and bHLH fami-
lies (Fig. 2A; Supplemental Figs. S2, S3). This observation is in
agreement with the fact that some TFs from the C2H2 family, de-
spite having conserved secondary structures of zinc fingers and
linkers, still have dynamic linker structures and diverse conforma-
tions in their unbound state prior to DNA binding. These TFs also
have diverse position weight matrices (Supplemental Fig. S4) and
require binding to correct DNA sequences to adopt a stable protein
structure (Laity et al. 2001). In addition to having larger diversity
in the core binding site sequence of C2H2 zinc fingers, their BSs
show more differences in binding energy, GC content, and DNA
shape profiles than do other protein families (Supplemental Figs.
S5, S6; Supplemental Table S3).

These protein family–specific and cell-type–consistent HM
patterns in the environment of in vivo BSs seemed to reveal partic-
ular differences when only small percentages of BSs overlapped
among different cell lines. For TFs appearing in the GM12878
cell line, the average percentage of overlapping BSs between any
two cell lines was 30% (ranging from 2%–84%), and the overlap
among the three cell lines was 19% (ranging from 0.4%–70%)

(Supplemental Table S2). These observations indicate that fewer
than half of the BSs were shared among different cell lines. We
further analyzed MYC BSs in the GM12878 and K562 cell
lines and partitioned the entire set of BSs into three subsets:
Group 1 included 852 BSs in the GM12878 but not the K562
cell line; group 2 included 310 BSs shared in both cell lines; and
group 3 included 4872 BSs in the K562 but not the GM12878
cell line (Supplemental Fig. S7).

Because highH3 K4/K79methylation andH3 acetylation lev-
els are prerequisites for MYC binding in vivo (Guccione et al.
2006), we examined the distribution of H3K4me3, H3K79me2,
and H3K9ac patterns among these three groups of BSs. Two of
the three HM marks surrounding group 1 BSs had high levels in
theGM12878 cell line and low levels in the K562 cell line (one-sid-
ed paired t-test P-values: 6.2 × 10−7 for H3K4me3 and 1.6 × 10−20

for H3K9ac). In contrast, these HM levels surrounding group 3
BSs were higher in the K562 than in the GM12878 cell line (one-
sided paired t-test P-values: 1.1 × 10−10 for H3K4me3, 1.2 × 10−38

for H3K79me2, and 3.9 × 10−7 for H3K9ac). Despite poor con-
servation of the BSs in terms of their genomic location, most of
the considered TFs displayed conservedHMpatterns among differ-
ent cell lines.

To exemplify how HM patterns are distributed in motif envi-
ronments of TF BSs, we displayed average HM patterns of
H3K4me3,H3K9ac, andH3K27me3 at eachposition1 kbupstream
of and downstream from BSs and non-BSs for MYC, a TF from the
bHLH family, in the GM12878 cell line (Fig. 2C). H3K4me3 and
H3K9ac are crucial for in vivo MYC binding. Consistent with this

Figure 2. TF families show conserved differences in HM patterns between BSs and non-BSs. (A) Heat map displaying results of statistical comparison
between HM levels at positions 1 kb upstream of and downstream from BSs and non-BSs in the GM12878 cell line. Positive Δ[−log(q-value)], in red, in-
dicates BS environments with significantly higher HM levels compared to non-BS environments. Negative Δ[−log(q-value)], in blue, indicates BS environ-
ments with lower HM levels. The MADS-domain, C2H2, ETS, and bHLH TF families show conserved HM pattern differences. (B) Average HM differences
across TF families in the GM12878 cell line. Centerlines of box plots represent medians, edges indicate the first and third quartiles, and whiskers indicate
minimum/maximum values within 1.5 times the interquartile from the box. This setup for displaying box plots is consistent in subsequent box plots. (C)
Average H3K4me3, H3K9ac, and H3K27me3 levels at each position 1 kb upstream of and downstream from BSs and non-BSs for MYC (bHLH family). Black
edges encompassing the average line represent standard error bars at each nucleotide position.
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fact, the averageH3K4me3andH3K9ac levels in themotif environ-
ment of BSs were higher compared to non-BS regions. As a control,
average H3K27me3 levels were similar in environments of BSs and
non-BSs, and our observations in the K562 and H1-hESC cell lines
were consistent (Supplemental Figs. S2, S3). To compare HM pat-
terns for TF families with fewer differences between BSs and non-
BSs (Fig. 2A), we plotted average HM patterns for H3K4me3,
H3K9ac, and H3K27me3 for CEBPB from the bZIP family
(Supplemental Fig. S8). As we had expected, these three HMs
showed similar patterns surrounding BSs and non-BSs of CEBPB.

Upon binding DNA in closed chromatin regions (irrespective
of the presence of nucleosomes), pioneer factors recruit chromatin
remodelers and histone-modifying enzymes, disrupt the chroma-
tin structure, and reprogram epigenetic marks (Magnani et al.
2011; Zaret and Carroll 2011; Vernimmen and Bickmore 2015).
The TFs considered in this study included pioneer factors from dif-
ferent TF families, including GATA2 from the GATA family
(Anguita et al. 2002), NFYB (Oldfield et al. 2014) from the NFY
family, SPI1 from the ETS family (Wang et al. 2014), and RFX5
from the family of RFX-related factors (Gauthier et al. 2012).
Moreover, pioneer factors colocalize with other TFs in a cell-line–
specific manner. For example, NFY extensively colocalizes only
with USF1 and FOS at inactive chromatin domains in the K562
cell line (Fleming et al. 2013). We observed that these pioneer fac-
tors, except for those from the GATA family, and colocalized TFs
showed similar HM patterns in environments of BSs compared
to non-BSs (Fig. 2; Supplemental Figs. S2, S3).

HM patterns in the BS environment contribute to quantitative

predictions of in vivo TF binding

Our qualitative analysis of HM patterns between BSs and non-BSs
of TFs revealed similar and conserved differences for various pro-
tein families. Therefore, wewere interested inwhether theHMpat-
terns contribute quantitatively to the discrimination of BSs versus
non-BSs for TFs and whether those contributions are also protein
family–dependent. We previously showed that DNA sequence in-
formation and four DNA shape features (i.e., minor groove width
[MGW], propeller twist [ProT], Roll, and helix twist [HelT]) at
flanking regions contribute to the quantitative modeling of TF
binding specificities both in vitro and in vivo (Gordân et al.
2013; Dror et al. 2015). Therefore, we built L2-regularizedmultiple
linear regression (MLR) models, incorporating various combina-
tions of DNA sequence and shape features at 10-bp flanking re-
gions and 10 average HM patterns in an environment of 1 kb
upstream of and downstream from motifs, to classify previously
defined BSs and non-BSs (Methods).

BSs and non-BSs were described as feature vectors containing
distinct sets of features (i.e., DNA sequence and shape atnucleotide
resolution, and average HM levels). DNA sequence features are bi-
nary categorical attributes characterizing the chemical identity of
base pairs. This information encodeshydrogenbonds andother di-
rect contacts between aminoacids andbase pairs in predominantly
themajor groove (Rohs et al. 2010). DNA shape features are contig-
uous attributes capturing DNA shape properties and electrostatic
interactions predominantly in the minor groove (Rohs et al.
2009; Chiu et al. 2017). HM levels are contiguous attributes that
describe surrounding epigenetic marks that may be sensitive to TF
binding (Grubert et al. 2015) andcanalsobeprimed for thebinding
of specific TFs (Ziller et al. 2015). These three types of feature cate-
gories represent different mechanisms of in vivo TF binding
specificities.

After collecting binding data and encoding features for each
BS sequence, we implemented two different models: sequence
+shape models, using a combination of DNA sequence and shape
features; and sequence+shape+HM models, using a combination
of DNA sequence, DNA shape, and HM pattern features. To exam-
ine how these models perform quantitatively as a function of the
lengths of flanking regions used in calculating HM patterns, we
tried different length scales ranging from 10 to 2000 bp.
Similarly, we tried flanking region lengths of 5, 10, and 15 bp for
calculating DNA sequence and shape features. We used the area
under the precision and recall curve (AUPRC) to evaluate the per-
formance of the models.

Sequence+shape+HM models achieved average AUPRCs of
0.73, 0.74, and 0.75 for TFs considered in the GM12878, K562,
and H1-hESC cell lines (Supplemental Table S4). Adding HM pat-
terns increased the performance of discriminating BSs from non-
BSs (Fig. 3A–C). For example, because certain HM patterns are pre-
requisites for MYC binding, adding HM patterns to sequence
+shape models yielded a 14.0% increase in AUPRC (from 0.71 to
0.81) in the GM12878 cell line. Moreover, performances of se-
quence+shape+HM models did not show strong length-scale
dependencies in calculating HM patterns (Supplemental Figs.
S9–S11) or in calculating DNA sequence and shape features
(Supplemental Figs. S12–S14).

The extent towhich the inclusion ofHMpatterns in themod-
els improved the prediction accuracy of TF binding specificities
was protein family specific. With consistent and substantially dif-
ferent HM patterns (Fig. 2A), TFs from the bHLH family had medi-
an performance boosts of 13.2%, 3.3%, and 9.2%when usingHM-
augmentedmodels in the three cell lines. In contrast, TFs from the
C2H2 family benefited comparatively less, with median perfor-
mance improvements of 2.9%, 2.2%, and 6.5% in the three cell
lines. Moreover, the performance improvements were distributed
over a wider range (Fig. 3D–F; Supplemental Fig. S15). TFs from
the MADS-domain family in the GM12878 cell line and the
GATA family in the K562 cell line also showed a substantial perfor-
mance boost when HM-augmented models were used. Using im-
balanced data did not change these observations (Methods;
Supplemental Figs. S16, S17).

TF families vary in their preferences for DNA sequence

and shape features and HM patterns

Determinants affecting in vivo TF binding are highly correlated
and have not yet been deconvolved. For example, the GC content
of a BS region can affect nucleosome positioning (Brogaard et al.
2012). DNA shape features are derived from nucleotide sequences
(Zhou et al. 2013), which are closely related to HM patterns
(Henikoff and Shilatifard 2011; Benveniste et al. 2014; Grubert
et al. 2015). With HM-augmented models that can increase
the modeling accuracy of DNA binding specificities across TF fam-
ilies, we further separated the contributions from DNA sequence
and shape at flanking regions and the contribution from HM
patterns.

Our previous work was aimed at deconvolving determinants
of in vitro TF binding (Abe et al. 2015). Here, we applied a similar
strategy to investigate the importance of DNA sequence and shape
features at flanking regions that could not be explained by HM fea-
tures, or vice versa. Specifically, we evaluated the importance of in-
dividual sequence+shape or HM features by using performance
increases relative to sequence+shape, HM-only, or sequence
+shape+HMmodels. Formost of the TFs considered, contributions
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of sequence+shape andHM features had a strongnegative relation-
ship (Fig. 4A), indicating amore general phenomenon that the de-
gree to which flanking regions contribute to TF binding can be
attenuated by the chromatin context (Levo and Segal 2014). In ge-
neral, if DNA flanking regions are more likely occupied by nucleo-
somes, then the HMpatterns contributemore thanDNA sequence
and shape features to TF binding specificity predictions.

We further observed that TFs from the GATA and MADS-
domain families were distributed in the upper left quadrant of
the plot in Figure 4A, with HM patterns showing larger contribu-
tions than DNA sequence and shape features to TF binding specif-
icity predictions. On the other hand, TFs from the bZIP and C2H2
families were more broadly distributed in the scatter plot. When
we selected an AUPRC increase of 5% or 15% upon adding HMs
and sequence+shape features (Fig. 4A, gray dashed lines), respec-
tively, to be the “feature importance” threshold (i.e., for a set of
features to be considered important for TF binding), the TFs sepa-
rated into three groups. The TFs in the upper left quadrant of the
scatter plot in Figure 4A were termed “HM specific,” those in the
bottom right quadrant were termed “sequence+shape specific,”
and those in the bottom left quadrant were regarded as “other”
(Fig. 4B). For example, all but one (USF1) of the five TFs in the
bHLH family were observed to bind DNA in an HM-specific
manner (Fig. 4C). Comparatively, for TFs in the bZIP and C2H2
families, HM features did not always represent important features.
We noticed, however, that binding mechanisms were protein
family specific and consistent in the three cell types. Specifically,

TFs from the C2H2 and bZIP families were found to bind in both
a DNA sequence+shape-specific and an HM-specific manner,
whereas most of the TFs from the bHLH, GATA, and MADS-
domain families tended to bind in an HM-specific manner (Fig.
4C; Supplemental Figs. S18, S19).

TFs from the bHLH family tended to bind mostly in an HM-
specific manner. They exhibited consistent and increased
H3K4me3, H3K79me2, andH3K9ac patterns in themotif environ-
ment of their in vivo BSs (Fig. 2A). These TFs might require primed
HM patterns to achieve DNA binding specificity (Guccione et al.
2006; Ziller et al. 2015). USF1 and USF2, as exceptions, were found
to bind in a sequence+shape-specific manner in the K562 cell line.
On one hand, when accounting for the preferences of flanking
base pairs, in vivo BSs for TFs of the bHLH family showed increased
in vitro binding signals (Gordân et al. 2013). Differences in the one
or two proximal base pairs directly flanking the E-box at promoter
regions appeared to alter the transcriptional rates (Aow et al. 2013;
Rajkumar et al. 2013). On the other hand, the lesser importance of
HM patterns for USF1 binding can be explained by its frequent
cobinding with pioneer factors.

TFs from the GATA family are known as pioneer factors. As
such, confirming the binding preference of these TFs might re-
quire the analysis of time-resolved HM pattern changes surround-
ing the BSs. This possibility is because the large HM pattern
differences between BSs and non-BSs (Supplemental Fig. S2)might
be due to HM pattern changes upon TF binding (Magnani et al.
2011; Zaret and Mango 2016).

Figure 3. HM patterns of the BS environment largely contribute to the quantitative prediction of in vivo TF binding in a protein family–specific man-
ner. L2-regularized MLR models were implemented to distinguish BSs and non-BSs for TFs from different families. AUPRC was used to measure perfor-
mance of different models. Comparisons of models are shown between sequence+shape and sequence+shape+HM features in the GM12878 (A), K562
(B), and H1-hESC (C) cell lines. Extents of performance gain in HM-augmented models are protein family specific in the GM12878 (D), K562 (E), and
H1-hESC (F) cell lines.
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TFs from the STAT family used both sequence+shape andHM
features at flanking regions to achieve DNA binding specificity.
STAT1, for instance, has independently derived BSs that associate
strongly with regions of H3K4me1 and H3K4me3 histone marks
in HeLa cells (Robertson et al. 2008). Examining three flanking po-
sitions upstreamand two flanking positions downstream, it was re-
ported that STAT1, STAT5, and STAT6 revealed preferences for
certain base pairs in the flanking regions (Ehret et al. 2001). The
C2H2 family, which binds DNA using the most promiscuous
mechanisms, showed various HM pattern preferences in regions
surrounding BSs (Fig. 2A; Supplemental Figs. S2, S3). For TFs exhib-
iting large differences in HM patterns, HM changes in the motif
environment of BSs might be due to initial interactions with his-
tone-modifying enzymes, followed by changes in HM patterns.
For instance, YY1 interacts with histone acetyltransferase EP300
(Lee et al. 1995), CREB-binding protein (CBP) (Austen et al.
1997), and histone deacetylase 1 (HDAC1), HDAC2, and HDAC3
(Yang et al. 1996). Such HM pattern changes can be explained by
DNAvariants that are highly related to alterations in TF binding in-
tensities (Grubert et al. 2015). These TFs may approach their BSs
through initially sampling DNA sequence and shape (Dror et al.
2016), followed by causing or stabilizing HM pattern changes
around the BSs.

We also investigated the importance of individual features
that cannot be explained by other features in predicting bind-
ing specificities for each TF. Starting from the HM-augmented
model, we individually removed DNA sequence or shape fea-
tures or one of the 10 HM patterns, built a series of leave-one-
feature-out L2-regularized MLR models, and recorded AUPRC de-
creases to evaluate model performance (Fig. 4D; Supplemental
Figs. S18, S19; Methods). For most TFs of the bHLH family,
flanking regions around BSs contributed to TF binding specific-
ity more substantially through their local DNA structure than
through DNA sequence, as previously reported (Gordân et al.
2013).

Among these DNA shape features, ProT was important for
the bHLH family in all three cell lines (Dror et al. 2015).
H3K4me2, as an activating mark, was significantly different in re-
gions surrounding BSs of TFs from the bHLH and ETS families.
The same histone mark, however, showed lesser importance in
the three cell types, implying co-occurrence with other activating
marks such as H3K4me3 or H3K27ac (Peach et al. 2012; Du et al.
2013). Comparatively, H3K4me1 carries unique information
and distinguishes active from poised enhancers when combined
with H3K27ac and H3K27me3, respectively (Wei et al. 2009;
Creyghtonet al. 2010;Rada-Iglesias et al. 2011). ForTFs that exhibit

Figure 4. Deconvolution of DNA sequence and shape features at flanking regions and 10 HMpatterns in the GM12878 cell line. (A) Scatter plot showing
performance gain through adding different sets of features. The x-axis represents HMpattern-onlymodels as baseline, and recorded performance increases
through adding DNA sequence and shape features at flanking regions. The y-axis represents models based onDNA sequence and shape features at flanking
regions as baseline, and recorded performance increases through adding HM pattern features. Gray dashed lines intersect with x-axis at 15% and with y-
axis at 5%. The Pearson correlation coefficient (PCC) was calculated between AUPRC gain through adding these two sets of features. (B) Heat map display-
ing performance gains when adding either sequence+shape features or HM patterns. With cutoffs as shown by the gray dashed line in A, TFs were grouped
into sequence+shape specific, HM specific, and a group with other features preferred. (C) Pie charts showing the number of TFs with different binding
mechanisms in the MADS-domain, bHLH, bZIP, and C2H2 TF families. (D) Heat map representing the percentage decrease of AUPRC in leave-one-fea-
ture-out experiments compared to complete models considering DNA sequence and shape features, and 10 HM features. A more intense red color in a
cell indicates a greater performance decrease when leaving out the feature displayed in the x-axis for the TF displayed in the y-axis.
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HM patterns as an important feature category, H3K4me1 usually
indicates a substantial contribution.

Preferences for HM patterns can constrain TF co-occupancy

Our data showed that HM pattern differences were degenerate
characteristics in defining TF binding specificities (Fig. 2A). An in-
triguing question was howHMpattern preferences of TFs correlate
with the cobinding of TFs, given previous observations that TFs
tend to bind DNA in a cooperative manner (Mann et al. 2009).

To investigate this relationship, we calculated the co-occu-
pancy of all possible TF pairs by measuring the percentage of
proximal BSs between these pairs (Methods) and examined the dis-
tribution ofH3K4me3patterns surrounding their BSs. Presumably,
intra-family TF pairs or pairs from protein families that use similar
binding mechanisms (DNA sequence+shape or HM-specific man-
ner) will prefer similar HM patterns surrounding their BSs. For
these TF pairs, wewould expect a tendency to colocalize and to ex-
hibit more distinct TF co-occupancies compared to other charac-
teristics. We found that TF pairs with similar H3K4me3 patterns

around their BSs had a larger percentage of proximal BSs, and TF
pairs with substantial H3K4me3 pattern differences tended to
avoid binding closely to each other in the GM12878 cell line
(Fig. 5A).

Here, we provide three examples of TF pairs to support this
hypothesis. The first pair was MYC and CEBPB from the bHLH
and bZIP families, respectively. In the GM12878 cell line, MYC
showed HM-specific binding, whereas CEBPB preferred distinct
DNA sequence and shape features (Fig. 4B). As a result, only ∼1%
of the MYC BSs were proximal to CEBPB BSs, and CEBPB only
shared ∼2% of its BSs with MYC. Furthermore, MYC-only BSs
had higher H3K4me3 levels compared to CEBPB-only BSs (Fig.
5B). These observations were consistent with results in the K562
and H1-hESC cell lines (Supplemental Figs. S20, S21).

The second pair was MEF2A and MEF2C, both from the
MADS-domain family. Both of these TFs bound DNA in an HM-
specific manner. Even when we excluded overlaps of their BSs,
∼23% of MEF2A BSs were still proximal to MEF2C BSs, and
∼29% of MEF2C BSs were shared with MEF2A. Distributions of
H3K4me3 levels surrounding MEF2A-only and MEF2C-only BSs

Figure 5. HM environment can constrain TF co-occupancy in the GM12878 cell line. TFs from the same protein family and TF families with a similarly
favorable HM environment (or binding manner) tend to colocalize in the genome. (A) Box plots of percentages of BSs of a TF that are in close proximity
(within 300 bp) to BSs of each of the other TFs versus average differences of H3K4me3 surrounding BSs between these two TFs. (B, left) H3K4me3 level
surrounding BSs shared (black) byMYC (bHLH family) andCEBPB (bZIP family), MYC-only (blue), andCEBPB-only (purple). (B, right) Box plots representing
the distribution of H3K4me3 levels surrounding BSs shared by MYC and CEBPB (black), MYC-only (blue), and CEBPB-only (purple). (C, left) H3K4me3 level
surrounding BSs shared (black) by MEF2A and MEF2C (both from the MADS-domain family), MEF2A-only (blue), and MEF2C-only (purple). (C, right) Box
plots representing the distribution of H3K4me3 levels surrounding BSs shared byMEF2A andMEF2C (black),MEF2A-only (blue), andMEF2C-only (purple).
(D) Box plots displaying the distribution of percentages of proximal BSs among intra-family TF pairs and inter-family TF pairs for each protein family. One-
sided Wilcoxon test P-values show that intra-family TF pairs have significantly higher percentages of proximal BSs compared to inter-family TF pairs.
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were quite similar to levels surrounding
MEF2A- andMEF2C-shared BSs (Fig. 5C).

The third example was of TF pairs
from different TF families, wherein both
TFs showed sequence+shape-specific
DNA binding and similar H3K4me3 pat-
terns surrounding their BSs. These pairs
were NRF1 and EGR1 in the GM12878
cell line, NFYB and USF1 in the K562
cell line, and USF1 and JUND in the H1-
hESC cell line (Supplemental Fig. S22).
This observation indicates that TFs with
similar preferences for HM patterns and
similar binding mechanisms tend to co-
occupy. Interestingly, the third TF pair
had very different sequence preferences
(Supplemental Fig. S4).

Inagreementwith theseexamplesof
TF pairs, we observed that intra-family TF
pairs tended tohavea significantlyhigher
number of proximal BSs compared to in-
ter-family TF pairs for protein families
having consistent and different HM pat-
terns around their in vivo BSs, such as
the bHLH, MADS-domain, GATA, STAT,
and ETS families (Fig. 5D; Supplemental
Figs. S20, S21). In conclusion, our results
suggest a close dependency between the
HM pattern preferences of TFs and the
tendency of TFs to occupy proximal BSs
in vivo.

Larger differences in HM patterns result

in a substantial decrease in nucleosome

occupancy

HMs can change DNA accessibility and
nucleosome stability, either directly by
adding methyl or acetyl groups to histone tails (Lu et al. 2008;
Zentner andHenikoff 2013) or indirectly by recruiting specific pro-
teins (e.g., with chromodomains at histone tails with methylation
and bromodomains at histone tails with acetylation) (Bell et al.
2010; Canzio et al. 2011). Beyond these processes, HMs can affect
nucleosome positioning (Anderson et al. 2001). Therefore, we hy-
pothesized that HM patterns are closely related to in vivo TF bind-
ing specificities for certain protein families through their effects on
nucleosome positioning.

To test this hypothesis, we investigated the nucleosome posi-
tioning profiles surrounding BSs and non-BSs of TFs that bind in a
DNA sequence+shape-specific and HM-specific manner. To derive
nucleosome positioning profiles, we collected genome-wide
MNase-seq data for the GM12878 and K562 cell lines from the
ENCODE Project (Supplemental Table S1). We then derived the
nucleosome occupancy at each base pair in 1-kb regions upstream
of and downstream fromknown target sites. TFs from familieswith
consistent HM patterns across cell lines and substantially different
HM patterns between BSs and non-BSs (e.g., bHLH, ETS, GATA,
andMADS-domain) exhibited substantial decreases in average nu-
cleosome occupancy around their BSs (Fig. 6A; Supplemental Figs.
S23, S24). These results indicated a competition between histones
and TFs for target sites. In contrast, the extent of the average
decrease in nucleosome occupancy in regions surrounding BSs

wasmore diverse for TFs from the C2H2 family (Fig. 6B). For exam-
ple, BSs ofMYC exhibited lesser nucleosome occupancy than non-
BSs (Fig. 6C), whereas the nucleosome occupancy distributions of
BSs and non-BSs of CTCFwere similar (Fig. 6D). BSs of other TFs in
the bHLH family displayed more substantially decreased nucleo-
some occupancy than BSs of other TFs in the C2H2 family
(Supplemental Figs. S25, S26). In our experimental setup, BSs
and non-BSs of each TF had similar distributions of chromatin
accessibility.

Considering that nucleosome occupancy might be a more di-
rect factor affecting TF binding than HM patterns, we implement-
ed additional L2-regularized MLR models (Methods) using a
combination of DNA sequence and shape, and average nucleo-
some occupancy to classify BSs and non-BSs.With consistently in-
creased performance compared to sequence+shape models across
cell lines, nucleosome occupancy (nuc) can contribute to the dis-
tinction of in vivo BSs and non-BSs (Supplemental Figs. S27,
S28). Because HM patterns contain information for both nucleo-
some positioning and HM levels, sequence+shape+HM models
generally outperformed sequence+shape+nuc models because nu-
cleosome occupancy was represented by only one feature com-
pared to 10 HM features (Supplemental Fig. S29). Interestingly,
sequence+shape+nuc models were more sensitive to flanking
length than were sequence+shape+HM models, indicating that

Figure 6. Nucleosome occupancy decreases around BSs compared to non-BSs among TF families that
bind in an HM-specific manner. Average nucleosome occupancy in each position 1 kb upstream of and
downstream from BSs and non-BSs for the bHLH (A) andC2H2 (B) families in the GM12878 cell line. Black
edges encompassing the average line represent standard error bars at each nucleotide position. (C,D)
Density plots showing distributions of chromatin accessibility and nucleosome occupancy around BSs
and non-BSs for MYC in the bHLH family (C ) and CTCF in the C2H2 family (D). Two-sidedWilcoxon tests
were conducted to test if these distributions had shifts. Only distributions of nucleosome occupancy for
MYC BSs exhibited significant shifts, as indicated by the P-value.
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nucleosome occupancy is more accurate in describing local chro-
matin structure as it is relevant to TF binding. These observations
indicate that HM-selective TFs require increased nucleosome posi-
tioning flexibility compared to TFs that bind in a DNA sequence
+shape-dependent manner.

Discussion

DNA sequence and shape preferences at flanking regions of core
motifs play important roles in achieving binding specificity for
TFs from certain protein families, both in vitro (Gordân et al.
2013; Afek et al. 2014) and in vivo (Dror et al. 2015). However,
these DNAproperties alone are insufficient to explain the different
in vivo TF binding preferences observed across distinct cell types
(The ENCODE Project Consortium 2012; Ernst and Kellis 2013;
Tsankov et al. 2015). Considering cell-type–specific properties,
previous studies described a general relationship between TF bind-
ing and HM patterns (Guccione et al. 2006; Arnold et al. 2013;
Grubert et al. 2015; Ziller et al. 2015). These studies reported
increased performances in the sequence-based modeling of in
vivo TF binding events when such models incorporated HMs
(Benveniste et al. 2014; Liu et al. 2015). In this study, we described
qualitatively and quantitatively the relationship between TF bind-
ing and HM patterns in a protein family–specific manner across
different cell lines. We revealed that TFs from certain TF families
displayed conserved HM pattern preferences between BSs and
non-BSs.

To investigate preferences in HM patterns surrounding BSs
compared to non-BSs, we analyzed comprehensive ENCODE
data (The ENCODE Project Consortium 2012) and examined in
vivo ChIP-seq data for 33, 37, and 18 TFs in the GM12878,
K562, and H1-hESC cell lines, respectively. The studied TFs cov-
ered eight protein families, including the C2H2, MADS-domain,
bHLH, bZIP, HD, STAT, GATA, and ETS families. Among the feature
categories in flanking regions of core motifs that influence in vivo
TF binding, two important determinants are chromatin accessibil-
ity (Song et al. 2011) and DNA sequence context (Levo and Segal
2014). Closed chromatin is inaccessible to most TFs, whereas
open chromatin provides accessible regions for TF binding that
are generally transcriptionally active (Grewal and Moazed 2003;
Huisinga et al. 2006). Considering thesemechanisms,we restricted
our data set of non-BSs to exactly matched core motifs with a sim-
ilar distribution of chromatin accessibility as in environments of
BSs. Then, we examined the differences in HM patterns between
regions surrounding BSs versus non-BSs.

In regions surrounding BSs, preferences for HM patterns were
protein family specific. TFs from the bHLH, GATA, and MADS-
domain families displayed, across cell lines, decreased levels of
repressive histone marks (such as H3K27me3 modification) and
increased levels of active histone marks (such as H3K4me1,
H3K27ac, H3K4me3, and H3K79me3 marks) (Shlyueva et al.
2014). The C2H2, bZIP, and HD families, however, showed more
divergent HM patterns surrounding their BSs. As one of the largest
TF families in eukaryotes, the C2H2 family exhibited varying pref-
erences, likely due to their much less conserved three-dimensional
protein folds compared to other protein families (Laity et al.
2001). Besides the 10 HM patterns considered, our work can be
further extended by adding other histone marks on linker his-
tones, which closely relate to chromatin structure and TF binding
(Fyodorov et al. 2017), as well as additional HM marks in core
histones.

Recent studies reported a quantitative relationship between
in vivo TF binding specificities and HM patterns surrounding BSs
near DNA regulatory elements (Benveniste et al. 2014; Liu et al.
2015). Given our qualitative observation that HM pattern prefer-
ences surrounding BSs are protein family specific, an obvious ques-
tion is whether HM patterns at TF BSs can add another layer to
modeling genome-wide in vivo TF binding quantitatively in a pro-
tein family–specific manner. Using DNA sequence and shape pro-
files as feature categories in our baseline models, HM-augmented
models for predicting TF binding resulted in larger performance in-
creases for TFs from protein families that had substantial HM pat-
tern differences between BSs and non-BSs, such as members of the
bHLH, MADS-domain, and GATA families. This result indicates
that HM patterns may contribute to the binding of TFs from the
same protein family to their putative BSs. Furthermore, other
mechanisms, such as cofactors, cooperativity, and higher-order
chromatin structure, could further increase the quantitative mod-
eling of TF binding in vivo.

Wepreviously suggested that specific TF families use different
contributions of DNA sequence and shape at flanking regions to
achieve binding specificities in vivo and in vitro (Dror et al.
2015). Furthermore, it is well established that eukaryotic transcrip-
tional regulation requires many layers of binding specificity deter-
minants (Lelli et al. 2012). Thus, here we disentangled the
contributions of DNA sequence and shape profiles and HM pat-
terns in distinguishing BSs fromnon-BSs based onHM-augmented
binding specificity models. We found that contributions from
these two sources were complementary to each other. We further
identified three binding mechanisms: sequence+shape specific,
HM specific, and a group with other features preferred. For most
TFs from the bHLH, ETS, GATA, and MADS-domain families, our
data suggest an HM-dependent binding mode. In contrast, TFs
from the bZIP and C2H2 families seem to utilize a combination
of sequence+shape-specific and HM-specific modes. Moreover,
we conducted leave-one-feature-out feature selection experiments
to deconvolve the contribution of each individual feature rather
than of a set of features. Certain feature importance results validat-
ed our previous understanding of TF binding and might provide
further insights into the role of other features in a systematic
way. These observations were consistent for all three considered
cell lines.

TFs tend to cobind DNA in close vicinity to each other in or-
der to regulate transcriptional processes cooperatively. Our analy-
sis revealed a dependency between the HM pattern preferences of
TF pairs and their tendency to cobind the genome, even if they
have different DNA sequence preferences. This interdependency
indicates that HM patterns in regions where BSs are located con-
strain TF co-occupancy. TFs from the same protein family, or TFs
from different TF families that bind in an HM-specific manner,
tend to cobind DNA BSs in close proximity. Hox proteins from
the HD family, for instance, bind in close proximity to their cofac-
tors from the same protein family to unleash their DNA binding
specificities (Slattery et al. 2011; Abe et al. 2015). It is possible
that HM patterns explain the observation that cooperativity can
occur promiscuously between TFs from diverse structural families
(Jolma et al. 2015).

Given our observation that HM patterns contribute to the
quantitative modeling of TF binding specificities, an intriguing
question is how TFs can sample the unique HM environment far
beyond the core motif in vivo. Other studies suggested that HMs
have a direct physical effect on chromatin structure (Shogren-
Knaak et al. 2006). Lysine acetylation, for instance, removes the
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positive charge of this residue, which is believed to increase DNA
negative supercoiling (Rothbart and Strahl 2014). In another ex-
ample, DNA topology is intricately connected with nucleosome
structure and stability (Gupta et al. 2009). These DNA topological
changes might influence the binding of regulatory proteins to
DNA (Kouzine et al. 2013).Moreover,HMsmodulate the nucleoso-
mal barriers of the transcriptional machinery by altering histone-
DNA contacts so that transcription proceeds efficiently (Teves
et al. 2014). Considering these hypotheses, we examined the nu-
cleosome occupancy surrounding BSs and non-BSs for various TF
families. Protein families with larger HM pattern differences tend-
ed to exhibit decreased nucleosome occupancy at BSs compared to
non-BSs. This finding indicates that HMpattern changes influence
nucleosome structure and stability, which in turn, evoke changes
in TF binding events. With the observation that the readout of
regulatory sequencesmight be affected by TF–nucleosome interac-
tions (Levo et al. 2017), future studies will be required to examine a
possible HM–TF interplay.

In summary, with stringent experimental setups, our analysis
extends current knowledge about the close relationship between
HM patterns and genome-wide in vivo TF binding specificities
by revealing protein family–specific mechanisms. We found that
HMpattern differences surrounding BSs and non-BSs are TF family
dependent, and that the contribution of HM patterns to quantita-
tive models of binding specificities is TF family specific across dif-
ferent cell lines.

Methods

In vivo data collection and motif alignment

ChIP-seq data for human TFs with position frequency matrices
(PFMs) in the JASPAR database (Mathelier et al. 2016a) and
DNase I hypersensitivity sites were downloaded from The
ENCODE Project Consortium (2012). Based on these PFMs, we
used FIMO (Grant et al. 2011) to search and align BSs with default
settings. If a motif was found more than once in a sequence, then
the motif with lowest FIMO P-value was used. Data for the TF was
discarded if (1) the number of aligned BSs was less than 132, to
avoid the risk that the sample size would be less than the number
of features used in the downstream MLR models (which have a
minimum of 80 features); or (2) the peak of the motif distribution
did not coincidewith the ChIP-seq peak summit. Final numbers of
data sets for the GM12878, K562, and H1-hESC cell lines were 33,
37, and 18 TFs, respectively.

TF data sets in each cell line were assigned to TF families ac-
cording to the JASPARdatabase (Mathelier et al. 2016a). TF families
with fewer than two members were grouped under “Other.” BSs
were derived from ChIP-seq peaks.

Background definition

For each BS, Bowtie (Langmead et al. 2009) was used to scan exact-
matched sequences at chromatin-accessible regions determined
by DNase-seq experiments. If more than one exact-matched se-
quence was found at a chromatin-accessible region, then only
the first sequence in the Bowtie output was kept. Non-BSs were se-
lected at distinct genomic locations with BSs. After these steps, for
each BS, we selected one non-BS that had the closest average chro-
matin accessibility surrounding 1-kb regions upstream of and
downstream from this BS. The resulting non-BSs had similar chro-
matin accessibility distributions and similar sample sizes as the
selected BSs. Imbalanced data were generated by resampling five
times non-BSs with a bootstrapping strategy.

HM patterns of motif environments

As the motif environment, we considered 1-kb genomic regions
upstream of and downstream from each motif. Based on the
ChIP-seq BAM files for each HM, BEDTools suite coverage
(Quinlan and Hall 2010) was performed to calculate the coverage
of each nucleotide as the number of reads that included a given nu-
cleotide. The HM level in each motif environment was averaged
over the coverage at the core motif and 1-kb genomic regions sur-
rounding the core motif (i.e., 2 kb + motif length). Then, the HM
level was normalized by computing the value of reads per million
(RPM). Average levels were taken from experimental replicates.

DNA shape features in flanking regions

Starting from motifs in BSs and non-BSs, sequences at 10-bp re-
gions upstream of and downstream from the motifs were extract-
ed. To utilize DNA shape profiles at each nucleotide of these
sequences, these sequences with 2-bp flanking regions were gener-
ated as input for DNAshapeR (Chiu et al. 2016), our R software
package for high-throughput DNA shape feature prediction. Four
DNA structural features (i.e., MGW, ProT, Roll, and HelT) were cal-
culated, among whichMGWand ProT were predicted for each nu-
cleotide position, and Roll and HelT were predicted for each base
pair step of these sequences.

Statistical comparison of HM patterns at bound BSs and non-BSs

We compared HM patterns between BS and non-BS environments
for each HM using the one-sidedWilcoxon signed rank test imple-
mented by wilcox.test in R. The option greater in the test meant the
null hypothesis (BSs > non-BSs) and vice versa. Bonferroni correc-
tion was applied to correct for multiple testing. The Q-values cor-
rected from tests with the greater and the less options were used
to calculate Δ[−log(q-value)], which indicates the results in HM
pattern comparisons between BSs and non-BSs. A positive Δ[−log
(q-value)] was assigned to a HM when this HM surrounding BSs
had significantly higher levels than surrounding non-BSs, and
vice versa.

MLR scoring scheme

Three different L2-regularized MLR models were trained to distin-
guish BSs from non-BSs by using the following feature combina-
tions: (1) DNA sequence and four DNA shape features (MGW,
Roll, ProT, andHelT) at flanking regions 5′ and 3′ of the coremotif;
(2) DNA sequence and fourDNA shape features at flanking regions,
and 10 HM patterns at the core motif (usually 6–20 bp) and 1-kb
regions upstream and downstream; and (3) DNA sequence and
four DNA shape features at flanking regions 5′ and 3′ of the core
motif, and nucleosome occupancy at the core motif and 1-kb re-
gions upstream and downstream. For each BS, DNA sequence
was represented in a feature vector (where A was encoded as
1000, T as 0100, G as 0010, and C as 0001). Training sets for
MLR classification were stacks of BSs (labeled as “1”) and non-
BSs (labeled as “0”). The penalty parameter λ was learned from
the data by using an embedded 10-fold cross-validation on the
training set. AUPRC, computed by using the ROCR package in R
(Sing et al. 2005; R Core Team 2015), was used to evaluate the ac-
curacy of the respective models in predicting BSs and non-BSs.

Leave-one-feature-out L2-regularized MLR models

To determine the importance of each feature in the classification
models combiningDNA sequence, shape, andHM features, we im-
plemented MLR models in which we left out one feature at a time
(i.e., DNA sequence, MGW, ProT, Roll, HelT, H3K4me2, H3K27ac,
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H3K4me1, H3K4me3, H3K79me2, H3K9ac, H3K9me3,
H4K20me1, H3K27me3, and H3K36me3). We recorded the per-
centage decrease of AUPRC for each altered model compared to
models that considered all features.

Calculating co-occupancy of a TF pair

The percentage of proximal BSs of all possible TF pairs was calculat-
ed in each of the three cell lines. Proximal BSs for a TF pair were de-
fined similarly to Dror et al. (2015). All ChIP-seq peaks containing
BSs of a given TF were collected and extended 300 bp at each flank.
We calculated the percentage of proximal BSs for each TF pair by
examining the number of BSs of the TF pair that were located in-
side these extended peaks. Because TFs from the same family usu-
ally have similar preferences for genomic sequences, we discarded
overlapping BSs. We measured the percentage of ΔH3K4me3 for
each TF pair by the difference ratio of the average H3K4me3 pat-
terns over the environment of all BSs. Last, for each TF pair, we
compared the percentage of proximal BSs to the H3K4me3 pattern
difference ratio around the BSs.

Nucleosome occupancy

Genome-wide MNase-seq data for the GM12878 and K562 cell
lines were downloaded from The ENCODE Project Consortium
(2012) in bigWig format. BS and non-BS coordinates were derived
fromourMLR classificationmodel. Nucleosome occupancy at base
pair resolution was calculated by bwtool, developed by Pohl and
Beato (2014). For each TF, we calculated the average nucleosome
occupancy for regions 1 kb upstream of and downstream from
all BSs and non-BSs (i.e., 2 kb + motif length).

Software availability

Source code implementing data preprocessing and L2-regularized
MLR models, as well as BSs and non-BSs in the GM12878
cell line, are available in the GitHub repository at https://github.
com/xinbeibei/HM_and_TFbinding and in Supplemental
Material.
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