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The design of bone scaffolds for tissue regeneration is a topic of great interest, which involves different issues related to geometry of
architectures,mechanical behavior, and biological requirements, whose optimal combination determines the success of an implant.
Additive manufacturing (AM) has widened the capability to produce structureswith complex geometries, which should potentially
satisfy the different requirements.These architectures can be obtained bymeans of refinedmethods and have to be assessed in terms
of geometrical and mechanical properties. In this paper a triply periodic minimal surface (TPMS), the Schwarz’s Primitive surface
(P-surface), has been considered as scaffold unit cell and conveniently parameterized in order to investigate the effect of modulation
of analytical parameters on the P-cell geometry and on its properties. Several are the cell properties, which can affect the scaffold
performance. Due to the important biofunctional role that the surface curvature plays in mechanisms of cellular proliferation
and differentiation, in this paper, in addition to properties considering the cell geometry in its whole (such as volume fraction or
pore size), new properties were proposed. These properties involve, particularly, the evaluation of local geometrical-differential
properties of the P-surface. The results of this P-cell comprehensive characterization are very useful for the design of customized
bone scaffolds able to satisfy both biological and mechanical requirements. A numerical structural evaluation, by means of finite
element method (FEM), was performed in order to assess the stiffness of solid P-cells as a function of the changes of the analytical
parameters of outer surface and the thickness of cell. Finally, the relationship between stiffness and porosity has been analyzed,
given the relevance that this property has for bone scaffolds design.

1. Introduction

The interest in the development of three-dimensional struc-
tures, generally termed as bone scaffolds, to be used as
bone substitutes has grown over time [1]. The enhanced
capability of new manufacturing methods, such as Additive
Manufacturing (AM) [2, 3] has encouraged the design of
structures with more complex architectures to better satisfy
the necessary requirements for this kind of application.

Generally, porous structures with interconnected pores
are required with a geometrical configuration, for example,
for promotion of cell ingrowth and transport of nutrients.
Consequently, proper methodologies of modeling have to be
considered to obtain these structures. Different approaches
have been proposed for their design. These comprise

CAD-based methods [4, 5], image-based methods (MRI/CT)
[6], topology optimization [7], and methods for the opti-
mization of scaffolds microstructure geometry based on
mechanobiological criteria [8].

Among the different methods, implicit surface modeling
(ISM) is potentially advantageous, since it offers the capability
to develop architectures using a single mathematical equa-
tion, thus allowing obtaining a compact representation of
potentially complex surfaces [9]. Attractive candidates for the
design of biomorphic scaffold architectures through implicit
functions belong to the large class of triply periodic minimal
surfaces (TPMS) [10]. TPMS are, mathematically, defined
as surfaces with zero mean curvature everywhere over the
entire surface and periodic in three directions extending
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infinitely. They are naturally occurring in nature and exam-
ples include some biological structures, block copolymers,
and equipotential surfaces in crystals [11]. Different surfaces
attributable to this class are known and also considered for
scaffold design [12–14]. Starting from a TPMS surface, it
is possible to build solid architectures both by replicating
a single TPMS cell in three orthogonal directions and by
combining cells with different geometries in order to obtain
graded porosity scaffolds [15, 16]. In any case, the study of
a unit cell can give useful information for the use of these
surfaces in scaffold design. Among the various TPMS, the
Schwarz’s Primitive (P) minimal surface (hereinafter referred
as P-surface) has been considered for different applications
including the development of a new type of cellular materials,
called shellular, for supporting loads at very low density [17].
In this paper, the P-surface has been investigated for scaffold
design. It has been analyzed in terms of analytical parameters
that were varied in order to obtain surfaces with different
geometrical configurations. Solid P-cells, which are the unit
components of a scaffold, were also developed and considered
in this analysis. Significant properties for scaffold applications
of the cells were determined in relation to geometry and
mechanical performance.

Different are the geometrical properties that can affect
the performance of a scaffold. Porosity, pore size, and pore
interconnectivity are among the main cell properties to be
taken into account in the design of the architecture. High
values of porosity are generally required, since it improves
the conditions for cell ingrowth and nutrient transformation.
Significantly enhanced cell proliferation under both static
and flow perfusion culture conditions was demonstrated [18]
for scaffolds with porosity of 75%, and larger values were
suggested [19, 20] to improve cell proliferation. Studies on the
influence of pore size on bone ingrowth are also reported in
literature and, even if this topic is still under investigation, in
some researches pore size values higher than 300 𝜇m were
suggested for enhanced cell proliferation [21, 22]. In [23] AM
manufactured porous Ti scaffolds with pore size, respectively,
of 300𝜇m, 600𝜇m, and 900𝜇m were implanted into rabbit
tibia, and it was found that 600𝜇m and 900𝜇m scaffolds
demonstrated significantly higher bone ingrowth than those
with the lowest value of porosity.

Porosity, interconnectivity of the pores, and pore size are
correlated to surface area per unit volume, whose high values
are beneficial in respect to allowing large numbers of cells
to attach to and migrate into porous scaffolds [24], since it
influences permeability [25]. Besides surface area per unit
volume, curvature also plays an important role in scaffold
design [26] and both these geometrical characteristics have
also been investigated in the study reported in this paper.

In particular, with regard to the curvature, a correlation
between this parameter and tissue regeneration has been
shown elsewhere [27], pointing out that concave surfaces
are preferable to convex and flat surfaces. Surface curva-
ture that is a local geometrical-differential property of the
surface plays, therefore, an important biofunctional role, as
confirmed recently by other studies. In particular, the authors
of [28] showed that the diameter of 3D spherical pores in
scaffold structures affects cell morphology and osteogenic

differentiation of mesenchymal stem cells. Moreover, as
pointed out in [29], 3D concave substrates promote faster
cell migration, while convex substrates induce osteogenic
differentiation. This remarkable effect on cellular behavior
suggests the importance of the availability of scaffolds with
spatially controlled surface curvature in order to optimize
tissue regeneration.

The cell properties of a scaffold, especially porosity, can
affect the mechanical performance of the implant. Specifi-
cally, the stiffness of the scaffold has to be similar to that
of the surrounding bone in order to help prevent stress
shielding, which can affect the longevity of the implant. High
values of porosity and large pores size, while promoting
cell ingrowth and nutrient transformation, can lead to a
stiffness reduction. Thus, when designing these structures,
a compromise is needed between biological and mechanical
requirements, which involve the choice of adequate materials
and the knowledge of the mechanical properties in relation
to the geometry of the cell considered. As for the material,
biocompatibility is a basic property to be taken into account,
and both biodegradable polymeric materials and metallic
alloys are available for these applications [30]. The stiffness
evaluation of solid P-cells has been considered in this study
by a numerical analysis with finite elements method (FEM)
performed on representative solid cells with different geo-
metrical configurations. Titanium alloy (Ti-6Al-4V) made
solid cells were considered and subjected to compression
load and to shear load to evaluate their stiffness for different
values of some key parameters affecting the cell geometries
and properties. The effects of some geometrical variations,
such as surface thickness and surface radius, on porosity and
mechanical properties of two different types of TPMS cells,
including the P-surface, were considered in [31]; however, a
detailed analysis on the several factors involved in the design
of the scaffolds has not been addressed. The aim of this
study is to provide a comprehensive characterization of the P-
surface for its use in scaffold design, including its application
in the design of structures with gradient architecture that can
be obtained with a combination of unit cells with different
geometries.

This paper has the following outline. Section 2 discusses
the effect of the analytical parameters modulation on P-
cell architecture. Section 3 defines the set of cell properties
considered and investigates on the effect of parameters
variation on those. This set includes also surface curvature,
given the important role it has in cellular proliferation and
differentiation. Section 4 focuses on the design process of a
solid P-cell, highlighting the various phases and the design
inputs. Finally, in Section 5 a FEMevaluation of the structural
behavior of the solid P-cells is carried out. Conclusions are
drawn in Section 6.

2. Geometric Modeling of TPMS

Several are the approaches generally used for geometric
modeling of minimal surfaces. These can be classified into
parametric, implicit, and boundarymethod. In the parametric
approach, a function maps a region of a plane to a region
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of the surface. However, only a few minimal surfaces are
simply parameterized and defined by analytic functions in
R3. Some of these are the catenoid, the helicoid, and the two-
dimensional periodic Scherk surface. The infinite minimal
surfaces that are periodic in the three dimensions, such
as the TPMS, cannot be defined by analytical functions in
the Cartesian space. Another possibility of generating them
parametrically is to use the Enneper-Weierstrass representa-
tion [32]. This parameterization is based on the Weierstrass
function that is known, however, only for some minimal
surfaces. It can actually be built if there is a surface patch from
which the surface can be generated by reflection or rotation
around the patch border, but not all the surfaces satisfy this
property [33, 34].

Theboundarymethod is based on the iterative refinement
of an initial polygonal model defined by its boundary, subject
to a variety of boundary and interpolygonal constraints.
There are several approaches for generating minimal discrete
surfaces using the boundary method, and a critical review of
these approaches can be found in [35]. Among them, there
is the Plateau method [36] that starts from a description of
the boundary of a surface, usually in the form of a polygon
in R3. The surface is then iteratively refined to minimize
the area of the polygonal mesh spanning the boundary. The
spanning surface is iteratively refined until no single vertex
of the triangulation can be moved further to decrease its
area. Based on the principles of this approach, Brakke [37]
developed Surface Evolver, a general-purpose application
that minimizes the energy of a polygonal mesh subject to
constraints through periodic translation and reflection of the
evolved patch. In [38] the authors explored TPMS under
a constraint in the volume fraction of the phases that the
surface separates using the level set method.This constraint is
also at the basis of the phase-fieldmethod proposed in [39] for
generating a triply periodic surface with a constant nonnull
mean curvature.

In the implicit method, the surface is defined by means
of an implicit function. An implicit function is a continuous
scalar-valued function over the domain R3. The implicit
surface of such a function is the locus of points at which
the function takes the zero value. Positive values are inside
the surface defined by the implicit function and outside of
it there are negative values. Since any periodic surface can
be described by the sum of an infinite number of Fourier
terms, the TPMS can be approximated by the periodic nodal
surfaces (PNS) based on a finite number of trigonometric
functions. The quality of this approximation depends on
the number of terms of the Fourier series. In [40] the
authors showed that the topology of the TPMS is well
approximated by aPNSobtained truncating the Fourier series
to the leading term, although this kind of PNS is neither
minimal nor constant-mean curvature surface. At present,
this representation, providing a more readily accessible,
though approximate, description of TPMS, is widely used.
In this paper, the PNS representation, implemented using
an original MATLAB function, describes the outer surface
of the solid cell. In particular, this analytical representation
was suitably parameterized in order to investigate the effect

of the analytical parameters variation on the geometrical
configuration and consequently on several properties of the
cell.

The P-surface can be described, to the first order of
approximation, by the following nodal equation:

𝑓 (𝑥, 𝑦, 𝑧, 𝑠, 𝑘) = cos 𝑥𝑠 + cos 𝑦
𝑠 + cos 𝑧

𝑠 = 𝑘 (1)

under the boundary conditions x = [-𝜋, 𝜋], y = [-𝜋, 𝜋], and
z = [-𝜋, 𝜋]. This surface divides the cubic cell of side length
𝐿 equal to 2𝜋mm into two distinct phases. Phase 1 and phase
2 are, respectively, the regions where 𝑓(𝑥, 𝑦, 𝑧, 𝑠, 𝑘) < 𝑘 and
𝑓(𝑥, 𝑦, 𝑧, 𝑠, 𝑘) > 𝑘.

The architecture of the P-surface can be changed by
varying the two analytical parameters k and s in (1). For
a given couple of 𝑠 and 𝑘 values, the MATLAB function
describes the P-surface in the form of a tessellated model,
generating as output a .𝑠𝑡𝑙 file. The degree of approximation,
with which the discrete model represents the P-surface, is
affected by the grid resolution, expressed as the number N
of grid points. Increasing this value, the P-surface is better
approximated by the mesh so that the cell properties can
be accurately estimated from the tessellated model. The N-
value has been selected to obtain an optimal balance between
the need for limiting the number of triangular facets of the
tessellated model and that for describing accurately the P-
surface. In order to quantify this last aspect, the value of the
surface area of the P-cell has been considered as reference. In
the case of a continuous P-surface with 𝑘 = 0 and 𝑠 = 1, this
value is equal to 2.3451 [41] and it is well approximated by a
discrete model with a grid resolution N equal to 100.

The range of variability of 𝑘 and 𝑠 is established by the
necessity to preserve the integrity of the P-surface and that
of its lateral openings. This requirement is essential to allow
the cells to populate gradually and progressively the ducts of
the scaffold, regenerating the bone tissues.The smodification
in (1) has the same effect of scaling the P-cell uniformly with
respect to its barycentre, by a scaling factor equal to 𝑠 and
truncating it with a cubic cell of side 𝐿 equal to 2𝜋mm.
Figure 1 shows, in white dots, the P-cell obtained directly by
(1) setting 𝑘 = 0 and 𝑠 = 1.45. This cell lays on the larger
blue surface resulting from the uniform scaling with 𝑠 = 1.45
(with respect to the barycentre) of the P-cell with 𝑘 = 0 and
𝑠 = 1 (hereinafter referred to as standard P-cell).

Figures 2(a) and 2(b) show several models of P-cell (𝑘 =
0), obtained varying the s parameter. In order to preserve the
P-cell integrity with 𝑘 = 0, the 𝑠-parameter must vary within
the interval [0.75, 1.5]. In Figure 2(a) the P-cells, shown in
middle section to point out better the geometrical differences
among the cells, are obtained varying 𝑠 between 1 and 0.75.
The value 𝑠 = 1 occurs at the outermost surface (green in the
Figure 2(a)). In Figure 2(b) the surfaces are represented for 𝑠-
values higher than 1 and the inner surface (always in green)
is obtained for 𝑠 = 1. For s values higher than 1.5 the P-cell
integrity is not preserved. In both figures, the red arrow shows
that s values increase going outward.

In this respect, it is important to note that, if a P-
cell with s parameter other than 1 is replicated along three
mutually perpendicular directions, the scaffold generatedwill
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P-cell (k=0, s=1.45)

P-cell (k=0, s=1) after scaling
(scale factor=1.45)

Cubic cell of 
side L=2π mm

Figure 1: How the modification of the s parameter of the nodal equation (1) affects the P-surface architecture.

P-cell (k=0, s=1)

s

Ｍ≤1

(a)

P-cell (k=0, s=1)

s
Ｍ≥1

(b)

Figure 2: Several P-cells (𝑘 = 0) obtained varying the s parameter.

be characterized by a nondifferentiable surface, since the
continuity C1 is not verified at the shared boundary curve
between adjacent cells. In [42] the authors observed that there
is a contact angle between the P-cells other than 180∘ when 𝑠
is different from 1 and this value decreases when 𝑠 increases,
although remaining still superior to the sharp ninety degree
turns in cubic labyrinths.

The k modulation allows extracting different level sur-
faces from the implicit function described by (1). In the case
of 𝑠 = 1, the 𝑘 parametermust vary in the interval ]-1,1[: the P-
cell integrity, in fact, is not preserved for higher values and its
lateral openings are closed for lower values. Several P-cells are
represented in Figure 3 for s=1 and with k parameter varying
between -1 and 1. The k values increase going inward.

3. P-Cell Properties Evaluation

Cell properties are important functional requirements in the
design of customized bone scaffolds as they can significantly
influence scaffold performance, in terms of both tissue
regeneration mechanisms and mechanical behavior. Since
the modulation of s and k in (1) involves, as shown, the
modification of the P-surface architecture, the effect of this
modulation on the cell properties is investigated below.

P-cell (k=0, s=1) k

Figure 3: Several P-cells (s = 1) obtained varying the k parameter.

Given the important role of the surface curvature in
cellular migration and differentiation mechanisms, a new
class of properties is proposed here, in addition to the global
properties, such as volume fraction and pore size. These new
properties aim at quantifying both the curvature and the
area of some cell local regions, concave or convex, that are
important for tissue regeneration mechanisms.

Among the global properties, important functional
requirements for the scaffold design are volume fraction 𝑓V
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Figure 5: Pore size definition.

and pore size 𝑝𝑠. Volume fraction 𝑓V is the cell property
defined by the following ratio:

𝑓V = 𝑉𝑃−surface
𝑉unitcubiccell

(2)

where 𝑉𝑃−𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the internal volume delimited from the
P-surface and 𝑉unitcubiccell is the volume of the cubic cell or
equivalently the volume of its bounding box. In Figure 4(a)𝑓V
is represented varying 𝑘 for a P-cell with 𝑠 = 1; in Figure 4(b)
k=0 and s varies within the corresponding range of variability.
When 𝑘 = 0 and 𝑠 = 1, the P-surface delimits, within the
cubic cell, two phases with the same volume (𝑉𝑃−surface =
𝑉unitcubiccell/2), so 𝑓V is equal to 0.5.

As shown by the diagrams of Figures 4(a) and 4(b), the
modification of both 𝑘 and 𝑠 determines a volume fraction
variation: 𝑓V, in particular, decreases linearly as 𝑘 increases
and rises, in a quite linear way, when s increases.

Pore size (𝑝𝑠) is the cell property evaluated as the radius
of the maximum sphere inscribable in the cell pore, as shown
in Figure 5.

In Figure 4(a) the trend of 𝑝𝑠 as a function of 𝑘 is
represented for a P-cell with 𝑠 = 1; in Figure 4(b) 𝑘 = 0
and 𝑠 varies between 0.75 and 1.5. In order to make the
pore size trend independent of the cell size, Figures 4(a) and

4(b) report the dimensionless ratio between the pore size
and the length 𝐿 of the cubic cell side on the y-axis of the
two diagrams. As shown by the two diagrams, the pore size,
coherently with the volume fraction, decreases linearly when
k increases and rises linearly when s augments.

The diagrams of the Figures 6(a) and 6(b) show the trend
of two other global cell properties: surface area per unit
volume and surface ratio. Both the properties include the area
S of the P-surface, which affects significantly the biological
processes: high values of S, in fact, facilitate the nutrients
and metabolic wastes exchange. Surface area per unit volume
is defined as the ratio between S and the internal volume
𝑉𝑃−surface delimited from the surface. This ratio, also called
specific surface area, affects significantly, together with pore
size, the permeability of a porous material. Figure 6(a) shows
the trend of area-volume ratio varying 𝑘 for a P-cell with
𝑠 = 1; in Figure 6(b) 𝑘 = 1 and 𝑠 varies between 0.75 and
1.5. The ordinate axes of both diagrams report area-volume
ratio made dimensionless by side length 𝐿 of the cubic cell. As
shownby the twodiagrams, surface area per unit volume rises
when 𝑘 increases and decreases quickly when s augments.

Surface ratio is a cell property defined as the dimension-
less ratio 𝑆/𝐿2 between the surface area S of the P-cell and
the area of a square having a side length equal to L. This ratio
represents an important property of the cell since it enters, as
shown later, in the definition of porosity for solid cell. Surface
ratio is reported in Figure 6(a) varying k for a P-surface with
𝑠 = 1; in Figure 6(b) 𝑘 = 0 and 𝑠 varies in the related
range of variability. As shown by Figure 6(a), 𝑆/𝐿2 trend is
symmetrical with respect to 𝑘. Surface ratio varies with 𝑘 and
𝑠 and, therefore, with the P-surface architecture, in a limited
way. A more relevant dependence on s is observed only for
values quite larger than 1 (Figure 6(b)).

The analysis of the diagrams in Figures 4 and 6 shows that
the global properties of the P-cell are generally a bit more
sensitive to the s than to k modulation, although, as noted
above, the shortcoming of generating a nondifferentiable
surface must be considered for a scaffold, whose unit cell is
characterized by an s-value different from 1.

Cell properties have been evaluated also for other com-
binations of s and k parameters. In Figure 7, several P-cells
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Figure 7: Several geometries of P-cells obtained for different combinations of 𝑘 and 𝑠 parameters.

obtained with different combinations of k and s values are
shown.

Figures 8(a) and 8(b) report the cell global properties 𝑓V,𝑝𝑠/𝐿, surface area per unit volume, and surface ratio for the
P-cells of Figure 7.

3.1. Surface Curvature Properties. As already observed, sur-
face curvature is a local property that is important to consider
during the design optimization of advanced tissue engineer-
ing scaffolds: it contributes, in fact, to the control of the
kinetics of tissue deposition and the cellular differentiation
during the regenerative processes. The new cell properties,
proposed here to take into account these aspects during
the scaffold design, require the evaluation of some local
geometric-differential properties of the P-surface, such as the
principal curvatures.

Let 𝑘1 and 𝑘2 be the principal curvatures at a generic
point p of the P-surface. The product 𝑘1𝑘2 of the two
principal curvatures defines the Gaussian curvature G, and

the average (𝑘1 + 𝑘2)/2 is the mean curvature H. For a
minimal surface 𝑘1 = −𝑘2 at each point, so that the surface
is composed exclusively of saddle points and the curvature
H is zero everywhere. However, the P-surface, described by
(1) truncating the Fourier series to the leading term, is only
approximately a minimal surface when k=0; in this case, the
surface is locally nearly saddle-shaped and H ≈ 0 at each
point. These properties are kept even if the s parameter of
(1) is modified. In all the other cases (𝑘 ̸= 0), the P-surface
is not minimal and it is characterized by an H-value that is
approximately constant at each point of the surface. In this
case, in addition to the saddle points, some regions of concave
or convex points, according to the sign of the 𝑘-parameter,
appear.

In order to identify these regions, which can affect
differently the tissue regeneration, a methodology has been
suitably developed here. This methodology, firstly, evaluates
the surface curvature maps by the paraboloid method and,
secondly, recognizes automatically the concave or convex
regions estimating, for each of them, how much the surface
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deviates from being flat, and the corresponding region area.
This study has been carried out for the P-surfaces of Figure 7,
with the purpose of investigating the relationship with 𝑘 and
𝑠 parameters.

The paraboloid method estimates the curvature by per-
forming a local approximation of the vertices of the triangular
mesh with a paraboloid and then deriving the second-order
differential properties from that. A MATLAB implementa-
tion of this method, developed in [43], has been used here
to evaluate the surface maps of the principal curvatures 𝑘1
and 𝑘2. Figure 9 shows, for example, the surface map of the
Gaussian curvature G for a P-surface with k = -0.7 and 𝑠 = 1.
Nonhomogeneous surface distributions have been obtained
for 𝑘1 and 𝑘2 too.

The recognition process of the concave and convex
regions from P-surface is based on the sign of the principal
curvatures.The algorithmproposed here recognizes a generic
node p of the mesh as concave (respectively convex) if the
principal curvatures 𝑘1 and 𝑘2, evaluated at that vertex,
satisfy the condition min{𝑘1, 𝑘2} ≥ 0 and max{𝑘1, 𝑘2} >
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Figure 9: Color map of G distribution for a P-surface with k = -0.7
and s = 1.

0 (respectively, max{𝑘1, 𝑘2} ≤ 0 and min{𝑘1, 𝑘2} < 0).
In Figure 10(a) the mesh nodes, recognized as concave,
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Figure 10: (a) Concave regions recognition for the P-surface with k = -0.7 and s = 1. (b) A magnified view of one of these regions.
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Figure 11: Trend of the mean value of R when k and s vary.

are represented with green dots in the case of a P-surface
obtained setting k = -0.7 and s = 1 in (1).

The next step of the methodology detects the con-
cave (or convex) triangular regions by a region-growing
process, implemented into MATLAB. For the P-surface of
Figure 10(a), for example, eight concave regions have been
identified, practically identical to each other in terms of area
and curvature properties. In Figure 10(b) one of these regions
has been represented in a magnified view. Several tests,
carried out on P-cells obtained by modulating the 𝑘-value,
have shown that concave and convex regions are, respectively,
detected for 𝑘 < 0 and 𝑘 > 0. Due to the surface cubic
symmetry, these regions are eight and they are practically
identical to each other.

Since the principal curvatures have the same sign at each
node of these regions, the curvedness measure 𝑅, defined as
𝑅 = √𝑘21 + 𝑘22, can be used to measure how much the surface
locally deviates from being planar. In Figures 11 and 12 the
trend of the mean value of R on all the nodes of a region
(in figure the dimensionless product 𝑅𝑚𝑒𝑎𝑛L) and the region
area 𝐴𝑟% (evaluated as percentage of the total area S of the
P-surface) are reported when k and s vary.
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Figure 12: Trend of the 𝐴 𝑟% when k and s vary.

The diagrams of Figures 11 and 12 show that both the
curvedness 𝑅𝑚𝑒𝑎𝑛 and the area 𝐴𝑟% depend significantly on
𝑘, increasing with the absolute value |𝑘|. These two local
properties are also affected by the s parameter: for a given
k-value, the curvature 𝑅𝑚𝑒𝑎𝑛 increases and the area 𝐴𝑟%
decreases when s reduces.

4. Solid P-Cell Design

A flowchart of the design process of a solid cell, starting from
an external P-surface that meets various design requirements,
among the cell properties described in the previous section, is
shown in Figure 13. These target requirements may be given
in the form of dimensionless design inputs (such as volume
fraction 𝑓V) or not (such as pore size 𝑝𝑠 or curvature 𝑅𝑚𝑒𝑎𝑛).
The target values of dimensionless design inputs are achieved
by selecting appropriately the values to be assigned to the k
and s parameters according to the diagrams for P-surface cell
properties shown in the previous section.

In the case of design inputs dependent on the size 𝐿 of
the cubic cell (differently, based on the type of the input),
an appropriate scale factor, by which a uniform scaling



The Scientific World Journal 9

P-surface
generation

P-surface
offsetting

P-surface
properties
evaluation

definition
Scaling
factor

evaluation

Solid Cell

Design Inputs for
Solid Cell

Thickness
evaluation

P-surface
uniform
scaling

Dimensionless
Design Inputs

Dimensional
Design Inputs

k and s

Figure 13: Flowchart of the design process of a solid P-cell.

transformation of the P-surface with respect to the cell’s
centre is performed, has to be identified.

In the flowchart of Figure 13, the first blocks aim at
defining the P-surface architecture. This phase requires the
identification of the k and s values to be considered in (1).
Then the P-surface is scaled in order to meet the target
values assigned for dimensional design inputs. In this respect,
it is interesting, for example, to observe that, in order to
obtain values of curvature radius able to influence the tissue
regeneration (i.e., between 250 and 750𝜇m, as evidenced
in [28]), the final size of the P-cell may be so small that
its manufacturing for AM would become quite problematic.
This means that the radii of curvature estimated at the
points of the concave and convex regions (detected if k is
nonzero) are therefore not sufficiently high to influence the
mechanisms of cellular regeneration. For this reason, the
authors intend to apply shortly the methodology, proposed
here for the concave or convex region recognition, to other
TPMS surfaces characterized by surface curvature maps with
higher average values (such as Double Diamond or Fischer-
Koch S surfaces).

Thenext phase of themethodology aims at generating the
solid P-cell in the form of a thin shell. This phase requires
the definition of another fundamental design variable: the
thickness t. The t-value may be identified, for example,
starting from the porosity P of the solid P-cell. Porosity, as
already observed, is an important target property of the bone
scaffold from both biological and mechanical point of view
and it is defined by the following formula:

𝑃 = 𝑉unitcubiccell − 𝑉𝑃−cell
𝑉unitcubiccell

(3)

where𝑉𝑃−cell is the volume occupied by the solid P-cell.

If porosity 𝑃 is an assigned design input, the thickness 𝑡
can be evaluated from the following equation:

𝑃 = 1 − ( 𝑆
𝐿2) ⋅ ( 𝑡

L
) (4)

since the dimensionless ratio 𝑆/𝐿2 and the L-value were
already identified during the previous steps of the flowchart.
Once the t-value was established, the solid P-cell is finally
obtained from the tessellated surface by an inward offset
operation (with an offset distance equal to t). Then, the
surface is converted into a solid structure.These last two steps
were performed into aCADenvironment byCATIA software.

Figure 14 reports the trend of porosity P, estimated from
the volume occupied by the solid cell, for several cells
obtained by modulating the two parameters s and k.

Three different values of the thickness t have been
considered, and each curve in the diagrams of Figure 14 is
relative to a constant value of the t-parameter, expressed in
mm. In accordance with the trend of the surface ratio 𝑆/𝐿2,
shown in Figure 6, the porosity is little affected by the k and
s modulation, for s values lower than 1.1 and for a given
value of the thickness. The effect of this variation, however,
is more relevant at high thickness values than low ones. The
thickness variation, on the other hand, has a more relevant
effect, which, as expected by (4), is linear with t.

5. Structural Numerical Evaluation of
the Solid P-Cells

The introduction of the thickness on the P-cell, as previously
described, allows obtaining a solid P-cell as that reported in
Figure 15 and derived from the standard P-surface (𝑘 = 0,
𝑠 = 1).
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Figure 14: Trend of the porosity P, evaluated the formula (3), for solid P-cells: (a) in the case of s parameter variable (𝑘 = 0) and (b) k variable
(𝑠 = 1).

Figure 15: Solid P-cell (𝑘 = 0, 𝑠 = 1).

The geometrical configuration of a solid P-cell can be
changed by the variation of the key parameters and the
resultant architecture can affect the stiffness of the cells, which
is an important issue in the design of the scaffolds.

In order to analyze the behavior of the solid P-cells,
representative configurations can be selected, given that the
cells can be structurally characterized by analyzing a limited
number of them. In particular, solid P-cells were derived by
varying the s parameter (𝑘 = 0). Figure 16 shows some of the
cells considered.

The figure reports the solid P-cells obtained, respectively,
for 𝑠 = 0.85, 𝑠 = 1.15, and 𝑠 = 1.45. A qualitative
comparison among the solid P-cells highlights, at the same
thickness, the different geometrical configurations. Similarly,
a discrete number of solid P-cells with the 𝑘 parameter
variable (𝑠 = 1) were considered. Figure 17 shows some

representative geometrical configurations of these solid P-
cells.

The figure reports the solid P-cells, respectively, obtained
for k = -0.75, k = 0.5, and k = 0.7.The differences between the
resultant architectures, at the same thickness, are qualitatively
highlighted also in comparison with the solid P-cells reported
in the previous Figure 16.

The models were structurally analyzed by means of finite
elements analysis. The biocompatible material chosen for
the solid P-cells was a titanium alloy (Ti–6Al–4V), which
is considered advantageous for these applications thanks to
its excellent osseointegration, superior corrosion resistance,
and good mechanical properties [44]. The properties of the
constituentmaterial were assumed as follows: elasticmodulus
Es = 110GPa, shear modulus Gs = 40GPa, and Poisson’s ratio
]s = 0.3. Solid P-cells with a size of 5mm were considered.
Each solidmodel was imported into a FE code andmeshed by
using eight nodes linear brick elements. Convergence testing
was performed in order to minimize the influence of mesh
density on the results. A global element size of 0.05 was
chosen as an optimal compromise between mesh sensitivity
and computational effort required.

Two different loading configurations were considered. In
particular, eachmodelwas subjected to compression load and
to shear load in order to determine the elastic moduli for the
two loading configurations. Figure 18 reports, schematically,
the boundary and loading conditions considered for the
models of the solid P-cells.

Uniaxial compression tests were simulated by applying a
uniform displacement, within thematerial elastic limit, to the
top surface of the solid P-cell in the y direction (Figure 18(a)),
corresponding to 0.1% of a compressive strain, while the
lower surface of the model was fully constrained.
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Figure 16: Architectures of solid P-cells with different values of the parameter s and 𝑘 = 0.
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Figure 17: Architectures of solid P-cells with different values of the parameter 𝑘 and 𝑠 = 1.
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Figure 18: Loading configurations considered: (a) uniaxial compression load; (b) shear load.

The elastic modulus E, given by the ratio between the
homogenised stress and the applied strain, can be calculated
by means of the relationship 𝐸 = (𝐹𝑅/𝐴)/𝜖𝐴, where 𝐹𝑅 is the
reaction force calculated by the FE solver, A is the total cross-
sectional area, and 𝜖𝐴 is the applied strain. For each solid P-
cell three different values of the thickness were considered in
order to verify the influence of this parameter on the stiffness
of the cell.

The results obtained for the analyzed solid P-cells are
reported in Figure 19. In particular, Figure 19(a) shows the
normalized elastic modulus (E/Es) relative to the solid P-cells
with the s parameter variable (𝑘 = 0), while Figure 19(b)
reports E/Es for the solid P-cells with variable k parameter
(𝑠 = 1).

Each curve in the diagrams of Figure 19 corresponds to a
constant value of the thickness, reported in each graph and
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Figure 19: Normalized elastic modulus: (a) solid P-cells with variable s parameter (𝑘 = 0); (b) solid P-cells with variable k parameter (𝑠 = 1).
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Figure 20: Von Mises stress distribution for different values of the parameter s: (a) 𝑠 = 0.85; (b) 𝑠 = 1.45.

expressed in mm. As expected, at constant 𝑠 or 𝑘, an increase
of the stiffness of the solid P-cell with the increasing of the
thickness can be observed.

From the diagram in Figure 19(a) it is possible to observe
that the values of the normalized elastic modulus decrease
as the parameter 𝑠 increases with an approximately linear
trend. Inversely, for the solid P-cells with 𝑘 variable, the
elastic modulus grows with the increasing of the value of the
parameter k, as shown in Figure 19(b), and the intermediate
value corresponds to that of the standard solid P-cell (k = 0).
From a comparison between the values obtained for the two

types of solid P-cells, it can be observed that, for any given
thickness, on average, higher values of the elastic modulus are
obtained for the solid P-cells with 𝑘 variable with respect to
those where s is the parameter that is varied.

FE simulations allow mapping the stress distribution
in the solid P-cells that, in this analysis, can be useful to
compare, in terms of strength, the geometries of the cells
considered. Figure 20 shows the isocolor representation of
VonMises stress, expressed inMPa and obtained for different
values of the parameter s. The maps are relative to the
intermediate value of the thickness.
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Figure 21: Von Mises stress distribution for different values of the parameter 𝑘: (a) 𝑘 < 0; (b) 𝑘 > 0.

The solid P-cell reported in Figure 20(a), corresponding
to 𝑠 = 0.85, falls in the range of the cells with the highest
values of stiffness, while the cell in Figure 20(b) corresponds
to a model (𝑠 = 1.45) with a low value of the elastic
modulus. Generally, a structure with higher average stress at
a constant applied strain has higher elastic properties. This is
also verified in this case by a qualitative comparison between
the maps reported in Figure 20 and the corresponding values
of the compressive elastic modulus. In fact, the solid P-cell
𝑠 = 1.45 shows on average lower stress values with respect to
the other considered.

Similar considerations may apply to the solid P-cells
with k as variable parameter. Von Mises stress distribution,
expressed in MPa, of two representative solid P-cells belong-
ing to this class is reported in Figure 21.Themaps are relative
to the same value of the thickness previously considered for
the cells with s variable.

In particular, Figure 21 shows the isocolor representation
of Von Mises stress, respectively, for a negative value of the
parameter, namely, k = -0.75 (Figure 21(a)) and a positive
value (k = 0.7) reported in Figure 21(b). The lower average
stress in the solid P-cell with k = -0.7, characterized by a low
value of the elastic modulus, is highlighted with respect to
the other solid P-cell reported in the figure which belongs to
the group of cells having high values of stiffness. A qualitative
analogy between themaps reported, respectively, in Figure 20
and in Figure 21 can also be observed.

The shear modulus was evaluated by the application, to
each model of the solid P-cells, of the loading configuration
schematically reported in (Figure 18(b)). A uniform displace-
ment was applied to the nodes on the outermost lateral face

(+x) in the y direction, while the opposite face (-x) was fully
constrained. The nodes on the top face (+y) of each model
and those on the bottom face were also constrained in the
x direction. The shear modulus G, analogously to E, was
evaluated starting from the reaction force calculated by the
FE solver. The equivalent applied strain was 0.1%. Figure 22
reports the results of the FE simulations relative to shear
tests.Thefigure depicts the normalized shearmodulus (G/Gs)
obtained for the solid P-cells for different values of the s
parameter (Figure 22(a)) and that relative to the cells with
variable k parameter (Figure 22(b)). Each curve corresponds
to a constant thickness, reported in each graph and expressed
in mm.

From Figure 22(a) it can be inferred that the shear mod-
ulus has approximately a parabolic trend, with the maximum
value corresponding to the standard solid P-cell characterized
by a unitary value of the parameter s. The shear modulus
relative to the solid P-cells with variable k parameter, reported
in Figure 22(b), has an increasing and nearly linear trend
analogously to the compressive modulus. From the diagram
it is also possible to observe that, in correspondence of
higher values of the parameter 𝑘 and at the highest thickness
considered, the cells have a shear modulus higher than that of
the bulk material, which implies that the shear performance
can be increased above the reference. As regards Von Mises
stresses, observations similar to that exposed for the solid P-
cells subjected to compression load, previously considered,
are applicable since similar results were obtained.

The relationship between stiffness of the solid P-cells,
expressed in terms of elastic moduli, and porosity has also
been considered since it is an important issue for the design
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Figure 22: Normalized shear modulus: (a) solid P-cells with variable s parameter (𝑘 = 0); (b) solid P-cells with variable 𝑘 parameter (𝑠 = 1).
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Figure 23: Normalized elastic modulus as a function of porosity.

of the scaffolds. The calculated elastic and shear moduli can
be expressed as a function of porosity, which is related to the
relevant geometric parameter S/L2, discussed in the previous
paragraphs, bymeans of (4). Figure 23 reports the normalized
elastic modulus obtained for the two classes of the solid P-
cells analyzed in this study, labelled in the figure as s and k, at
the different values of thickness considered.

Figure 23 shows that the solid P-cells obtained by combin-
ing the different parameters are characterized by stiffness val-
ues that can be varied within a quite wide range maintaining
at the same time high values of porosity, which is a requisite
characteristic in scaffold design. In fact, high porosity is
recommended since it is a critical parameter in promoting
vascularization and tissue ingrowth. From the diagram it is
also possible to observe that, at a constant thickness, a nearly
parabolic curve is obtainedwhose upper portion ismadewith
the values of the elastic modulus of the cells with variable 𝑘
parameter, while the lower portion identifies the solid P-cells
with variable s parameter.

The shear modulus, obtained for the different solid P-
cells, has also been related to porosity. Figure 24 reports the
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Figure 24: Normalized shear modulus as a function of porosity.

variation of the normalized shear modulus as a function of
this parameter for both types of solid P-cells considered,
respectively, labelled with 𝑠 and 𝑘.

Similarly to the compression modulus, each curve
obtained at constant thickness has a nearly parabolic trend
and globally different shear moduli are obtained in a range of
values of porosity suitable for scaffold design.

6. Conclusions

In this paper, a comprehensive characterization of the P-cell
for its application in design of bone scaffolds was carried
out. Several cell properties, able to affect the performance
of a scaffold in terms of tissue regeneration and mechani-
cal behavior, were assessed for various P-cell architectures
obtained by modifying the two analytical parameters of the
implicit function used for describing the Schwartz Primitive
Surface. These cell properties include, in addition to global
properties, also curvature, given the important role it has in
cell proliferation and differentiation.
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The evaluation of the cell global properties from several
P-cell architectures shows a bit higher sensitivity to the
modulation of s than to that of k–parameter.The repetition of
a cell with s different from 1 along three mutually perpendic-
ular directions, however, leads to defining a scaffold, whose
C1 continuity is not verified at the shared boundary curve
between adjacent cells. This aspect should be considered
especially for s values very different from 1.

To quantify surface curvature variation due to k and s
modulation, in this work new local cell properties have been
proposed, which are useful to consider when designing scaf-
foldswith spatially controlled surface curvature. In particular,
these properties require, to be evaluated, the estimation of the
principal curvatures maps locally to some regions potentially
critical for cellular regeneration mechanisms. An original
methodology has beendeveloped here to detect automatically
these regions. The application of this methodology to several
P-cells pointed out that the radii of curvature, estimated at
the points of the concave and convex regions detected, are
not sufficiently high to influence the mechanisms of cellular
regeneration and differentiation. Themethodology, however,
can be used for any other cell, regardless of its geometry. In
this respect, the authors intend to apply it to other TPMS
surfaces characterized by surface curvature maps with higher
average values (such as Double Diamond or Fischer-Koch S
surfaces).

The structural numerical analysis on the solid P-cells has
highlighted the relationship between the parameters s and k
and the elastic moduli of the cells. Moreover, it was found
that the values of the stiffness can be varied within a quite
wide range, maintaining, at the same time, high values of
porosity, which is a main requirement in the design of the
scaffolds.

The results of this investigation are important to identify
the values to be assigned to the set of parameters defining its
architecture (i.e., the analytical parameters 𝑘 and 𝑠) and sizes
(i.e.,𝐿 and 𝑡). Since the global and local properties of the P-cell
represent important functional requirements in the design
of customized bone scaffolds, the study also pointed out
how they may be integrated into the workflow of the design
process of a solid P-cell, with the view to obtaining scaffolds
able to satisfy both biological and mechanical requirements.
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