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Introduction

It is well‑known that cardiovascular diseases are the leading 
cause of death in chronic hemodialysis (CHD) patients and 
accelerated atherosclerosis (AS) is the major contributing 
factor for mortality in these dialysis patients.[1] The mortality 
caused by cardiovascular disease in the death of end‑stage 
renal disease (ESRD) patients accounted for about 50%.[2]

Hydrogen sulfide  (H2S) is considered as the third 
endogenous gaseous transmitter besides nitric oxide (NO) 
and carbon monoxide,[3] which exerts a wide range of 
physiological functions in vivo, such as relaxing vascular 
smooth muscle, inhibiting proliferation of vascular smooth 
muscle cells, and lowering blood pressure (BP).[4] It has 
been reported that the decrease of H2S in the plasma 
of hemodialysis patients may have relevance to the 
pathogenesis of the uremic syndrome manifestations, 
such as hypertension and AS.[5] We also have previously 
reported H2S metabolism abnormalities may contribute to 

the development of uremic accelerated AS (UAAS) in CHD 
patients with diabetic nephropathy.[6]

Protein kinase C (PKC) is a family of serine/threonine kinase 
comprised of 10 isoforms, they differ in requirement of 
Ca2+  and phospholipids for activation, and may partake of 
protective or deleterious effects in an isoform‑specific manner.[7] 
Of the various PKC isoforms, conventional protein kinase 
CβII (cPKCβII) has been shown to contribute to the pathology 
associated with heart failure,[8] and its inhibition may benefit 
patients with heart failure.[9] Study from Harja et al. further 
demonstrated that activation of cPKCβII in the pathogenesis 
of AS, and blockade of cPKCβII may be beneficial in AS.[10] 
However, the function of cPKCβII in UAAS remains to be 
determined. Accordingly, the role of cPKCβII activation 
in UAAS was investigated, and the correlation of H2S and 
cPKCβII activation was elucidated in this study.

Methods

Data sources
A total of 30 CHD patients without AS and 30 CHD patients 
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with AS (CHD + AS) were enrolled in the study if they were 
more than 18 years of age, had no residual renal function, 
and had maintained hemodialysis for more than 3 months 
with ESRD were diagnosed as CHD. CHD patients with 
AS were defined as localized thickening of intima‑media 
thickness  (IMT) ≥1.2 mm that did not uniformly involve 
the whole wall of the carotid artery.

Patients were not included in the study if they had heart 
failure, a recent acute coronary event, cancer, autoimmune 
disease, and active infection. A standard questionnaire was 
used for each participant to obtain systematic information 
regarding conventional cardiovascular risk factors, including 
hyperlipidemia, hypertension, diabetes, and family history 
of cardiovascular disease.

As a normal control group, age‑ and gender‑matched, 30 
healthy individuals were enrolled in this study.

The study was approved by the ethics committee of Beijing 
Chao‑Yang Hospital, Capital Medical University, and written 
informed consent was obtained from each participant.

Hydrogen sulfide concentration measurement
The blood of patients was drawn prior to the mid‑week dialysis 
session. Once blood was drawn in plastic vacutainers using 
EDTA (1 mg/ml of blood), plasma was immediately obtained 
through brief 5 min centrifugation at 500 × g and rapidly added 
to the assay mixture. Plasma H2S concentration was measured 
with a sulfide sensitive electrode as described by Li et al.[11] 
with modifications. Briefly, 0.5 ml of plasma was added into 
a test tube containing 0.5 ml of 0.04 g NaOH, 0.035 g EDTA 
and 0.05 g ascorbic acid. The sulfide sensitive electrode and 
a reference electrode immersed into the sample together, and 
record the serum H2S concentration until the reading is stable. 
H2S concentration was calculated against a calibration curve 
obtained with known H2S concentrations in a range between 5 
and 100 µmol/L, utilizing the H2S donor NaHS.[12,13] Standard 
curves were repeated daily with triplicate measurement for each 
point, and freshly made solutions were utilized at all times.

Sample preparation and Western blotting analysis
Peripheral blood mononuclear cells (PBMCs) were separated 
from blood samples by lymphocyte separation medium, 
which were used to detect the cPKCβII activation in vitro. 
Cells were washed twice with ice‑cold PBS and solubilized 
in buffer A (5 mmol/L Tris‑Cl, pH 7.5, containing 2 mmol/L 
dithiothreitol, 2 mmol/L EDTA, 1 mmol/L EGTA, 5 g/ml 
each of leupeptin, aprotinin, pepstatin A and chymostatin, 
50 mmol/L potassium fluoride, 50 mmol/L okadaic acid, 
5 mmol/L sodium pyrophosphate). Homogenates were 
centrifuged at 30,000 × g for 30 min at 4°C. The supernatants 
were collected as the cytosolic fraction. The pellets were 
re‑suspended in buffer B (Buffer A containing 0.5% Nonidet 
P‑40 [Sigma‑Aldrich Corp., St. Louis, MO, USA]) before 
being sonicated and centrifuged at 30,000 × g for 30 min at 
4°C again. The resulting supernatants were obtained as the 
particulate fraction. Protein concentration was determined by 
BCA kit (Pierce Company, Rockford, IL, USA) with albumin 

diluted in lysis buffer as standard. Proteins (40 µg) from each 
sample per lane were loaded on 10% SDS‑polyacrylamide 
gel electrophoresis. The gels were electrophoresed, and then 
transferred onto polyvinylidene difluoride membrane (GE 
Healthcare) at 4°C. After rinses with TTBS  (20 mmol/L 
Tris‑Cl, pH 7.5, 0.15 mol/L NaCl and 0.05% Tween‑20), the 
transferred polyvinylidene difluoride membrane was blocked 
with 10% nonfat milk in TTBS for 1 h and incubated with the 
corresponding primary antibodies for 4 h. The horseradish 
peroxidase‑conjugated goat anti‑rabbit or anti‑mouse 
IgG  (Stressgen Biotechnologies Corporation, Victoria, 
BC, Canada) was used as second antibodies. Following 
incubation with the primary and secondary antibodies, the 
enhanced chemiluminescence kit (GE Healthcare, British) 
was employed to detect the signals. To verify equal loading 
of protein, the blots were reprobed with primary monoclonal 
antibody against β‑actin (Sigma‑Aldrich Company, USA).

Statistical analysis
All the data were analyzed using a statistical software 
package  (SPSS for Window, Version  13.0, spss Inc., 
Chicago, IL, USA). For membrane translocation, the ratio of 
cPKCβII (band density in particulate/bands densities in both 
particulate and cytosol) in the Control group was expressed 
and normalized as 100%. The data from other group were 
expressed as a percentage of that from the control group. 
For protein expression level, the protein ratio (band density 
of protein/band density of β‑actin) was also expressed as 
100% in the control group. Measurement data were presented 
as mean  ±  standard deviation (SD). Comparisons were 
performed using one‑way analysis of variance (ANOVA) 
with post‑hoc analysis (LSD) and independent‑samples t‑test. 
In addition, bivariate correlation analysis was performed. 
A P < 0.05 was regarded as statistically significant.

Results

Subject characteristics
A total number of 60 patients (30 CHD, 30 CHD + AS) with a 
mean age of 47.2 ± 12.1 years (range 20–71 years) and a mean 
dialysis period of 42.7 ± 17.8 months (range 5–84 months) were 
included in this study. Control group consisted of 10 men and 
10 women. CHD group consisted of 18 men and 12 women; 
the mean age was 47.3 ± 11.9 years and average dialysis period 
was 40.3 ± 18.0 months. CHD + AS group consisted of 19 
men and 11 women; the mean age was 47.2 ± 12.5 years and 
average dialysis period was 45.0 ± 17.7 months. There was 
no significant difference between CHD and CHD + AS group 
in terms of age, sex ratio, dialysis duration, smoking, body 
mass index , Kt/V, Hb, serum creatinine, blood urea nitrogen, 
triglyceride  (TG), total cholesterol  (TC), etc.,  [Table  1]. 
Patients were not included in the study if they had heart 
failure, a recent acute coronary event, cancer, autoimmune 
disease, and active infection. A standard questionnaire was 
used for every participant to obtain systematic information 
regarding conventional cardiovascular risk factors, including 
hyperlipidemia, hypertension, diabetes, and family history of 
cardiovascular disease.
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As a normal control group, age‑ and gender‑matched, 30 
healthy individuals (15 females and 15 males) were enrolled 
in this study.

Hydrogen sulfide concentration in chronic hemodialysis 
and chronic hemodialysis + atherosclerosis patients
As shown in Figure  1, plasma H2S level in CHD 
patients was significantly lower than the control group 
(P < 0.05). Meanwhile, the plasma H2S level in CHD + AS 
group was significantly lower than that in CHD group 
(P < 0.05).

Conventional protein kinase CβII activation in 
chronic hemodialysis and chronic hemodialysis + 
atherosclerosis patients
Compared with the control group, the membrane 
translocation  (activation) of cPKCβII in CHD group 
showed an increase, and the increase of cPKCβII membrane 
translocation in CHD + AS group more obvious (Figure 2, 
P < 0.05).

Correlations between hydrogen sulfide concentration 
and conventional protein kinase CβII activation in 
chronic hemodialysis + atherosclerosis patients
In CHD  + AS patients, the bivariate correlation analysis 
showed that cPKCβII activation was negatively correlated 
with plasma H2S (r = −0.970, P = 0.000). No correlation with 
age, gender, dialysis duration, serum TG, TC, smoking, and 
hypertension [Table 2].

Discussion

Chronic kidney disease (CKD) is associated with accelerated 
cardiovascular risk. The prevalence of cardiovascular disease 
is 10–20  times greater in patients with CKD compared 
with people with normal kidney function.[14] Data from 
prospective studies demonstrated that cardiovascular 
diseases remain the most common cause of morbidity 
and mortality in patients with ESRD receiving dialysis, 
accounting for 40%.[15] AS is associated with the increase 
of the IMT, and eventually leading to luminal obstruction 
with consequent ischemic events, such as myocardial 
infarction and stroke. Lindner et  al. confirmed that AS 
was the main cause of cardiovascular disease in patients 
with CKD, and its progression was accelerated by 
long‑term dialysis.[16] Subsequent investigations elucidated 
abnormal atherosclerotic pathology in patients with CKD 
may be classified as AS, arteriosclerosis, and vascular 
calcification[17-20] Recent evidence further suggested that 
there is an increased incidence and accelerated progress 
of AS in patients with ESRD receiving dialysis compared 
with that of the conventional atherosclerotic cardiovascular 
disease.[21]

Hydrogen sulfide is an endogenous gas with modulating 
actions,[22] which has been proposed as an antioxidant due to 
its ability to protect against oxidative stress and to react with 
oxidized thiols forming hydrodisulfide.[23] H2S is synthesized 
from L‑cysteine by two pyridoxal‑5’‑phosphate‑dependent 
enzymes, cystathionine γ‑lyase  (CSE) or cystathionine 
β‑synthase (CBS).[24] CBS activity is predominant in H2S 
synthesis in the central nervous system whereas CSE is the 
major H2S synthesis enzyme in the cardiovascular system.[25] 
A variety of studies have shown the physiological and 
pathophysiologic functions, including regulation of BP,[26] 
renal damage,[27] and neurodegenerative diseases.[28,29] H2S 
can decrease the cardiovascular risk through protecting the 
L‑NAME‑induced hypertensive rats against liver injury via 

Table 1: Characteristics of both study groups

Items CHD group 
(n = 30)

CHD + AS 
group 

(n = 30)

t/χ2 
value

P

Age (years) 47.3 ± 11.9 47.2 ± 12.5 0.021 0.983
Gender (male/female) 18/12 19/11 0.071 0.791
Dialysis duration 

(months)
40.3 ± 18.0 45.0 ± 17.7 1.021 0.311

BMI (kg/m2) 23.5 ± 2.3 23.1 ± 1.4 0.888 0.378
Smoking, n (%) 6 (0.2) 7 (23.3) 0.098 0.754
Hypertension, n (%) 16 (53.3) 12 (40.0) 1.071 0.301
SBP (mmHg) 140.6 ± 7.6 142.9 ± 11.1 0.911 0.366
DBP (mmHg) 80.5 ± 7.4 82.9 ± 5.8 1.406 0.165
Kt/V 2.3 ± 0.3 2.4 ± 0.3 0.769 0.445
Hemoglobin (g/L) 115.7 ± 8.1 119.3 ± 9.0 1.630 0.108
Albumin (g/L) 33.9 ± 2.2 34.9 ± 3.5 1.289 0.202
Creatinine (µmol/L) 885.1 ± 103.7 905.3 ± 101.8 0.763 0.449
BUN (mmol/L) 24.3 ± 5.7 23.8 ± 4.4 0.385 0.702
TG (mmol/L) 1.44 ± 0.61 1.30 ± 0.71 0.792 0.431
TC (mmol/L) 3.90 ± 1.02 3.92 ± 0.81 0.083 0.934
LDL‑C (mmol/L) 2.11 ± 0.49 2.21 ± 0.57 0.767 0.446
RASI, n (%) 26 (86.7) 26 (76.7) 1.002 0.317
CCB, n (%) 28 (93.3) 25 (83.3) 1.456 0.228
β‑blocker, n (%) 4 (13.3) 8 (23.3) 1.002 0.317
CHD: Chronic hemodialysis; BMI: Body mass index; SBP: Systolic 
blood pressure; DBP: Diastolic blood pressure; BUN: Blood urea 
nitrogen; TG: Triglyceride; TC: Total cholesterol; LDL‑C: Low‑density 
lipoprotein cholesterol; CCB: Calcium channel blocker; RASI: Renin 
abguitensin system inhibitor; AS: Atherosclerosis.

Figure 1:  The hydrogen sulfide (H2S) concentration in control, chronic 
hemodialysis  (CHD) and CHD  +  atherosclerosis  (AS) group. The 
plasma H2S contents of the control, CHD and CHD + AS group were 
measured with a sulfide sensitive electrode (∗P < 0.05 vs. control 
group; †P < 0.05 vs. CHD group).
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NO/endothelial NO synthase pathway.[30] The deficiency 
of H2S was involved in the pathogenesis of AS,[31,32] and 
the CSE/H2S pathway participates in the development and 
progression of AS in apolipoprotein E knock‑out mice.[33] It’s 
worth noting that the low blood level of H2S was observed 
in hemodialysis patients,[5] and this declining trend may 
correlate to the prevalence of hypertension and AS, which 
are important factors influencing the high cardiovascular 
mortality present in CKD patients. Meanwhile, in accordance 
with our previous study,[6] we also found that the decrease 
of plasma H2S in CHD patients and this decrease was more 
significant in CKD patients with AS, which prompted that 
decrease of H2S might be an important cardiovascular risk 
factor in CHD patients with hemodialysis.

Protein kinase C is a family of serine/threonine kinase 
comprised of 10 isoforms, they differ in requirement of 
Ca2+ and phospholipids for activation, and has a key role in 
many cellular functions via signal transduction pathways.[34] 
cPKCβII belongs to the conventional subgroup of the PKC 
family, and is an important component of the signal 
transduction pathways response to hypoxic or ischemic 

stimulation and contribute significantly to the pathogenesis of 
stroke, cardiovascular disease[35] and diabetic nephropathy.[36] 
Of note, the deficiency of cPKCβII in mice results in a 
significant reduction in the progression of AS.[10] Moreover, 
there is an increasing interest in developing cPKCβII 
inhibitor for the therapy of AS‑associated diseases including 
diabetes and cardiovascular diseases, and challenges will be 
posed to raise prospects for future therapeutics. Pigs treated 
orally with a cPKCβII inhibitor RBX have a significantly 
better recovery of myocardial contractility and myocardial 
performance 3 months after infarction injury compared to 
vehicle‑treated pigs.[37] In obesity or hyperlipidemia‑induced 
AS mice, the cPKCβII inhibitor in combination with 
SOC, can help reduce fat accumulation, improve glucose 
tolerance, decrease hepatosteatosis and suppress foam cell 
formation.[38] Meanwhile, cPKCβII inhibitor was helpful 
to reduce damage secondary to endothelial dysfunction or 
VSMCs proliferation in patients with AS due to long‑term 
smoking, hypertension or diabetes.[37,39] Therefore, cPKCβII 
specific inhibitors have been clinically investigated on 
AS‑associated diseases.[40] Nevertheless, treatment with 
the cPKCβII inhibitor, ruboxistaurin, did not significantly 
change endothelium‑dependent or endothelium‑independent 
vasodilation or blood‑based markers of inflammation, 
fibrinolysis, endothelial damage, and oxidative stress in 
either diabetic or healthy subjects.[41] It is supposed that 
the therapeutic effects of cPKCβII inhibition in diabetic 
patients may be mediated through different and endothelial 
cell‑independent mechanisms. Based on these studies 
above, and because that the hallmark of PKCs activation 
is its reversible translocation to the plasma membrane, we 
detected the cPKCβII membrane translocation of PBMCs 
in CHD patients with or without AS in this study. We found 
the activation of cPKCβII was also involved in the process 
of AS in CHD patients with hemodialysis.

A study from Pan et al. prompted that H2S preconditioning 
can activate PKCs in cardiomyocytes via different 

Table 2: Correlation coefficients for cPKCβII and other 
variables in CHD + AS patients

Variables r P
H2S −0.970 0.000
Age −0.334 0.072
Dialysis durations 0.074 0.697
SBP −0.171 0.367
DBP 0.263 0.136
TG 0.136 0.475
TC 0.106 0.576
LDL‑C 0.162 0.394
SBP: Systolic blood pressure; DBP: Diastolic blood pressure; 
TG:  Triglyceride; TC: Total cholesterol; LDL‑C: Low‑density 
lipoprotein cholesterol; H2S: Hydrogen sulfide; cPKCβII: Conventional 
protein kinase CβII; CHD: Chronic hemodialysis; AS: Atherosclerosis.

Figure  2: The membrane translocation of conventional protein kinase CβII  (cPKCβII) in control, chronic hemodialysis  (CHD) and 
CHD + atherosclerosis (AS) group. (a) The protein contents in cytosolic and particulate fraction of PBMCs were tested by Western blotting; 
(b) Quantitative analysis showed that cPKCβII membrane translocation in CHD  +  AS group increased significantly compared with CHD 
group (∗P < 0.05 vs. Control group; †P < 0.05 vs. CHD group).

ba
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signaling mechanisms, and protect the heart against 
ischemia‑reperfusion insults partly by ameliorating 
intracellular Ca2+  handling.[42] Similarly, in our present 
study, we found that the cPKCβII activation was negatively 
correlated with plasma H2S in CHD + AS patients.

In summary, these findings in this study suggest a possible 
linkage between H2S metabolism and cPKCβII activation, 
which may contribute to the development of UAAS in CHD 
patients.
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