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Abstract: The development of reactions converting
alkenes and alkynes into valuable building blocks
remains one of the main goals of synthetic chemistry.
Herein, we present the leveraging of highly electron-
deficient iminium ions, rare and fleeting intermediates,
into a general amine synthesis. This enables the prepara-
tion of amines bearing e.g. valuable α-trifluoromethyl
moieties under mild conditions. This broad concept is
highlighted by the late-stage amination of quinine into a
biologically interesting new analogue.

Iminium ions are privileged intermediates for the synthesis
of amines,[1] involved in efficient processes such as the
Mannich reaction,[2] reductive amination[3] or nucleophilic
additions.[4–6] In 2018, Doyle reported a three-component
coupling of amines, aryl aldehydes and bromides/triflates
that affords tertiary amines via nickel-catalyzed reduction of
an iminium intermediate, generated in situ by condensation
(Scheme 1a).[7] In the same year, the Gaunt group developed
photocatalytic conditions for a multicomponent hydroami-
noalkylation reaction (Scheme 1b).[8] The reaction, applied
to the total syntheses of (� )-FR901483 and (+)-TAN1251C,
proceeds through SET reduction of a transient iminium ion,
once more generated in situ by condensation of an amine
with an aldehyde or ketone.[9] Last year, the same group
developed conditions for a radical-based synthesis of amines
via radical addition to a transient iminium intermediate
(Scheme 1c).[10] Intriguingly, these three state-of-the-art
methods all require the deployment of a stoichiometric
reducing agent (Scheme 1).
The use of a carbonyl condensation approach to

generate the pivotal iminium intermediate, while flexible,

restricts access to highly electron-deficient iminium ions
such as those shown in Scheme 1d. Indeed, such species are
scarcely described in the literature,[11–13] but notably have not
been used in conjunction with unactivated alkenes. This is
unsurprising given that aldehydes such as e.g. (2,2,2-
trifluoro)acetaldehyde are fleeting species, commonly only
available as the hydrate/hemiacetal—yet, the possibility to
access amination products carrying a CF3-group is of
potentially enormous value for drug discovery and materials
science alike, due to the interesting properties imparted by
the trifluoromethyl substituent.[14–16]

We considered a different approach towards these
reactive intermediates, namely their in situ preparation from
aminals, themselves stable precursors.[17–19] It is noteworthy
that such intermediates might allow access to a range of
highly functionalized amines that cannot be obtained by any
of the previously mentioned methodologies (Scheme 1d).
Here, we present the leveraging of highly electron-

deficient iminium ions in the synthesis of valuable
trifluoromethylated amines, aminoesters and aminophosph-
onates by hydroaminoalkylation of unactivated alkenes and
alkynes. Our concept relies on the pairing of a rapid
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Scheme 1. a,b,c) Modern methods for the synthesis of amines. d)
Development of a metal-free hydroaminoalkylation of olefins and
alkynes.
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intermolecular aza-Prins-like reaction of these electron-
deficient species with a stereoselective internal reduction
event (1,5-hydride transfer)[18,20–23] ensuring that C� C bond
formation is coupled to reduction in a redox-neutral manner
and, contrasting the methods described before, without
requiring an external reductant (Scheme 1d). This strategy
enables the preparation of a broad range of valuable amines
and late-stage functionalization of complex architectures.
We focused our investigation on commercially available,

CF3-substituted aminal A (shown in Scheme 2), originally
developed by Dolbier for the synthesis of propargylic and
allylic α-trifluoromethylamines,[11] as an ideal benchmark to

test our hypothesis. We quickly found that the increased
electrophilicity and reactivity of A enabled the use of
exceptionally mild reaction conditions. In particular, at
temperatures as low as –10 °C, we observed the combination
of A with unactivated alkenes to deliver the desired
secondary α-trifluoromethylamines (Scheme 2A; see Sup-
porting Information for the full optimization). As known
methods to access α-trifluoromethylamines are often multi-
step procedures,[24–33] or rely on unstable reagents under
oxidative conditions,[34–36] the coupling of A with readily
available alkene feedstocks provides a direct solution to this
synthetic challenge. The scope of this reaction proved to be

Scheme 2. Substrate scope for the synthesis of α-trifluoromethyl, α-carboethoxy and α-phosphonyl amines by hydroaminoalkylation of alkenes and
alkynes. [a] Reaction conducted at 20 °C. [b] Reaction using in situ generated Aminal B instead of A—See Supporting Information for details.
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wide: both linear (1a, 2a) and cyclic alkenes (3a, 4a) were
converted to the α-trifluoromethylaminated products in
good to excellent yields (Scheme 2A) and high functional-
group tolerance was observed when halides (5a), esters (6a)
and even a free alcohol (7a) were shown to be well tolerated
Alkynes also reacted smoothly (8a, 9a and 11a) and in
stereoselective manner, delivering di- and trisubstituted
olefinic products as single double-bond isomers.[12,37] An
enyne substrate displayed selectivity for the triple bond
(10a), a useful chemoselectivity trait. Moreover, a terminal
alkyne was found to react preferentially to an internal one
(12a).
A remarkable example is portrayed in 1aa, where an in

situ generated benzyl aminal B could be employed to yield a
benzylamine product. This result further highlights the
practicability of the method, as diversely substituted aminals
can be rapidly synthesized and used without further
purification.
After exploring the scope of possible substrates for

trifluoromethyl-aminoalkylation, we turned our attention
towards different highly electron-deficient iminium ions. In
particular, we recognized the appeal of an unprecedented
direct formation of α-amino acid derivatives from unacti-
vated alkenes. This is a long sought-after transformation in
organic synthesis, with a direct, one-step strategy yet to
emerge.[38]

In the event, carbethoxyaminal[39] C (Scheme 2B) proved
suitable for this task in reaction with alkenes under gentle
heating (see Supporting Information for the full optimiza-

tion). Electron-rich (1b, 2b) and -poor styrenes (3b)
performed comparably well and were converted to the
corresponding α-amino acid derivatives in moderate yields.
The functional-group tolerance of the process was not
affected, and it was possible to obtain α-amino esters bearing
a hydroxyl (5b), an ester (7b) or a sulfone (10b) moiety
along the aliphatic chain.
Even a primary bromide (9b) did not undergo nucleo-

philic substitution under the reported conditions, and an
azide (14b) also remained untouched. As a sample applica-
tion, the presented method enables a straightforward syn-
thesis of the unnatural α-amino acid homophenylalanine
(17b) in only three steps from styrene: as shown, the
hydroaminalkylation can, in this case, be conducted as a 3-
component coupling of a secondary amine, a glyoxalate and
an olefin (Scheme 2B).
Finally, setting our vistas on α-aminophosphonates as

targets, we found that acidolysis of the hemiaminal D
(Scheme 2C) also resulted in the selective formation of an
iminium species competent for redox-neutral coupling to
alkenes.[40] As for the preceding cases, both styrenes and
aliphatic alkenes afforded the desired adducts (1c–4c) in
good yields.
The methods laid out herein offer opportunities for

application to biological settings. As shown in Scheme 3A
and B, a trifluoromethylated derivative of the 1st generation
anti-histaminic chlorpheniramine could be swiftly prepared
in a tandem hydroaminoalkylation/Eschweiler–Clarke reac-
tion (16a). In a similar fashion, an analog resembling the

Scheme 3. A, B) Selected applications to biological problems. C–E) Mechanistic probes. [a] Reaction conducted at 75 °C. [b] Based on recovered
starting material. [c] With 10 equiv of paraformaldehyde and HCOOH at 100 °C—See Supporting Information for details.
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famed antimalarial drug chloroquine was also successfully
synthesized (15a). The natural product quinine was also
successfully converted to an α-trifluoromethylamine deriva-
tive (17a) in an interesting example of late-stage functional-
ization. Due to quinine’s well-known antimalarial
activity,[41,42] we were intrigued by this analog and its
potential as an antimalarial agent. Quinine analog 17a was
used to treat two distinct cell-lines, the first one containing
P. falciparum and the second containing L6 rat cells, in
order to check for its antimalarial activity and cytotoxicity,
respectively. 17a achieved potent in vitro inhibition (IC50=
24 nM) of the growth of P. falciparum and the evaluation of
its effect on L6 rat cells showed it to be non-cytotoxic.
Importantly, the antimalarial activity exhibited by 17a is
comparable to that of chloroquine sulphate, a drug used to
treat similar diseases.[43]

Finally, integration of these reactions into interesting
domino processes presents useful synthetic opportunities
(Scheme 3C–E). For instance, halogen or arene migration
processes enable relatively simple (alkyne 5d) and commer-
cially available (5-chloropentyne (1d)) starting materials to
directly deliver aminated products of higher complexity
(Scheme 3C and D). Strategic positioning of an ester moiety
(8d) leads to interception and delivers products of a formal
hydrative Mannich transform (Scheme 3E).
In summary, we have presented an approach leveraging

highly electron-deficient iminium ions which allows their
coupling with unactivated unsaturated partners without
requiring a reductant. In doing so, we provide one-step
synthetic routes to trifluoromethylated amines, aminoesters
and aminophosphonates of potentially high value for
medicinal, pharmaceutical and materials chemistry. The
described late-stage derivatization of quinine suggests a
general strategic deployment of this reaction to bioactive
substances carrying an unsaturation.
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