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Abstract

Computational prediction of RNA-protein complex 3D structures includes two basic steps:

one is sampling possible structures and another is scoring the sampled structures to pick

out the correct one. At present, constructing accurate scoring functions is still not well solved

and the performances of the scoring functions usually depend on used benchmarks. Here

we propose a pair-conformation-dependent scoring function, 3dRPC-Score, for 3D RNA-

protein complex structure prediction by considering the nucleotide-residue pairs having the

same energy if their conformations are similar, instead of the distance-only dependence of

the most existing scoring functions. Benchmarking shows that 3dRPC-Score has a consis-

tent performance in three test sets.

Introduction

RNA-Protein interactions are widespread in cells [1–7]. For understanding these interactions,

3D structures of RNA-protein complexes are necessary. However, at present it’s still difficult

to solve 3D RNA-protein complex structures by experimental methods [8, 9]. The number of

3D protein/RNA monomer structures is much larger than that of 3D RNA-protein complex

structures in Protein Data Bank (PDB) [10]. So some computational methods to predict the

3D structures of RNA-protein complexes from protein and RNA monomer structures have

been developed [11–17].

Prediction of 3D RNA-protein complex structures includes two key steps: sampling and

scoring. Sampling means constructing possible models of 3D complex structure (decoys) from

3D monomer structures. Scoring is picking out the correct models from the decoys by using a

scoring function. For RNA-protein complex structure prediction, some scoring functions have

been proposed, such as DARS-RNP and QUASI-RNP [12], DECK-RP[15], ITScore-PR [18]

and so on [14, 19–25]. The scoring function DARS-RNP and QUASI-RNP [12] not only de-

pended on the distance between residue and nucleotide of a pair but also their relative orienta-

tion. The scoring function ITScore-PR is a distance-dependent statistical potential and uses an

iterative method to avoid the problems of the reference states. The scoring function DECK-RP

is also a distance-dependent statistical potential and is included in our program of 3D RNA-

protein complex structure prediction 3dRPC [15]. DECK-RP was constructed based on the
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protein-protein scoring function DECK [26] and it also combined the advantages of the two

existing potentials, Li’s potential [14] and DARS-RNP [12], including the environment (sec-

ondary structure) information of the nucleotide-residue pairs. DECK-RP also used a reference

state with a decoy-based component and a mol-fraction corrected component. Although these

improvements, the distance-dependent statistical potentials are not very accurate in the sense

that the energy of an amino acid pair or an amino acid-nucleotide pair cannot be accurately

defined by only using the relative distance between the partners of the pair. Both the relative

distance and orientation of them, i.e., the pair conformation, are needed (see more discussions

in the discussion section). Therefore, it is more reasonable to use the conformations of an amino

acid pair or an amino acid-nucleotide pair as a metric to construct its statistical potential.

Here we propose a novel score function 3dRPC-Score based on statistical potential that

uses the conformations of nucleotide-residue pairs as statistical variables, i.e., the energy of a

nucleotide-residue pair depends on its conformations [27]. The types of conformations of a

nucleotide-residue pair are classified by using the relative RMSD (Root Mean Square Devia-

tion) between the conformations. On the one hand, 3dRPC-Score is different from widely

used distance-dependent statistical potential like DECK-RP and ITScore-PR; On the other

hand, it uses only one variable (RMSD) instead of two variables (distance and orientation) as

used in DARS-RNP and QUASI-RNP [12]. 3dRPC-Score are tested on three RNA-protein

unbound docking benchmarks provided by Huang and Zou [18, 28] and Perez Cano et al [29],

and it gives a consistent performance on these different test sets.

Method

Training and testing datasets

Training set I. A decoy dataset is needed to train the parameter in our statistical potential.

For this we used the bound-docking decoy set provided by Huang et al[15]. From it we

removed the structures that exist in test sets and 96 native RNA-protein complexes are

remained in the training set (S1 Table). For each native protein-RNA complex in the training

set, 1000 bound-docking decoy structures were created by using RPDOCK [15].

Test set. We test 3dRPC-Score in three RNA-protein unbound docking datasets. The first

test set was constructed by Huang and Zou [28]. For each target, 1000 decoy structures were

created by RPDOCK [15]. There are 72 RNA-protein complexes in this test set, including 49

easy targets, 16 medium targets and 7 difficult targets, which are classified based on the interface

RMSD (IRMSD) and the percentage of native contacts in the unbound structures [28] (S2

Table). The second test set was also that constructed by Huang and Zou [28] but the 1000 decoy

structures of each target were generated by ZDOCK [30]. The third test set is from Perez Cano

et al [29]. From it we removed the same structures in training sets and the targets containing

modeled structures and finally 64 targets remained in it (S3 Table). For each target in this test

set, 1000 decoy structures were generated by RPDOCK [15]. Based on the IRMSD between

native and unbound structures [29], the targets of this test set can be divided into three catego-

ries: easy (IRMSD<2.5Å), medium (2.5Å�IRMSD�5Å) and difficult (IRMSD>5Å). There are

46 easy targets, 11 medium targets and 7 difficult targets. Using this standard to Zou’s test set, it

has 58 easy targets, 9 medium targets and 5 difficult targets. Therefore, Perez Cano’s test set is

more difficult than Zou’s in this sense.

Extracting standard nucleotide-residue pairs

3dRPC-Score is a statistical potential that depends on the conformations of nucleotide-residue

pairs. A nucleotide-residue pair is defined as a pair of nucleotide and residue whose center dis-

tance is less than 10 Å. The conformations of various nucleotide-residue pairs were extracted
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from the structures of ribosomes. For this we selected the X-ray crystal structures of ribosomes

from PDB that have a resolution less than 3 Å and the sequence identity is<30% (S4 Table).

There are 80 (20×4) types of nucleotide-residue pairs since there are 20 kinds of amino

acids and four kinds of nucleotides. By using the k-means clustering method, the conforma-

tions of each nucleotide-residue pair are clustered into 10 classes based on their relative

RMSDs. Thus, we get 800 conformational classes. The pair conformations in each class are

similar to each other (see Discussions) and so we use the center conformation of each class as

standard nucleotide-residue pair to represent the pairs in this class.

Building the statistical potential

The pairs in each class have similar conformations and so they can be considered to have the

same energy. Therefore, the statistical potential can be written as:

EijðCÞ ¼ � ln
PijðCÞ

PiPj � Pv

 !

ð1Þ

In which Pij(C) is the occurrence probability of the pair of i-type nucleotide and j-type resi-

due in class C; Pi(Pj) is the probability of nucleotide i (residue j) in the interface. Pij(C), Pi and

Pj are from the statistics of the selected ribosome structures. We determine whether a nucleo-

tide/residue is in the interface based on the solvent accessible area. If the solvent accessible

area of a nucleotide/residue is different for monomer and complex, the nucleotide/residue is

in the interface. And we used AMBER14 to calculate the solvent accessible area[31]. Pv is the

probability of class C in the whole conformational space of nucleotide-residue pairs in ideal

state. In ideal state, each class of the nucleotide-residue pairs has the same probability in con-

formation space and so we have from Eq (1)

EijðCÞ ¼ � ln
PijðCÞ
PiPj

 !

þ constant ð2Þ

where the constant = lnPv is less than 0 since Pv is a constant and less than 1.

Training the constant in the scoring function

To determine the constant in Eq (2), we ranked the training set I by using 3dRPC-Score with

different values of the constant (Fig 1). It was found that when the constant is larger than -3

the success rate is very low but when the constant is less or equal to -3 the success rate becomes

very high. The reason for this dramatic change will be discussed in the “Discussions” section.

The scoring function gets the best performance when the constant is set as -4. Therefore, the

constant was set as -4 in this work.

Scoring RNA-protein complex

To evaluate the 3D structures of a target RNA-protein complex, the nucleotide-residue pairs

are extracted from the complex and their all-atom RMSDs in relative to the standard pairs are

calculated, respectively. The energy of a pair is set as that of the standard pair that has the mini-

mum RMSD value in relative to it. The energy of the target complex is the sum of the energy of

all the pairs.

E ¼
P

complexEijðCÞ ð3Þ
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Results

To test the performance or success rate of 3dRPC-Score, we benchmark it on three unbound

docking decoy datasets. To compare the performance with other scoring functions, we also

give the results of DECK-RP[15] and ITScore-PR [18] since these two scoring functions have

compared with other existing scoring functions and performed better than the latter. Here it is

called a success prediction if the score function can pick out a near-native structure. A near-

native structure is defined as a decoy structure who has a ligand RMSD (LRMSD) less than 10

Å from the native structure. Here RNAs in RNA-protein complexes are considered as ligands.

Test on the benchmark constructed by Huang and Zou using RPDOCK

The RNA-protein docking benchmark constructed by Huang and Zou using RPDOCK

includes 72 complexes [18, 28]. The decoy sets without near-native decoys are removed, and

50 decoy sets are left. The performance of 3dRPC-Score, ITScore-PR and DECK-RP are

showed in Fig 2. For the top 1 prediction, the success rates of ITScore-PR and 3dRPC-Score

Fig 1. Success rates of 3dRPC-Score over the training set for different values of the constant lnPv in Eq (2). Pv is the probability of class C in the

whole conformational space of nucleotide-residue pairs in ideal state. Since the nucleotide-residue pairs are clustered into 10 classes, Pv = 1/10 or ln(Pv)�

-2.3 and so the success rate has a dramatic change between -2 and -3.

https://doi.org/10.1371/journal.pone.0174662.g001
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reach 46% and DECK-RP is 36%. Between top2 and top10 predictions the performance of

ITScore-PR is slightly better than 3dRPC-Score while that of 3dRPC-Score is better than DECK-

RP. For example, for top 10 predictions, the success rates of 3dRPC-Score, ITScore-PR and

DECK-RP are 60%, 64% and 54%, respectively. After top 10, the performances of 3dRPC-Score

and ITScore-PR are similar and are slightly better than DECK-RP. In general, on this bench-

mark 3dRPC-Score and ITScore-PR perform similarly and better than DECK-RP.

The success rates in three levels of difficulties (easy, medium and difficult cases) are shown

in S1 Fig. For easy cases, the performances of 3dRPC-Score and ITScore-PR are similar and

are better than DECK-RP; For medium cases, DECK-RP is better than 3dRPC-Score and

ITScore-PR for top 2 predictions and ITScore-PR is better than 3dRPC-Score and DECK-RP

when the number of prediction is larger than 3. For difficult cases, all the three scoring func-

tions failed.

Fig 3 shows 3dRPC-Score-LRMSD plots of the decoys of selected RNA-protein complexes.

Among these four RNA-protein complexes, 3LWR, 2ZUE and 3FOZ are the cases that

3dRPC-Score successfully pick out the near-native structures while 1JBS is not. Like the other

Scoring function [12, 18], the score-LRMSD plots show funnel-like shapes in the range of

Fig 2. Success rates of three scoring functions on the benchmark constructed by Huang and Zou [18, 28] using RPDOCK[15].

https://doi.org/10.1371/journal.pone.0174662.g002
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LRMSD< 20 Å for the first three complexes. It is interesting to note that in these three cases

the near-native structures have much lower scores or “energies” than non-native structures.

For the last complex (1JBS) the near-native structures do not have the lowest scores and so

3dRPC-Score failed to pick them out.

Test on the benchmark constructed by Huang and Zou using ZDOCK

[18]

In this test set, we also removed the decoy sets without near-native structures, and 64 decoy

sets were remained. The success rates of 3dRPC-Score, ITScore-PR and DECK-RP on this test

set are showed in Fig 4. In this test set ITScore-PR performs at least 5% better than 3dRPC-

Score and 3dRPC-Score better than DECK-RP. For examples, for top 1 prediction, the success

rate of ITScore-PR is 40.6%, 3dRPC-Score is 34.4% and DECK-RP is 28.1%. For top 10 predic-

tions, the success rate of ITScore-PR is 57.8%, 3dRPC-Score is 50%, and DECK-RP is 45.3%.

The success rates in three levels of difficulties (easy, medium and difficult cases) in this

test set are shown in S2 Fig. For easy cases, the performance of ITScore-PR is better than

3dRPC-Score and DECK-RP; For medium cases, ITScore-PR is better than 3dRPC-Score and

Fig 3. Score-LRMSD plots of the decoys of selected RNA-protein complexes.

https://doi.org/10.1371/journal.pone.0174662.g003
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DECK-RP when the number of prediction is less than 30. For difficult cases, all the three scor-

ing functions failed for small number of prediction.

Fig 5 shows the top 1 predictions of three RNA-protein complexes comparing with their

native structures by using 3dRPC-Score. Among them, 1FFY is “easy” case, 2ZZM “medium”

and 1H3E “difficult”. For the first two (1FFY and 2ZZM) complexes the top 1 predictions

completely agree with the native structures. For the third complex, the top 1 predicton is not

the near-native structure because the larger conformational change of the protein.

Test on the benchmark provided by Perez Cano et al and created using

RPDOCK

This test set includes 64 RNA-protein complexes provided by Perez Cano et al[29], and the

decoy structures were generated by RPDOCK [15]. There are 43 decoy sets that include near-

native structures and are used to test 3dRPC-Score. The results of 3dRPC-Score, ITScore-PR

and DECK-RP are showed in Fig 6. The success rates of 3dRPC-Score and DECK-RP are close

to each other and are better than ITScore-PR when the number of prediction is not larger than

20. In particular, for top 1 prediction, the success rate of DECK-RP is 20.9%, 3dRPC-Score is

Fig 4. Success rates of three scoring functions on the benchmark constructed by Huang and Zou [28] using ZDOCK[30].

https://doi.org/10.1371/journal.pone.0174662.g004
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18.6% and ITScore-PR is 11.6%; For top 10 predictions, the performance of 3dRPC-Score and

DECK-RP is still similar (the success rate of DECK-RP are 44.2%, and the success rate of

3dRPC-Score is 41.9%), and they are much better than ITScore-PR (27.9%); When the number

of predictions is larger than 30 the performance of ITScore-PR is approaching to 3dRPC-Score

and DECK-RP.

The success rates in three levels of difficulties (easy, medium and difficult cases) in this test

set are shown in S3 Fig. For easy cases, the performances of 3dRPC-Score and DECK-RP are

better than ITScore-PR; For medium and difficult cases, the performances of the three scoring

functions have no much differences.

Discussions

As shown above, 3dRPC-Score has a consistent performance in different test sets. On Perez

Cano’s test set the performance of 3dRPC-Score is similar to DECK-RP but better than

ITScore-PR, on Zou’s test set constructed by RPDOCK it is similar to ITScore-PR but better

than DECK-RP and on Zou’s test set constructed by ZDOCK it is worse than ITScore-PR but

better than DECK-RP. We also benchmarked the three scoring functions by defining a near-

Fig 5. The top 1 predictions of three RNA-protein complexes comparing with their native structures

by using 3dRPC-Score. The RNA and protein in native structure is in yellow and green, respectively. The

RNAs and proteins in top 1 predictions are in magenta and orange, respectively. The protein RMSDs between

bound and unbound states of 1FFY, 2ZZM and 1H3E are 1.367Å, 1.857 Å and 9.444Å, respectively. For

1FFY and 2ZZM, their protein conformations are similar in bound and unbound states and 3dRPC gets the

near-native structure in top 1 prediction for them. For 1H3E, the bound and unbound conformations of the

protein have a large change and 3dRPC-Score fails to get the near-native structure in top 1 prediction.

https://doi.org/10.1371/journal.pone.0174662.g005
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native structure as a decoy structure who has a LRMSD less than 6 Å from the native structure

and the results do not have significant changes (see S4 Fig).

3dRPC-Score is a statistical potential that depends on the conformations of nucleotide-resi-

due pairs, i.e., similar pair conformations are assumed to have the same energy. As shown

above, we clustered the conformations of each type of nucleotide-residue pair into 10 classes

by using the k-means clustering method based on their relative RMSDs. The reason of using

10 classes is to guarantee that each class has enough pair conformations for statistics. In partic-

ular we require that the numbers of pair conformations in most classes are larger than 100. In

fact, only 54 out of 800 classes have conformations less than 100 when the conformations of

each type of nucleotide-residue pair are clustered into 10 classes (Fig 7).

Furthermore, we found that the conformations in each of 800 classes were similar. To see

this, it is noted that two conformations of a nucleotide-residue pair usually are similar if their

relative RMSD is less than 3 Å (Fig 8). We performed a statistics of the distribution of the larg-

est RMSD values of the pair conformations of 800 classes in relative to their center conforma-

tions and found that the distribution was as following: 6 classes have the largest RMSD

between 0Å and 1Å, 33 classes between 1Å and 2Å, 593 classes between 2Å and 3Å, and 168

Fig 6. Success rates of three scoring functions on the benchmark provided by Perez Cano et al [29]and created using RPDOCK[15].

https://doi.org/10.1371/journal.pone.0174662.g006
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classes between 3Å and 4Å. This shows that in most classes the largest RMSDs are less than 3

Å. Of course, there are also about 3/16 classes in which the largest RMSDs are between 3Å and

4Å. However, these largest-RMSD pair conformations are only small portion of each class. Fig

9 gives the distribution of RMSDs of nucleotide-residue conformations in relative to their cen-

ter conformations of 800 classes. It shows that only a very small portion of the conformations

have RMSD larger than 3 Å. Therefore, the conformations of the pairs in each of the 800 clas-

ses can be considered to be similar to their center conformations.

It is noted that in DECK-RP and ITScore-RP the energy of a nucleotide-residue pair only

depends on the distance between the nucleotide and residue but not their relative orientation

while in 3dRPC-Score the energy of a nucleotide-residue pair depends on the conformation of

the pair. Since the conformations of each type of nucleotide-residue pair are clustered into 10

classes according to relative RMSDs, in each class the distance and orientation between the nucle-

otide and residue are not distributed arbitrarily but in a limited range (also see Fig 9). For exam-

ples, the relative distances of the nucleotide and residue in a class may have one or two peaks (Fig

10, upper); Furthermore, the nucleotide and residue of a pair may have different orientations in

two of the 10 classes. This can be seen clearly by comparing the center conformations of two

Fig 7. The distribution of number of conformations in each of 800 classes of nucleotide-residue pairs.

https://doi.org/10.1371/journal.pone.0174662.g007
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classes of a nucleotide-residue pair whose nucleotide and residue have almost the same distances

but their orientations are completely different (Fig 10, lower). Therefore, 3dRPC-Score is differ-

ent from the distance-dependent potential DECK_RP and ITScore-PR in that it considers both

distance and orientation between the subunits of a nucleotide-residue pair.

In constructing the statistical potentials of nucleotide-residue pairs (Eq (1)), only one

parameter is needed to be determined through training, i.e. Pv or lnPv in Eq (2). Since we clas-

sified the nucleotide-residue pairs of each type into 10 classes, theoretically we should set lnPv

as ln(1/10) = -ln10 (about -2.3). It is interesting to note from Fig 1 that the success rate indeed

has a sharp transition when the parameter changes from -2 to -3. However, since the nucleo-

tide-residue pair information of 3dRPC-Score is from available native RNA-protein complexes

in PDB, the structures of the nucleotide-residue pairs cannot cover the whole conformational

space. Therefore, it may not get the best performance by using the theoretical value directly for

the parameter. It is better to set the parameter through training in a bound-docking dataset.

We indeed found that the best performance is achieved when lnPv = −4, which is not far from

-2.3.

It is noted that the constant in Eq (2) is in fact a contact potential, i.e., the potential only

depends on contact number but not on contact types and conformations. It’s interesting to use

only the "constant" part of 3dRPC-Score to do the benchmarks. The results on the three test

sets are shown in Fig 2, Fig 4 and Fig 6, respectively. It is clear that the “constant” potential per-

forms very differently on the three test sets. On Perez Cano’s test set, its performance is similar

to 3dRPC-Score and DECK-RP; On Zou’s test set constructed by RPDOCK and ZDOCK, its

performance is worse than 3dRPC-Score and ITScore-PR but better than DECK-RP, at least

for top 10 predictions. Therefore, the “constant” part of 3dRPC-Score plays an important role

but does not dominate the results in general.

Finally, to show the advantage of 3dRPC-Score in contrast to ITScore-PR and DECK-RP,

it needs to note that the three scoring functions are constructed by using different ways.

Fig 8. Similarity of two conformations of a nucleotide-residue pair with different relative RMSD

values.

https://doi.org/10.1371/journal.pone.0174662.g008
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3dRPC-Score and DECK-RP were constructed by using different variables as shown above but

the similar way, using a statistical potential based on Boltzmann’s formula in relative to a refer-

ence state that were trained to make the scoring functions have the best (but may not necessar-

ily the most accurate) performance on the training set. ITScore-PR used the similar statistical

potential based on Boltzmann’s formula but avoided to use the reference state. Instead it used

an iterative method to make the atom-pair distribution functions approach to those of the

native structures in the training set. Therefore, it is expected that ITScore-PR is good at picking

out the near-native structures that are close to their native states (the near-native structures of

higher quality). This can be seen from S5 Fig, which are the RMSD distributions of top 1 pre-

dictions of the three scoring functions in the three test sets. This may explain why that the suc-

cess rates of ITScore-PR is much lower on Perez Cano’s test set because the near-native

structures in Perez Cano’s test sets distributes much more toward to the larger RMSD end

(10Å) (the end of lower quality) than those of two Xiaoqin Zou’s test sets (S6 Fig). This differ-

ence in RMSD distributions may be due to that the average contact number (or interface sur-

face) per target in Perez Cano’s test set is lower than that in Zou’s test set (S7 Fig). In this case

Fig 9. The distribution of RMSDs of nucleotide-residue conformations in relative to their center conformations of 800 classes.

https://doi.org/10.1371/journal.pone.0174662.g009
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the performances of 3dRPC-Score and DECK-RP are almost the same as the constant poten-

tial. The reason may be that in this case most of the near-native structures have larger RMSDs

in relative to the native states or looser contacts and so the energies of nucleotide-residue pairs

are not very sensitive to their types and conformations and the constant part of 3dRPC-Score

or the similar part (reference state) of DECK-RP dominates. This suggests that ITScore-PR is

good for the decoys sets with near-native structures of higher quality while 3dRPC-Score and

DECK-RP is good for the decoys sets with near-native structures of lower quality. Further-

more, since the conformation of a nucleotide-residue pair is more accurate than the distance

between the pair partners in defining its energy, 3dRPC-Score should perform better than

DECK-RP in general. This is clearly shown by Fig 2, Fig 4 and Fig 5 or S5 Fig.

Conclusion

In summary, we constructed a novel pair-conformation-dependent scoring function 3dRPC-

Score for evaluating 3D RNA-protein complex structures. Using conformations of nucleotide-

residue pairs, the statistical potential takes account of both distance and orientation between

the residue and nucleotide of a pair and this is more reasonable for constructing the statistical

potential. 3dRPC-Score was tested in three different unbound docking decoy sets, and com-

pared with DECK-RP and ITScore-PR. The performances of three scoring functions are differ-

ent in different decoy sets. In particular, our results show that ITScore-PR is good for the

decoys sets with near-native structures of higher quality while 3dRPC-Score is good for the

decoys sets with near-native structures of lower quality. This suggests that combining the

ranked results of these two scoring functions may give more accurate predictions. Further-

more, in the three test sets 3dRPC-Score has a consistent performance. These results indeed

indicate the importance of considering both distance and orientation between the residue and

nucleotide of a nucleotide-residue pair for statistical potentials.

Fig 10. Distribution of pair conformations. Upper: the distribution of the relative distances between the

nucleotide and residue in class 9 of MET-G pair (left) and class 7 from ASN-U pair; Lower: comparison of two

center conformations of ARG-G (left) and TYR-C (right) pairs whose nucleotide and residue have almost the

same distances but their orientations are completely different.

https://doi.org/10.1371/journal.pone.0174662.g010
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Availability

3dRPC-Score is included in 3dRPC and it can be downloaded at http://biophy.hust.edu.cn/

3dRPC.html.
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