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Nikhat Shaikh2,6, Henning Büttner3, Milagros N. Wong6, Victor G. Puelles6,

Thorsten Wiech7, Richard Flavell8, Tobias B. Huber2,6, Jan-Eric Turner2,6, Stefan Bonn2,5,

Samuel Huber2,4, Nicola Gagliani2,4,9, Hans-Willi Mittrücker2,10, Holger Rohde3,

Ulf Panzer1,2, Christian F. KrebsID
1,2*

1 III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-

Eppendorf, Hamburg, Germany, 2 Hamburg Center for Translational Immunology (HCTI), University Medical

Center Hamburg-Eppendorf, Hamburg, Germany, 3 Institute of Medical Microbiology, Virology and Hygiene,

University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 4 I. Department of Medicine, University

Medical Center Hamburg-Eppendorf, Hamburg, Germany, 5 Institute of Medical Systems Biology, Center for

Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg,

Germany, 6 III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,

7 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 8 Department of

Immunobiology, Yale University, New Haven, Connecticut, United States of America, 9 Department of General,

Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 10 Institute

of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

* c.krebs@uke.de

Abstract

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a

major health burden worldwide. CD4+ T helper cells are involved in the immune response to

S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17

cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections

in humans and mice.

To investigate the role of T cells in severe S. aureus infections, we established a mouse sep-

sis model in which the kidney was identified to be the organ with the highest bacterial load and

abundance of Th17 cells. In this model, IL-17A but not IFN-γwas required for bacterial control.

Using Il17aCre ×R26YFP mice we could show that Th17 fate cells produce Th17 and Th1

cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal

Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression

profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in

Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in

Th17 fate cells in these mice resulted in increased S. aureus tissue loads.

In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infec-

tions and show that T-bet expression by Th17 cells is required for bacterial clearance. While

targeting the Th17 cell immune response is an important therapeutic option in autoimmunity,

silencing Th17 cells might have detrimental effects in bacterial infections.
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Author summary

Staphylococcus aureus is a commensal and opportunistic pathogen that is involved in a

variety of diseases such as skin infection, food poisoning, endocarditis or pneumonia and

sepsis. In particular, in patients with bacterial sepsis, S. aureus causes a high mortality.

Despite progress in medical treatment in general, the survival rates of S. aureus sepsis did

not improve in the last decades. The interaction between adaptive immune system and

this pathogen is a topic of great interest. Infection of mice with S. aureus revealed the high-

est bacterial load and abundance of Th17 cells in the kidney. We could show prominent

T-bet-dependent transdifferentiation of Th17 cells to highly effective anti-bacterial Th1

phenotypes in the kidney. Thus, T-bet is essential for the Th17 to Th1 transdifferentiation

which is required for the control of bacterial infections. Targeting the plasticity of pro-

inflammatory T cell subset is a promising therapeutic strategy to silence detrimental T

cells in autoimmunity while augmenting anti-bacterial T cells in infection.

Introduction

Blood stream infections (BSI) and sepsis are still a major health burden, which despite aggres-

sive antimicrobial therapies account for approximately 5 million deaths every year worldwide

[1,2]. While a broad range of pathogens are able to cause BSI, Gram-positive pathogen Staphy-
lococcus aureus is of particular clinical importance and related to severe courses of bacterial

sepsis [3]. S. aureus is a human pathobiont that, while colonizing the nose of healthy individu-

als, can cause invasive disease, systemic inflammation and death in vulnerable individuals [4].

Unfortunately, the survival rate of S. aureus sepsis has not improved in recent decades [5].

Insights into adaptive immune responses hold promise to provide novel clues for understand-

ing the success of S. aureus as an invasive pathogen.

The immune reaction to invasive infection has been categorized in two states, excessive

inflammation and subsequent immune suppression. The first response to an invading patho-

gen is characterized by a proinflammatory innate immune response that includes activation of

the coagulation system, complement system and activation of neutrophils and platelets [6]. S.

aureus infection triggers the production of antimicrobial peptides such as hBD-3 or RNase7

[7] and activation of granulopoiesis. In this context, activated antigen-presenting cells (APCs)

produce IL-23 which is essential for polarization and maintenance of Th17 cells [8]. The

notion that bacterial virulence factors involved in the resistance of S. aureus to the human

immune system trigger the activation of different T cell subsets [9,10], indicates that the T cell

immune response might play a functional role in bacterial clearance. However, it is important

to preserve efficient anti-bacterial subsets while reducing subsets that promote bacterial sur-

vival in order to control S. aureus infections.

In vitro differentiation assays revealed that presence of S. aureus antigens induce the develop-

ment of IL-17-expressing CD4+ T cells (Th17) [11–13], and in the serum of septic shock patients

IL-17A levels were elevated [14], indicating that bacterial infections might trigger Th17 immune

responses. However, the impact of IL-17A in controlling S. aureus infection in vivo is still contro-

versial [9]. For example, in S. aureus infection models mice with deficient IL-17 signaling had

increased mortality [15] and higher bacterial burden [16,17], while another study showed protec-

tion from tissue-injury with systemic S. aureus infection in IL-17A-deficient mice [18]. IL-17A

and F have been reported to be dispensable in mice for reducing the bacterial burden in systemic

infection, while mucocutaneus infection is controlled by the IL-17 immune response [8]. These
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data indicate differences between local tissue-specific and systemic immune responses to S. aureus
infection. Interestingly, we have recently identified a pathogen-induced generation of tissue-resi-

dent memory cells of the Th17 cell subset (Trm17) in the kidney [19]. These Trm17 cells reside in

the kidney after the infection has been cleared and upon reactivation by inflammatory triggers

can aggravate immune-mediated kidney disease.

Several studies from the past decade indicate that T cell subsets cannot be seen as terminally

differentiated cells, but that T cell polarization could be defined a temporary condition in a

continuum of manifold states. This might hold true particularly for IL-17-producing Th17

cells that display significant plasticity in various models of autoimmune diseases [20–23] and

interaction with commensal bacteria in the intestine [24]. However, little is known about plas-

ticity in host defense against pathogens in systemic infection [25].

In this study, a mouse model of acute S. aureus infection facilitated the investigation of T

cell immune responses to bacterial inflammation in the affected tissue, as S. aureus triggers a

prominent Th17 immune response particularly in the kidney compared to other organs. We

show that plasticity of renal Th17 cells generates a highly effective Th17 cell subset character-

ized by a Th1 cell expression profile that drives bacterial clearance in the kidney. These results

show that T cell plasticity is an important factor in the host reaction to invading pathogens

and highlight a T cell subset with high antibacterial capacities.

Results

S. aureus sepsis induces a prominent Th17 immune response in the kidney

We have recently described the development of tissue-resident memory T cells with a Th17

polarization state after S. aureus infection that contribute to immune-mediated glomerular dis-

ease. Since the T cell response to S. aureus in acute infection remains unclear, we investigated

the immune response to S. aureus bloodstream infection over a period of 10 days (Fig 1A).

First, we measured the bacterial burden of kidneys, spleen and liver at days 0, 3, 6 and 10 after

infection with S. aureus (Fig 1B) and confirmed previous data that the kidney is the organ with

the highest bacterial burden after infection [19]. After identifying the kidney as an important

immunological site of acute S. aureus infection, histological investigation revealed S. aureus
accumulations to be located in the tubulointerstitial area of the kidneys (Fig 1C). Renal pathol-

ogy is characterized by abscess formation, a hallmark of S. aureus infection (Fig 1D). Quantifi-

cation of abscess lesions per kidney section showed an increase in the course of infection (S1A

and S1B Fig). This finding was supported by CD3 and GR1 immunohistochemistry of kidney

sections for the detection of T cells and neutrophils, respectively (S1C and S1E Fig). These cells

accumulated in the course of infection in the tubulointerstitial space as well as in the glomeruli

(S1D and S1F Fig). Since glomeruli were affected, we looked for the integrity of the glomerular

basement membrane that serves as the urine blood barrier. Importantly, we did not find any

immune depositions at the glomerular basement membrane (S1G Fig), arguing against the

manifestation of membranoproliferative glomerulonephritis in this model. To characterize the

T cell immune response during S. aureus infection, we analyzed the cytokine production of

CD4+ T cells from the kidney, small intestine, liver and spleen by intracellular cytokine stain-

ing (Fig 1E and 1F). While IL-17A-production was detected only at very low levels in healthy

mice, S. aureus infection resulted in a continuous increase of the IL-17A-producing population

over time. This accumulation of IL-17A-producing T cells was most pronounced in the kidney

compared to liver, small intestine and spleen. Interestingly, a population of IL-17A and IFN-γ
co-producing CD4+ T cells emerged in the kidney after infection.

We also investigated additional cell types that could contribute as a local source for IL-17A.

γδ T-cells produced IL-17A upon infection with S. aureus. Interestingly, γδ T cells mainly
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express IL-17A and do not show a prominent population of IL-17A and IFN-γ co-producing

cells (S2A–S2C Fig). The examination of innate lymphoid cells (ILCs) in the kidney revealed a

reduction in their relative cell number upon infection and only minor contribution to renal

IL-17A (S2D–S2F Fig).

Fig 1. Tissue-specific Th17 cell response in S. aureus sepsis. (A) Model of S. aureus infection: injection of 108 cfu

into tail vein at day 0 and analysis at indicated time points. (B) Quantification of bacterial load in different organs

during S. aureus infection at indicated time points. (C) Gram staining (D) PAS staining of kidney sections after S.

aureus infection as indicated. (E) Flow cytometry and quantification (F) of IL-17A and IFN-γ producing CD4+ T cells

in different organs after S. aureus infection as indicated (each time point represents the data of n = 3–4 mice,

representative data from one of two independent experiments).

https://doi.org/10.1371/journal.ppat.1010430.g001
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IL-17A-deficient mice show higher bacterial burden

In this model of S. aureus infection, IL-17A and IFN-γ production by CD4+ T cells is very

prominent in the kidney. Therefore, we aimed at investigating the influence of IL-17A and

IFN-γ on bacterial clearance using gene deficient mice. Interestingly, IL-17A-deficient animals

showed increased staining for Gram-positive bacteria (Fig 2A) and had an elevated bacterial

burden (Fig 2B) in the kidney compared to wildtype mice. Flow cytometry confirmed the

absence of IL-17A+ CD4+ T cells in IL-17A-deficient mice (Fig 2C and 2D).

Fig 2. IL-17A-deficient mice show highest bacterial burden in comparison to WT and IFN-γ-deficient mice. (A)

Gram staining of kidney sections from C57BL/6 and IL-17A-deficient mice 10 days after S. aureus infection. (B)

Quantification of bacterial load in kidneys as indicated; bars representing mean; individual mice displayed by dots (�

p<0.05 in Mann-Whitney test). (C and D) Flow cytometry of renal CD4+ T cells at day 10 after S. aureus infection. (E)

Quantification of renal CD11b+ cells of CD45+cells and (F) characterization of renal CD11b+ cells at day 10 after S.

aureus infection (representative for one of three independent experiments). (G) Gram staining of kidney sections from

C57BL/6 and IFN-γ-deficient mice 10 days after S. aureus infection. (H) Quantification of bacterial load in kidneys as

indicated (� p<0.05 in Mann-Whitney test). (I and J) Flow cytometry of renal CD4+ T cells of C57BL/6 and IFN-γ-

deficient mice 10 days after S. aureus infection (pooled data from two independent experiments). Bars representing

mean ± SEM, individual mice displayed by dots; not significant (n.s.), � p<0.05, �� p<0.01, ��� p<0.001, ���� p<0.0001

in Dunnett’s multiple comparison one-way ANOVA analysis.

https://doi.org/10.1371/journal.ppat.1010430.g002
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Analysis of renal CD11b+ cells exhibited a numerical increase in cell numbers in S. aureus
infection (Figs 2E and S2G) but no difference between wildtype or IL-17A-deficient mice. To

further characterize CD11b+ mononuclear phagocytes, we tested a panel of cell surface mark-

ers (Figs 2F and S2H) and identified reduction in MHCII and CD86 expression in IL-17A-

deficient animals in the kidney (S2I Fig). CD11b+ cells in the liver of infected animals did not

display reduction in MHCII and CD86 in IL-17A-deficient mice (S2J–S2N Fig).

In contrast, IFN-γ-deficiency did not influence renal bacteria abundance in histology (Fig

2G) or culture (Fig 2H). Flow cytometry confirmed the absence of IFN-γ+ CD4+ T cells in the

corresponding gene-deficient mice (Fig 2I and 2J) and showed a higher percentage of IL-17A

production by CD4+ T cells. Based on these data, we concluded that IL-17A contributes to the

clearance of bacteria in the kidney while IFN-γ may be dispensable. Furthermore, the Th17

cell amount in IFN-γ-deficient mice is elevated in contrast to WT mice and might be upregu-

lated to combat infection via IL-17A because IFN-γ is missing.

Renal Th17 cells show high plasticity towards a Th1-like phenotype in S.

aureus sepsis

In a time course analysis of S. aureus infection, we identified a population of IL-17A and IFN-

γ co-producing CD4+ T cells that was not detected in a model of experimental glomerulone-

phritis with a strong Th17 cell response [26]. Next, we aimed at better characterizing these co-

producing cells. To answer the question whether IFN-γ -producing cells originate from Th17

cells, we made use of IL-17A fate reporter mice (Il17aCre x R26eYFP) in which T cells that had

produced IL-17A are constitutively marked by YFP expression [27] and investigated cytokine

production of renal YFP+CD4+ T cells by flow cytometry. We detected an increasing number

of YFP+ cells in the course of infection and in particular IL-17A-producing and IFN-γ-produc-

ing cells expanded over time (Fig 3A–3D), indicating that Th17 cells become more flexible

during infection and show plasticity towards a Th1 cell phenotype. Of note, the analysis of

cytokine production of YFP- cells confirmed high IFN-γ production by these cells (Fig 3E and

3F). A combination of indirect immunofluorescence and confocal microscopy revealed the

tubulointerstitial localization of YFP+ cells in the kidney (Fig 3G).

To investigate the presence of immunoregulatory T cells in S. aureus sepsis, we used mice

with a combined reporter system for Th17 cell fate (Il17aCre x R26eYFP) and acute cytokine

expression (IL10eGFP x Il17aKatushka x Foxp3mRFP) (termed fate+) to uncover a possible plastic-

ity of renal Th17 cells into type 1 regulatory T cells (Tr1) defined by IL-10 expression in the

absence of Foxp3 [28]. In the kidney, we measured a small increase of Tr1 cells from the Th17

fate (Tr1exTh17 cells) from day 0 to day 6 after infection (S3A Fig). In the small intestine, the

numbers of Tr1exTh17 cells were found at lower levels compared to the kidney and their num-

bers were stable in the course after infection. This discovery highlights the fact that Th17 cells

can acquire diverse phenotypes over time.

Comprehensive gene expression analysis of Th17 cells in the kidney of

Il17aCre x R26eYFP mice

To investigate the heterogeneity of renal Th17 cells in more detail, we applied single-cell RNA-

sequencing (scRNA-seq) to FACS-sorted CD4+ YFP+ T cells from S. aureus-infected Il17aCre
x R26eYFPmice. Analysis of scRNA-seq data showed eight clusters within the population of

Th17 fate cells in the kidney (Fig 4A), which were annotated according to their gene expres-

sion profile (Fig 4B). We identified one cluster (cluster 3) with the common profile of Th17

cells characterized by the expression of Il17a, Il17f, Rorc and Rora. Clusters 1 and 4 represented

cells in an intermediate cell state, which highly expressed genes linked to bacterial response
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and inflammation such as Plac8 (Placenta specific gene 8), Icos (Inducible T-cell co-stimulator)

and Tnfaip3 (Tumor necrosis factor alpha-induced protein 3). In cluster 8, we identified genes

associated with memory. Interestingly, cells of cluster 5 expressed genes associated with Th1

cells such as Ifng, whereas cluster 2 contained cells with high Ifng expression in combination

with Cxcr3. In line with the flow cytometric data of Th17 cells, scRNA-seq revealed IL17-A

and IFN-γ co-expressing cells (Fig 4C and 4D). While cluster 3 does not include cells expres-

sion only IFN-γ, clusters 2 and 5 show reduced IL-17A positive cells.

To analyze the trajectories of the Th17 cells, we defined cluster 3 with the highest Il17a-expres-

sion as starting point of differentiation and obtained four different curves by slingshot analysis

(S3B Fig). The trajectory from Th17 to Th1-like cells displayed an increasing Th1 score and a

decreasing Th17 score which was among other genes based on the expression of the transcription

factors Rorc and Tbx21, respectively (Fig 4E–4G). Looking at the trajectory of Th17 cells towards

Th1-like cells, the expression of T-bet increased with pseudotime (Fig 4H). Together, these data

indicate the plasticity of bona fide Th17 cells to Th1 phenotypes in S. aureus infection.

Fig 3. Renal Th17 cells show high plasticity to an Th1-like phenotype in S. aureus sepsis. (A) Flow cytometry of

renal CD4+ T cells after S. aureus infection as indicated from Il17aCre x R26eYFP fate reporter mice. (B)

Quantification of YFP positive T cells; bars representing mean, individual mice displayed by dots. (C) Flow cytometry

and (D) Quantification of cytokine producing of YFP positive T cells. (E) Flow cytometry and (F) Quantification of

cytokine producing of YFP negative T cells; (A-F: mean ± SEM, each time point represents the data from n = 4–5 mice,

individual mice represented by dots, representative data for one of two independent experiments). (G)

Immunofluorescence of YFP positive IL-17A fate cells in kidney sections at day 0 and 10 from S. aureus infected

Il17aCre x R26eYFPmice.

https://doi.org/10.1371/journal.ppat.1010430.g003
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T-bet-deficiency affects Th17 to Th1 transdifferentiation in infected

kidneys

Tbx21/T-bet was upregulated in Th17 fate cells that transdifferentiated into Th1 phenotypes.

To evaluate the impact of T-bet on Th17 cell transdifferentiation, we made use of S. aureus-

Fig 4. Comprehensive gene expression analysis of Th17 cells in S. aureus sepsis. (A) UMAP visualization and (B)

Differential gene expression of renal YFP+ CD4+ T cells 10 days after S. aureus infection of Il17aCre x R26eYFP fate

reporter mice (pooled cells from n = 5) analyzed by single cell RNA-sequencing. (C) Il17a and Ifng expression of renal

YFP+ CD4+ T cells 10 days after S. aureus infection of Il17aCre x R26eYFP fate reporter mice (pooled cells from n = 5

mice). (D) Feature plot of Il17a and/or Ifng-expressing cells. (E) Trajectory of Th17 to Th1-like cells and (F) the Th17

and Th1 score over pseudotime; the line was fit to a generalized additive model. (G) Gene expression of the top 50

genes associated with Th17 to Th1-like trajectory at 50 timestamps over pseudotime, especially of (H) Rorc and Tbx21.

https://doi.org/10.1371/journal.ppat.1010430.g004
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infected Il17aCre x R26eYFP x Tbx21-floxmice. In this mouse model, Th17 cells and their

progeny acquire permanent T-bet/Tbx21-deficiency. To compare the transcriptional profiles

of Th17 with and without T-bet, we performed scRNA-seq analysis of FACS-sorted CD4+

YFP+ T cells from Il17aCre x R26eYFP x Tbx21-floxmice at day 10 after S. aureus infection.

Integrating the scRNA-seq data from Tbx21-wildtype and Tbx21-deficient Th17 cells revealed

nine different clusters that were annotated according to their gene expression (Fig 5A). One

cluster of Th1-like cells was almost absent in T-bet-deficient Th17 cells from Il17aCre x
R26eYFP x Tbx21-floxmice (Fig 5B). Gene expression analyses revealed Th17 associated genes

in clusters 3 (Th17_c1) and 4 (Th17_c2) and Th1 associated genes in cluster 5 (Th1-like) and 9

(cytotoxic Th1-like) (Fig 5C and 5D). In addition, Th17 fate cells from Il17aCre x R26eYFP
mice showed a higher Th1 score and Th17 cells from Il17aCre x R26eYFP x Tbx21-flox infected

mice showed a higher Th17 score (Fig 5E).

Fig 5. T-bet-deficiency affects Th17 plasticity to Th1-like ex Th17 cells in infected kidneys. (A) UMAP

dimensional reduction and (B) Cluster abundance of renal YFP+ CD4+ T cells 10 days after S. aureus infection of

Il17aCre x R26eYFP x Tbx21-wildtype (cells pooled from n = 7 mice) and Il17aCre x R26eYFP x Tbx21-flox (cells

pooled from n = 6 mice) mice analyzed by single cell RNA-sequencing. (C) Th17 and Th1 scores in the clusters as

indicated. (D) Comparison and (E) Quantification of Th17 and Th1 scores in cells from Tbx21-flox and

Tbx21-wildtypemice; Wilcoxon test, two sided, ���� p<0.0001. (F) Differential gene expression of the top five genes

most specific for each cluster of renal YFP+ CD4+ T cells 10 days after S. aureus infection.

https://doi.org/10.1371/journal.ppat.1010430.g005
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Th17 cells with T-bet-deficiency might show an arrest in their transdifferentiation to

Th1-like cells. Trajectory analyses using the slingshot algorithm exhibited a trajectory line

from cluster 3 (high Th17 gene profile) to cluster 5 (high Th1 gene profile), which is absent in

Tbx21-deficient cells (S3C Fig). IFNg but also Nkg7 and Ctsw are among the top genes most

exclusively expressed by these cells (Fig 5F). Taken together, this data supports the notion that

Tbx21/T-bet is essential for transdifferentiation of Th17 cells in S. aureus infection to Th1 like

cells.

Th1-exTh17 cells drive bacterial clearance in the kidney

After identifying a population of T-bet-dependent Th17 fate cells by scRNA-seq, we aimed at

understanding the role of these cells in S. aureus infection and in particular their role in the

control of the pathogen. After infection with S. aureus, an extended level of bacteria and

abscess formation in the kidney was found in mice with T-bet-deficiency in Th17 fate cells at

day 10 after infection compared to T-bet/Tbx21-wildtype mice (Fig 6A–6C).

To further evaluate the interleukin expression of Th17 fate cells, we performed flow cytom-

etry of T cells from the kidney after infection. This analysis verified similar IL-17A production

of Th17 fate cells from Il17aCre x R26eYFPmice and Il17aCre x R26eYFP x Tbx21-floxmice.

In contrast, levels of IFN-γ producing cells in Il17aCre x R26eYFP x Tbx21-floxmice were

reduced compared to wildtype mice. This affected both IL-17A+/IFN-γ+ and IL-17Aneg/IFN-

γ+ cells (Fig 6D and 6E). Of note, IFN-γ production by YFPneg CD4+ T cells was not altered

(S4A and S4B Fig).

To investigate if Th1exTh17 cells exert their antibacterial properties by IFN-γ, we neutral-

ized this cytokine using a monoclonal antibody. Anti-IFN-γ treatment at day 4 and 7 during S.

aureus infection (Fig 6F) of Il17aCre x R26eYFPmice and Il17aCre x R26eYFP x Tbx21-flox
mice did not reverse the phenotype of higher bacterial load in mice with T-bet-deficient Th17

fate cells (Fig 6G). Flow cytometry of YFPpos CD4+ T cells displays reduction of IFN-γ produc-

tion in T-bet deficient mice (S4C and S4D Fig) and support our observations in IFN-γ defi-

cient mice (see Fig 2G and 2H). While this data indicates that IFN-γ is dispensable for the

elimination of renal S. aureus, it underscores the impact of a T-bet-dependent anti-bacterial

Th17 cell subset.

In addition to CD4+ T cells, we had identified also γδ T cells to contribute to renal IL-17A

in S. aureus infection (S2A–S2C and S4E and S4F Figs). Since we could not exclude that T-bet

positive γδ T cells are responsible for bacterial clearance, we performed adoptive CD4+ T cell

transfer from either Il17aCre x R26eYFPmice or Il17aCre x R26eYFP x Tbx21-floxmice into

RAG-/- mice (Fig 6H). Our analysis shows higher bacterial load in the kidney of mice trans-

ferred with Tbx21-flox cells. In contrast, there was no difference between the two groups in

bacteria isolated from liver and spleen (Fig 6I). Note that the kidney yielded the highest bacte-

rial numbers also in the T cell transfer model.

While the expression of IL-17A was higher in T-bet/Tbx21-flox CD4+ cells and IFN-γ was

increased in T-bet-competent CD4+ cells, the co-expression of IL-17A and IFN-γ was not dif-

ferent between these groups (Fig 6J and 6K). Characterization of renal CD11b+ cells did not

show major differences (S4G and S4H Fig). Taken together, our data support the notion that

T-bet expressing cells of the Th17 fate are highly efficient in supporting the elimination of S.

aureus in the kidney.

Discussion

The adaptive immune response to bacterial challenges remains incompletely understood. In

this study, we identify a key role of Th17 cells during bacterial clearance in the kidney. In
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Fig 6. Tbx21 expressing renal Th17 cells drive bacterial clearance in the kidney. (A) Abscess formation in PAS staining of

kidney sections in control mice and 10 days after S. aureus infection in Th17 fate reporter mice (Il17aCre x R26eYFP) and T-bet-

deficient fate reporter mice (Il17aCre x R26eYFP x Tbx21-flox). (B) Quantification of abscesses per stained kidney section 10 days

after S. aureus infection; bars representing mean, individual mice displayed by dots in Dunnett’s multiple comparison one-way

ANOVA analysis. (C) Quantification of bacterial load 10 days after S. aureus infection; bars representing mean individual mice

displayed by dots, � p<0.05 in Dunnett’s multiple comparison one-way ANOVA analysis. (D) Flow cytometry of renal YFP+
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particular, we found that T-bet/Tbx21-expression in Th17 cells gives rise to a highly effective

anti-bacterial T cell subset.

Comparative analysis of different tissues revealed a robust T cell response particularly in

the kidney of mice after S. aureus infection. This is in line with a recent publication, in which

we identified the highest bacterial titers after systemic S. aureus infection in the kidney [19]. In

the present study, we investigated the early adaptive immune response to S. aureus infection

and found IL-17A-producing CD4+ T cells to be highly abundant in the kidney. It is well estab-

lished that in vitro co-culture of S. aureus antigens with immune cells drives a robust Th17 cell

response [11,29]. In this study, we provide evidence that Th17 cells indeed play a major role in

controlling S. aureus infection in living animals. This is in line with a report indicating that T

cells contribute to bacterial clearance in the kidney [30]. Furthermore, neutralizing IL-17A in

local S. aureus infection resulted in larger abscesses in the skin [31]. Our data extents these

results and indicates that Th17 cells contribute to bacterial clearance in the kidney.

The concept of terminally differentiated T cell subsets has been challenged in the past

decade by studies showing transdifferentiation of T cells, including the plasticity of Th17 cells

into Th1 [32,33] or Tr1 [28] phenotypes. A high degree of Th17 cell plasticity has been demon-

strated in several mouse models of autoimmune diseases such as experimental autoimmune

encephalomyelitis, a model of multiple sclerosis [27], and in RB high colitis, a model of inflam-

matory bowel disease [34] using adoptive cell transfer of purified T cell subsets or fluorescent

fate reporter mice. In contrast, in the murine kidney, we have seen very limited Th17 cell plas-

ticity in mouse models of immune-mediated renal disease [26]. The findings of varying

degrees of Th17 cells plasticity in different tissues and under different inflammatory triggers

suggest that T cell plasticity strongly depends on the local micro-environment. In this study,

we observed a high level of Th17 cell plasticity in the kidney after S. aureus infection based on

intracellular cytokine staining. By employing scRNA-seq of Th17 cells, we obtained the full

picture of Th17 heterogeneity in the kidney in bacterial infection. Using RNA-slingshot analy-

sis, we identified a trajectory from IL-17A expressing cells to Th1-like cells with expression of

Ifng and Cxcr3. The potential of Th17 cells to develop into Th1 phenotypes is in line with pre-

vious publications from animal models of autoimmune diseases. Specifically, Brucklacher-

Waldert et al. have investigated Tbx21-deletion in Th17 cells [35]. In line with this publication,

T-bet-deficiency in ex-Th17 cells hinders the development of IFN-γ expressing cells, but IL-

17A and IFN-γ co-producing cells still emerge. However, whileHelicobacter hepaticus infec-

tion in the intestine is not altered by T-bet-deficiency in ex-Th17, our data in S. aureus infec-

tion shows T-bet-dependent anti-bacterial function of Th1 phenotypes that derive from Th17

cells.

The function of T-bet in T cells might be depending on the local micro-environment in the

tissue. In models for immune-mediated diseases, Th17 cells that produce T-bet-dependent

IFN-γ have been shown to be proinflammatory in the central nervous system [36] but T-bet

expression in Th17 cells can also modify intestinal inflammation by regulating IL-23 receptor

CD4+ T cells 10 days after S. aureus infection as indicated and (E) Quantification of cytokine expression; bars representing mean,

individual mice displayed by dots, not significant (n.s.), �p<0.05, �� p<0.01, ��� p<0.001 in Dunnett’s multiple comparison one-

way ANOVA analysis (representative for one of two independent experiments). (F) Th17 fate reporter mice (Il17aCre x
R26eYFP) and T-bet-deficient fate reporter mice (Il17aCre x R26eYFP x Tbx21-flox) were treated with neutralizing anti-IFN-γ
antibody as indicated. (G) Quantification of bacterial load at day 10 after S. aureus infection (�� p<0.01 in Dunnett’s multiple

comparison one-way ANOVA analysis. (H) Rag1-/- mice were injected i.v. with 5x105 CD4+ cells from Il17aCre x R26eYFP or

Il17aCre x R26eYFP x Tbx21-floxmice before S. aureus infection. (I) Quantification of bacterial load at day 10 after after S. aureus
infection in kidney, liver and spleen. (J) Flow cytometry of renal YFP+ CD4+ T cells and (K) Quantification of cytokine

expression. Not significant (n.s.), � p<0.05, �� p<0.01, ���� p<0.0001 in two-tailed unpaired t-test (pooled data from two

independent experiments). Bars representing mean, individual mice displayed by dots.

https://doi.org/10.1371/journal.ppat.1010430.g006
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[37]. Our results add to this knowledge by showing that proinflammatory cells can have pro-

tective properties in bacterial infection in the kidney, while clearance of extrarenal bacteria

does not seem to be dependent on T-bet expression by Th17 cells. Our scRNA data indicate

that cells from cluster 5 in Fig 5A have a specific pathogen related function to clear infections

with S. aureus. Although IFN-γ is upregulated during infection and particularly expressed by

these transdifferentiated Th1 cells, this cytokine alone seems not to be the key factor of bacte-

rial clearance, since neither INFg-/- mice have higher bacterial burden after infection nor does

anti-IFN-γ treatment reverse the phenotype in conditional T-bet-deficiency in Th17 cells. It is

reasonable to speculate that not one single cytokine of transdifferentiated Th1 cells is responsi-

ble for the function but that a certain anti-bacterial profile cumulatively confers these effects.

Future studies are required to uncover the precise effector functions of these protective anti-

bacterial transdifferentiated Th1 cells.

Plasticity is supported by a publication showing that adoptive transfer of Th17 polarized

cells into TCR αβ-deficient mice resulted in increasing numbers of IFN-γ expressing cells [38].

However, based on the design of this study, it was not possible to distinguish Th17 cell plastic-

ity from expansion of Th1 cells that were co-transferred. Our approach using Th17 fate

reporter mice shows plasticity of Th17 cells by cytokine profile analysis and single cell RNA-

sequencing. Moreover, we show the functional relevance of this transdifferentiation by using

Tbx21flox animals in combination with the Il17a-Cremice in S. aureus elimination and high-

light Tbx21-expressing ex-Th17 cells as an important T cell subset that comprises highly effi-

cient anti-bacterial properties.

In conclusion, our study provides experimental data that supports the role of Th17 cells in

the immune response to S. aureus infection in mice. We have uncovered a population of effec-

tor T cells in the kidney with expression of Tbx21 derived from Th17 cells that is highly effec-

tive in bacterial clearance. These data indicate, that therapeutic depletion of Th17 cells or

neutralizing their cytokines in settings of autoimmune diseases [39] might have detrimental

effects in systemic infections. Further studies are needed for a better understanding of the tis-

sue-specific immune response to advocate bacterial clearance by supporting the T cell medi-

ated immune response in the local micro-environment in order to reduce associated high

mortality as well as the resulting tissue damage.

Materials and methods

Ethics statement

All animal experiments were conducted according to the National Institutes of Health Guide

for the Care and Use of Laboratory Animals as well as the German law for the welfare of ani-

mals. All animal experiments were approved by local authorities (BGV Hamburg, G35/16 and

G82/19).

Mice

All experiments were conducted with age-matched (6 to 10 weeks old) mice on C57BL/6 back-

ground raised in specific pathogen free conditions at the animal facility of the University Med-

ical Center Hamburg-Eppendorf. The following transgenic mouse strains were used:

Il17a-/-mice [40], Il17aCre [27], R26eYFP [27], IL-17fate+ (Foxp3RFP x LIL-10eGFP x IL-17AKat

x Il17aCre x R26eYFPmice), [28,41,42]. Ifng-/- mice were purchased from the Jackson Labora-

tory (Bar Harbor, ME) and Tbx21fl/fl were provided by Steven L. Reiner (Columbia University,

New York, NY) [43].
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S. aureus sepsis

Bacteria (S. aureus strain SH1000) were homogenized by ultrasound and injected in tail vein

of the mice in 100 μl PBS (Gibco by Life Technologies, Karlsbad, California). Bacteria were

injected at indicated concentration (cfu/μL). For quantification of renal bacteria, kidneys were

dissected and incubated for 40 min at 37˚C in RPMI1640 medium (including 0.01 M HEPES;

0.5 mL filtered FBS and 0.4 μg/ mL DNase and 8 μg/ mL collagenase D). GentleMACS (Milte-

nyi Biotec, Bergisch Gladbach, Germany) and sonication for 60 seconds using a Bandelin

Sonorex Super RK103 were used for homogenization.

For quantification of hepatic or splenic bacteria these organs were passed through 70 μm

nylon mesh (Corning, Corning, New York) and resuspended in PBS before sonification. The

samples were incubated for 24 h at 37˚C on LB agar plates and colonies were counted. S.

aureus was verified by MALDI-TOF.

Anti-IFN-γ treatment and CD4+isolation and transfer

For anti-IFN-γ, mice were treated on day 4 and 7 after S. aureus infection with 500 μg/mouse i.

p. α-Interferon-γ antibody XMG1.2. For T cell transfer, Leucocytes were isolated as described

above from spleen of donor mice. CD4+ isolation was performed with the CD4+ T Cell Isola-

tion Kit, mouse (Miltenyi Biotec) with manual cell separation by LS columns and MACS sepa-

rator. 5x105 CD4+ cells were injected intravenously per mouse. After 3 days, mice were

infected with S. aureus as described above.

Leukocyte isolation

Kidneys were dissected and incubated for 40 min at 37˚C in RPMI medium (including 0.01 M

HEPES; 0.5 mL filtered FBS and 0.4μg/ mL DNase and 8 μg/ mL collagenase D). The samples

were homogenized using a gentleMACS (Miltenyi Biotec). Lymphocytes were enriched by Per-

coll gradient (37% in PBS). Spleen tissue was passed through 70 μm nylon mesh (Corning,

Corning, New York) before erythrocyte lysis (17 mM Tris-HCl (pH 7.6) and 144 mM ammo-

nium chloride). Cells were washed and given through a 40 μm nylon mesh (Corning, Corning,

New York) with HBSS. The vitality of the cells was measured by staining with Trypan blue

solution 1:1 (0.4% Sigma- Aldrich, St. Louis, Missouri). Liver tissue was passed through a

100 μm nylon mesh (Corning, Corning, New York) in HBSS. Lymphocytes were enriched

using a 37% Percoll gradient including 20 Units heparin and erythrocyte lysis buffer.

Small intestine was washed with PBS after extraction and shaken in PBS including 2 mM

dithiothreitol. The samples were incubated for 30 min at 37˚C at 200 rpm in PBS (10% FBS,

0.22 mM sodium pyruvate, 4.4 M HEPES, 2.2 M EDTA, 11 μg streptomycin, 11 Units penicil-

lin and 0.011 mg/ mL polymyxin B). The tissue was passed through a 100 μm nylon mesh

(Corning, Corning, New York) and incubated for 45 min at 37˚C in RPMI medium (including

0.01 M HEPES; 0.05 μg/ mL streptomycin; 0.05 Units penicillin; 10% filtered FBS, 0.4 μg/ mL

DNase and 8 μg/ mL collagenase D) in slow rotation in the MACS-Mix Tube Rotator (Miltenyi

Biotec). After homogenization by gentleMACS (Miltenyi Biotec), the tissue was solubilized

through a 70 μm nylon mesh (Corning, Corning, New York) in RPMI1640 medium (including

0.01 M HEPES; 0.05 μg/ mL streptomycin; 0.05 Units penicillin and 0.5 mL FBS). Lympho-

cytes were enriched using a 37% Percoll gradient.

For the analysis of mononuclear phagocytes, extracellular staining with CD45 AF700 (1:80)

30-F1, CD3 BV785 (1:250) 145-2C11, CD11c V450 (1:100) HL3, CD11b PE-Cy7 (1:500) M1/

70, MHC2 BV510 (1:160) M5/114.15.2, F4/80 APC (1:150) BM8, Ly6g PerCP (1:100) 1A8,

Ly6c APC-H7 (1:200) HK1.4, CD86 BV650 (1:400) GL-1 and CD80 BV605 (1:300) 16-10A1

for 20–25 min at room temperature. LIVE/DEAD Fixable Red Dead Cell Stain Kit (1:3000) in
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PBS (Live Technologies, Karlsbad, California) was used for labelling of dead cells for 2 min at

room temperature before erythrocyte lysis (17 mM Tris-HCl (pH 7.6) and 144 mM ammo-

nium chloride). Liver tissue was passed through a 100 μm and 40 μm nylon mesh (Corning,

New York) in PBS and further processed like kidney tissue.

Flow cytometry

For stimulation, leucocytes were incubated in X-Vivo 20 Serum-free Hematopoietic Cell

Medium (Lonza, Basel, Switzerland) supplemented with β-mercaptoethanol, brefeldin A,

PMA and ionomycin for 3–4 h at 37˚C at 5% CO2 (Heraeus instruments, Hanau, Germany).

To prevent unspecific binding, leucocytes were incubated in blocking solution (MACS buffer

containing 10% mouse serum) for 5 min at 4˚C. Next, samples were stained with the following

antibodies: CD45 PercP (1:100) 30-F1, CD4 BV605 (1:600) RM4-5, CD8 BV 785 (1:1000) 53–

6.7, CD3 AF700 (1:50) 145-2C11, γδTCR BV510 (1:100) eBio GL3 for T cell staining for 20–25

min at 4˚C. To define ILCS and other leucocytes subsets the following antibodies were used:

CD45 PerCP (1:200) 30-F11, IL-7Rα-CD127 PE-Cy7 (1:100) A7R34, Thy1.2-CD90.2 BV510

(1:200) 30-H12, CD4 BV650 (1:100) RM4-5, CD8 BV785- (1:200) 53–6.7, CD3 AF700 (1:50)

17A2, gdTCR FITC (1:100) GL3 and a combination of lineage markers (Lin-BV605), including

CD5 (1:200) 53–7.3, CD11b (1:1000) M1/70, CD11c (1:200) HL-3, CD19 (1:400) 6D5, CD49b

(1:800) HMα2, TCR-β (1:400) H57-597, GR-1 (1:400) RB6-8C5, NK1.1 (1:200) PK136 and

Ter119 (1:200) Ter119. LIVE/DEAD Fixable Near-IR Dead Cell Stain (1:1000) in PBS (Live

Technologies, Karlsbad, Carlifornia) or LIVE/DEAD Fixable Read Dead Stain Kit (Invitrogen)

was used for labelling of dead cells for 25 min at 4˚C. For intracellular staining, of T cells the

cells were fixed with 3,7% formalin for 17 min at 4˚C and of ILCs for 30 min at room tempera-

ture. Afterwards leucocytes were incubated with 0.1% IGEPAL (Sigma- Aldrich, St. Louis, Mis-

souri) in MACS buffer for 4 min at 4˚C and stained with the following antibodies: IL-17A BD

(1:1000) TC11-18H10, IFN-γ eBio (1:1000) XMG1.2 for 30 min at 4˚C for intracellular stain-

ing of T cells. In case of ILC staining, cells were stained in Perm Wash buffer (eBioscience)

supplemented with a combination of intranuclear and intracellular markers with fluoro-

chrome-coupled antibodies against ROR-γt APC (1:300) Q31-378, IL-17A PE (1:200) TC11-

18H10 and IFNγ BV711 (1:200) XMG1.2 and stained overnight at 4˚C.

For assessment of leucocytes counts in the kidney or liver by flow cytometry, cells were

mixed with CountBright absolute counting beads (Life Technologies, Karlsbad, Carlifornia)

and CD45 PerCP mAb (1:200). The individual cell frequencies were adjusted to the CD45 cell

count. Flow cytometry was performed with a BD FACS LSRII or a LSR II Fortessa (BD Biosci-

ences, Franklin Lakes, New Jersey) and data was analyzed with FlowJo (Tree Star).

Single cell RNA-isolation and library construction

Renal CD45+CD3+CD4+YFP+ cells from Il17aCre x R26eYFPmice were sorted using an Aria

Fusion cytometer (BD Biosciences, Franklin Lakes, New Jersey) and collected in MACS buffer

containing 2% FCS. These FACS-sorted cells underwent droplet-based single cell analysis and

transcriptome library preparation using the Chromium Single Cell 3´ Reagent Kits v2, Chromium

Single Cell 3´Library & Gel Bead Kit v2, Chromium Single Cell A Chip Kit and Chromium i7

Multiplex Kit according to the manufacture´s protocols (10x Genomics, Pleasanton, California).

Pre-processing, dimensional reduction and cluster of single-cell RNA

sequencing data

The processing of the single-cell data was done using the R software version 4.0.0 (2020-04-

24). For the sake of reproducibility, we set the global seed to 0. If not mentioned otherwise, we
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ran the methods with default parameters. The R-Package Seurat (version 4.0.1) was used for

pre-processing, dimensional reduction and cluster identification.

For the analysis of cells from IL-17A fate reporter mice, we removed cells according to the

number of different genes expressed per cell (nGenes) (<673 (10th quantile) and>3924 (95th

quantile)) and their percentage of mitochondrial genes (>8% mitochondrial genes). Next, the

data was normalized and mitochondrial confounding effects diminished by applying Seurat’s

SCTransform [44] and adjusting for the percentage of mitochondrial genes. For dimensional

reduction, principal components (PC) were calculated using the method Run PCA

(features = Variable Features). We selected the PCs 1–40 to construct the Shared Nearest

Neighbor Graph (Method: ‘Find Neighbours’) and the UMAP-Space (Method: ‘Run UMAP’).

The clusters were calculated by the Louvain algorithm (Find Clusters (resolution = 0.6)).

While identifying the resulting clusters, we removed two clusters with high scores for cycle

phases S, G2, M and another cluster with low alpha/beta TCR expression.

For comparative analysis of wildtype and Tbx21-deficient cells, we removed cells according

to the number of different genes expressed per cell for Il17aCrexTbx21wt (<1000 and>3924

(95th quantile)) and Il17aCrexTbx21flox (<1000 and>2467 (95th quantile)) and their percent-

age of mitochondrial genes (>8%) independently. Additionally, cells with high cell cycle scores

(Method: ‘Cell Cycle Scoring’), were removed (Il17aCrexTbx21wt: S-score>0.2 and G2/M-

score > 0.2 / Il17aCrexTbx21flox: S-score >0.1 and G2/M-score > 0). Next, Il17aCrexTbx21wt

and Il17aCrexTbx21flox were integrated by log-normalization each sample independently

(Method: ‘NormalizeData’), selection of the top 500 variable genes common in both samples

(Method: ‘Select Integration Features’) and identification of common anchors (Method: ‘Find

Integration Anchors’). The samples were integrated using Seurats IntegrateData and the data

was scaled by removal of mitochondrial confounding effects (Method: ‘Scale Data’). The PCs

1–20 were used to construct the Shared Nearest Neighbor Graph (Method: ‘Find Neighbours’)

and the UMAP-Space (Method: ‘Run UMAP’). The clusters were calculated by the Louvain

algorithm (Find Clusters (resolution = 0.5)). Clusters with low alpha/beta TCR expression

were removed. Finally, clustering and dimensional reduction steps were performed.

Differential expression, Modulscores and statistic tests

The differential expressed (DE) genes were determined by using the function ‘FindAllMarkers’

(min.pct = 0.1, logfc.threshold = 0.25, only.pos = T) and subsequently keeping only genes with

an adjusted p-value < 0.01. The clusters were annotated according to the DE genes and

curated marker genes. We used Seurat’s function ‘AddModulScore’ to build a Th17 score

(gene list: Il17a, Il17f, Rorc, Ccr6, Stat3) and a Th1 score (gene list: Ifng, Tbx21, Ccr5, Cxcr3,

Stat4). The significance between two modul scores were computed using Wilcoxon-test (func-

tion: ‘wilcox.test’)

Th17 trajectory construction and analysis

To construct the trajectories, we ran the R-Package slingshot (version 1.8.0) and its function

slingshot (omega = T, stretch = FALSE). Seurat’s UMAP coordinates and clusters were pro-

vided as data input. Cluster 3 annotated with Th17 was set as the start cluster. Next, we wanted

to determine which genes alter along the slingshot trajectories. We used the R-package trade

Seq (version 1.4.0) and fitted a generalized additive model on the genes by applying the

method fit GAM (nknots = 6). As count matrix, we took the raw counts of the Seurat object

and kept only variable genes. The cell weights and pseudotime was transferred by giving the

slingshot object. Subsequently, we tested for genes associated with pseudotime using slingshots

association test (lineages = T). To create Fig 4D, we used the method predict Smooth
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(nPoints = 50) to predict the expression of the top 50 genes ordered by Wald statistic for 50

timestamps along the pseudotime trajectory of lineage 1. Subsequently, we visualized the pre-

dicted gene expression of these genes using the function pheatmap (cluster_col = FALSE,

border_color = NA, scale = "row”) from the R-Package pheatmap (version 1.0.12).

Histology

Kidney was fixed overnight in 4% paraformaldehyde, washed with PBS and embedded in par-

affin with a tissue processor (Leica, Wetzlar, Germany). For GR1 staining, paraffin blocks were

cut with a microtome (Leica) to 1.5 μm sections. Sections were transferred to a kryo frost

microscope slide (Super Frost/Plus, Glaswarenfabrik Karl Hecht GmbH& Co. KG, Sondheim

vor der Rhön, Germany) and incubated over night at 40˚C. Paraffin was removed by a

descending alcohol series ended in distillated water (dH2O). Sections were framed with Dako-

pen (DAKO, Hamburg, Germany) to keep solutions on the slide. Slides were unmasked with

proteinase digestion, washed with PBS + 0.2% Tween and blocked with blocking buffer from

ZytoChem Plus (AP) Polymer Bulk Kit- Polap 100 (Zytomed Systems, Bargteheide, Germany).

Slides were incubated with the primary antibody anti-mouse Ly6G (1:5000) NIMP-R14 over-

night at 4˚C. Biotinylated rabbit anti-rat IgG antibody, mouse adsorbed Vector (1:200) was

used as bridge-antibody and incubated at room temperature for 30 min. For AP-reaction incu-

bation with anti-rabbit ap complex from polapkit 30 min at room temperature, and for detec-

tion 12 min in new fuchsine solution prepared with 150 mL Tris-sodium puffer (2,08 M Tris,

6,16 M sodium chloride and 32,6 M Tween 20 solved in 1M HCl) supplemented with 7.5 mL

4% sodium nitrite, 0.3 mL Neufuchsin solution (136 mM in 2 M HCl) and 750 mg naphthol-

AS-Bi-phosphate mixture (0.044 mmol naphthol-AS-Bi-phosphate and 10.26 mmol NN-

dimethylformamide). Before nucleus staining with haematoxylin slides were washed with

dH2O. Slides were covered with gummi arabicum and cover glass. Slides were analyzed by

counting GR1+ cells in 10 visual fields and 15 glomeruli in 200x optical magnification (Zeiss

Scope.A1 Axio, Oberkochen, Germany). Kidney abscesses per section were counted on these

slides.

For CD3 staining, paraffin blocks were cut with a microtome to 1.5 μm sections. Sections

were transferred to a kryo frost microscope slide and incubated over night at 40˚C. Paraffin

was removed by a descending alcohol series ended in dH2O. Slides were unmasked by cooking

on 90˚C in Dako-buffer pH 9 for 15 min and cooled down on room temperature for 25 min.

Sections were framed with Dakopen (DAKO, Hamburg, Germany) to keep solutions on the

slide. Blocking was performed with blocking buffer from polapkit. The primary antibody rab-

bit polyclonal anti-human CD3 DAKO (1:1000) was incubated overnight at 4˚C. For AP-reac-

tion incubation with anti-rabbit ap complex from polapkit 30 min at room temperature and

for detection 12 min in new fuchsin solution in the dark. Before nucleus staining with haema-

toxylin slides were washed with distillated water. Slides were covered with gummi arabicum

and cover glass. Slides were analyzed by counting CD3+ cells in 15 visual fields and 15 glomer-

uli in 400x optical magnification.

For PAS staining, paraffin blocks were cut with a microtome to 1.0 μm sections. Sections

were transferred to a microscope slide and incubated over night at 40˚C. Paraffin was removed

by a descending alcohol series ended in dH2O. Sections were incubated for 15 min at room

temperature in 1% periodic acid, washed with dH2O, incubated in Schiff reagent for 40 min at

room temperature and washed with dH2O. Nucleus staining was performed by staining with

haematoxylin for 1 min and bleached with HCL alcohol. Slides were drained by an ascending

alcohol series and were covered in Eukitt and cover glass.
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For Gram staining, paraffin blocks were cut with a microtome to 2.0 μm sections. Sections

were transferred to a microscope slide and incubated over night at 40˚C. Paraffin was removed

by a descending alcohol series ended in dH2O. Sections were first incubated 10 min at room

temperature in nuclear fast red solution, second in gram´s crystal violet solution for 5 min and

third in Lugol’s solution for 1 min at room temperature. Slides were bleaches with Anilin

(Emsure, Merck Millipore, Darmstadt, Germany) for 2 min, drained with 100% ethanol and

xylol and covered in Eukitt and cover glass.

Electron microscopy

For electron microscopy the selected part of the mouse kidney was transferred from 4% form-

aldehyde into a cacodylate buffer with sucrose for 10 min at 80˚C. Afterwards, osmium tetrox-

yde was applied for 2 h. The specimen was washed in cacodylate buffer plus sucrose twice for 5

min. Subsequently, the sample was contrasted with uranyl acetate for 1 h. The specimen was

put into ethanol baths with rising ethanol concentrations for 5 min in each bath, followed by

bathing in Methyl tert-butyl ether (MTBE) plus epoxide mixture (in a 1:3 dilution) twice for 5

min each. Afterwards, the specimens were embedded in an epoxide mixture at 60˚C for 48 h

and then at 100˚C for 11½ h. Semithin and ultrathin sections were cut on a Leica Microsys-

tems microtome. Grids were purchased from Polyscience. The grids were then analyzed using

electron microscopes (EM 109 and EM 902, Zeiss, Oberkochen, Germany) equipped with digi-

tal electron microscope cameras (Tröndle). 3 glomeruli from each mouse were analyzed.

Immunofluorescence microscopy

Indirect immunofluorescence microscopy was performed in 1 μm paraffin-embedded sections

of kidneys from Il17aCre x R26eYFPmice. Images were captured using a laser confocal micro-

scope (LSM800, Zeiss, Oberkochen, Germany). Primary antibodies against GFP, synaptopodin

and endomucin as well as 40,6-diamidino-2-phenylindole (DAPI) staining (1:10.000) were

used.

Antibodies

The following antibodies were used in this study: CD45PercP/AF700 (30-F11); CD4 BV605/

BV650 (RM4-5); CD8 BV785 (53–6.7); CD3 AF700/BV785 (145-2C11); γδTCR BV510/

BV605/FITC (eBio GL3); IL17A PE (TC11-18H10), MHC2 BV510 (M5/114.15.2), Ly6C

APC-H7 (HK1.4), CD86 BV650 (GL-1), CD80 BV605 (16-10A1), CD127 PE-Cy7 (A7R34),

CD90.2 (30-H12), RORγt (Q31-378) and on lineage CD5 (53–7.3), CD11b (M1/70), CD11c

(HL-3, BD), CD19 (6D5), CD49b (HMα2), TCR-β (H57-597), GR-1 (RB6-8C5), NK1.1

(PK136) and Ter119 (Ter119) all BioLegend (San Diego, California); CD11b PE-Cy7 (M1/70)

and Ly6G PerCP (1A8) all from Life Technologies, Karlsbad, Carlifornia; IFN-γ APC

(XMG1.2; eBioscence, Thermo Fisher Scientific, Waltham, Massachusetts); Ly6G (NIMP-R14;

Hycult biotech, Uden, The Netherlands); F4/80 APC (BM8, Dianova, Hamburg, Germany);

GFP (polyclonal, Abcam, Cambridge, UK); Synaptopodin (polyclonal, Synaptic Systems, Göt-

tingen, Germany); Endomucin (clone V.7C7, Santa Cruz Biotechnology, Dellas, Texas).

Statistics

Statistical analyses were performed using Graph Pad Prism (La Jolla, CA). Data represent

mean ± SEM. The following tests were used: Mann-Whitney test (two-tailed) and Dunnett’s

multiple comparison one-way ANOVA analysis. The results are shown as indicated at

Figure legends.
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Supporting information

S1 Fig. Renal pathology and kidney infiltrating immune cells in S. aureus sepsis. (A) PAS

staining of kidney sections from C57BL/6 mice 10 days after S. aureus infection. (B) Quantifi-

cation of abscesses in (A) after S. aureus infection as indicated. (C) CD3+ staining of kidney

sections 10 days after S. aureus infection and (D) Quantification of CD3+ cells per glomeruli

and per hpf as indicated in C57BL/6 mice. (E) GR1+ staining of kidney sections 10 days after S.

aureus infection and (F) Quantification of GR1+ cells per glomeruli and per hpf as indicated in

C57BL/6 mice. (G) Electron microscopy of kidney section from FIR/TIGER/IL-17AKat-w/o-

neo mice 10 days after S. aureus infection. Representative data for one of two independent

experiments.

(TIF)

S2 Fig. Characterization of lymphocytes during S. aureus infection. (A) Quantification of

renal γδ T cells by flow cytometry from the kidney 10 days after S. aureus infection. (B and C)

Flow cytometry of cytokine production of renal γδ T cells of C57BL/6 mice 10 days after S.

aureus infection (�p<0.05, unpaired t-test, two-tailed, representative for one of three indepen-

dent experiments). (D) Quantification of renal ILCs by flow cytometry from the kidney 10

days after S. aureus infection. (E) Flow cytometry and (F) quantification of cytokine produc-

tion of renal ILCs 10 days after S. aureus infection (�p<0.05, representative for one of two

independent experiments). (G) Quantification of renal CD11b+ cells at day 10 after S. aureus
infection. (H) Flow cytometry and (I) quantification of renal CD11b+ cells of at day 10 after S.

aureus infection. (J) Flow cytometry and (K) quantification of CD11b+ cells from the liver at

day 10 after S. aureus infection. (L-N) Flow cytometry of hepatic CD11b+ cells at day 10 after

S. aureus infection. Bars representing mean, individual mice displayed by dots.

(TIF)

S3 Fig. Conversion of Th17 cells Th1-like but not regulatory phenotypes in S. aureus sepsis.

(A) Flow cytometry of renal and intestinal Th17 fate cells and Tr1exTh17 cells (IL-17Katneg-

FoxP3negYFP+IL10eGFP+; gated on ex Th17) of Fate+ mice after S. aureus infection as indi-

cated (SILP: small intestine lamina propria; bars representing mean, individual mice displayed

by dots. (B) Slingshot trajectory analysis of renal Th17 cells (cluster 3) from Il17aCre x
R26eYFPmice (n = 5) 10 days after S. aureus infection into different cell states (related to Fig

4). (C) Trajectories of CD4+YFP+ cells from Il17aCre x R26eYFP x Tbx21-floxmice (n = 6) 10

days after S. aureus infection into different cell states (related to Fig 5).

(TIF)

S4 Fig. Tbx21 expression in renal non-Th17 cells. (A) Flow cytometry of renal YFP negative

CD4+ T cells 10 days after S. aureus infection as indicated and (B) Quantification of cytokine

expression; bars representing mean, individual mice displayed by dots, not significant (n.s.), in

Dunnett’s multiple comparison one-way ANOVA analysis (representative data for one of two

independent experiments). (C and D) Flow cytometry of renal YFP+ CD4+ T cells at day 10

after S. aureus infection and anti-IFN-γ antibody (�� p<0.01, ��� p<0.001 in Dunnett’s multi-

ple comparison one-way ANOVA analysis). (E) Flow cytometry and (F) quantification of cyto-

kine producing of YFP positive γδ-T cells; dots representing mean ± SEM (each time point

represents the data of n = 4–5, representative of one from two independent experiments). (G)

Flow cytometry and (H) quantification of renal CD11b+ cells from Rag1-/- m+ice. Bars repre-

senting mean, individual mice displayed by dots.

(TIF)
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