
www.transonc.com

Volume 13 Number 2 February 2020 pp. 245–253 245

Address all
Zhangjian
201203, C
Orthopaed
Tianhan A
1Equal con
this work a
Genetic Profiling of Breast
Cancer with and Without
Preexisting Metabolic Disease
correspondence to: Huimin Liu, Biotecan Medical Diagnostics Co., Ltd.,
g Center for Translational Medicine, 180 Zhangheng Road, Shanghai
hina. E-mail: hmliu@biotecan.com or Binhui Yang, Department of
ic, The AviationHanzhong 3201Hospital, Xi’an Jiao TongUniversity, 783
venue, Hanzhong 723000, Shaanxi, China. E-mail: ybh3201@163.com.
tributors: Wenjiang Jing, Ling Li and Xiumei Zhang contributed equally to
nd should be regarded as co-first authors.
Wenjiang Jing*,1, Ling Li†,1, Xiumei Zhang‡,1,
Shouxin Wu§, Jiangman Zhao§, Qunxing Hou§,
Haotian Wu§, Wu Ma*, Shuheng Li¶, Huimin Liu§

and Binhui Yang#

*Department of Oncology, The Aviation Hanzhong 3201
Hospital, Xi'an Jiao Tong University, Hanzhong 723000,
Shaanxi, China; †Department of Oncology, Tengzhou Central
People's Hospital, Jining Medical University, Tengzhou
277500, Shandong, China; ‡Department of Pathology,
People's Hospital of Xinghua City, Xinghua 225700, Jiangsu,
China; §Biotecan Medical Diagnostics Co., Ltd., Zhangjiang
Center for Translational Medicine, Shanghai 201203, China;
¶Department of Thyroid and Breast Surgery, Tengzhou
Central People's Hospital, Jining Medical University,
Tengzhou 277500, Shandong, China; #Department of
Orthopaedic, The Aviation Hanzhong 3201 Hospital, Xi'an
Jiao Tong University, Hanzhong 723000, Shaanxi, China
Abstract

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women.

Various mechanisms are involved in the initiation and progression of breast cancer. Metabolic dysregulation has

been associated with increasing breast cancer incidence and mortality. However, little is known about how

metabolic disease regulates the development and progression of breast cancer at the molecular level. Here, using a

hybridization capture-based panel including 124 cancer-associated genes, we performed targeted next-generation

sequencing of tumor tissues and matched blood samples from 20 postmenopausal patients with primary breast

cancer, in which 6 cases suffered from preexisting metabolic disorders including hypertension, type 2 diabetes,

and coronary heart disease. We took only the protein-altering variants and identified 170 somatic mutations of 59

genes. Among these, 40 mutated genes were found in the metabolic disease group, and 33 mutated genes were

found in the nonemetabolic disease group. Importantly, nonsynonymous mutations of 26 genes (MSH3, BRAF,

MLH3, MTOR, DDR2, ALK, etc.) were uniquely present in the metabolic disease group. Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to investigate biological functions

and key pathways of somatic mutations. TP53, PIK3CA, and PTEN were the top three commonly mutated genes at

a higher frequency compared with the Cancer Genome Atlas (TCGA) data, and several novel but infrequent

mutations in other genes were also found. Although further studies are required to validate these variants, our

results are the first to suggest a specific molecular profile of breast cancer with preexisting metabolic disease.
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Table 1. Demographic Characteristics.

Characteristics Metabolic Disease Nonemetabolic Disease

Age
�50 0 0
>50 6 14

Gender
Male 0 0
Female 6 14

Family History
Yes 0 0
No 6 14

Smoking
Yes 0 0
No 6 14

Drinking
Yes 0 0
No 6 14

Menopausal Status
Premenopausal 0 0
Postmenopausal 6 14

Preexisting Metabolic Disease
Hypertension 4 0
Type 2 diabetes 2 0
Coronary heart disease 1 0

Metabolic disease, the group in which patients with breast cancer suffered from preexisting metabolic
disorders. Nonemetabolic disease, the group in which patients with breast cancer were free from
preexisting metabolic disorders.
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Introduction
Breast cancer alone is expected to account for 30% of all new cancers
in women in Western countries, and the overall incidence has been
consistently increasing ever since 1980s [1]. China has a low
incidence of breast cancer, but since the 1990s, its incidence has
increased more than twice as fast as global rates, particularly in urban
areas [2]. Breast cancer is now the most frequently diagnosed cancer
and is the sixth leading cause of cancer-related death in Chinese
women [3]. Reproductive and hormonal factors, including a long
menstrual life, increased age at first live birth, nulliparity, and limited
breastfeeding, are associated with a modestly increased risk of breast
cancer in the Chinese population [4e7]. Obesity and low levels of
physical activity also probably contribute to the increasing incidence
of breast cancer in China [8]. In accordance with the receptor status of
the breast cancer cells, estrogen receptor (ER)-positive tumors include
luminal types A and B, whereas ER-negative tumors include subtypes
in which human epidermal growth factor receptor 2 (HER2, also
known as ERBB2) is overexpressed and a basallike subtype that is
triple negative for ER, the progesterone receptor, and HER2 [9]. The
four main breast cancer subtypes are caused by different subsets of
genetic and epigenetic abnormalities [10]. To date, using different
technology platforms, molecular studies of breast cancer have
identified diverse subtype-specific mutations and signaling pathway
changes [11e15]. However, the epidemiological characteristics and
genetic background are different between Chinese and Western
population [2,16]. Further studies are needed to completely
characterize the molecular architecture of breast cancer in Chinese
women.

Chronic diseases including cancer, diabetes, and cardiovascular
diseases are emerging as one of the greatest threats to human health in
the 21st century. Higher body fatness is not only associated with a
higher risk of hypertension, type 2 diabetes, and coronary heart
disease but also with postmenopausal breast cancer [17]. Especially,
metabolic reprogramming is fundamental for the development, rapid
proliferation, and survival of cancer cells [18]. Hypertension has been
implicated as a risk factor for breast cancer among postmenopausal
women [19,20]. Furthermore, numerous studies have shown that
patients with type 2 diabetes are at a greater risk of developing breast
cancer [21e25]. Similarly, the link between type 2 diabetes and
breast cancer appears to be most evident in postmenopausal women
[21]. The prevalence of prior cardiac disease and of cardiovascular risk
factors such as coronary heart disease, myocardial infarction, diabetes
mellitus, arterial hypertension, hyperlipoproteinemia, and obesity
rises with increasing age at breast cancer diagnosis [26]. The presence
of preexisting cardiac diseases and risk factors adversely affects breast
cancer survival, independent of specific therapy-related cardiotoxic
effects [27]. Moreover, cross-talk between estrogen and the Notch
pathway in breast cancer and coronary heart disease suggests a strong
association between these two kinds of disease [28,29]. In a word, a
wealth of studies have found that preexisting metabolic diseases are
significantly associated with increasing breast cancer incidence and
mortality. However, the molecular mechanisms underpinning this
relationship are yet to be elucidated.

In this study, we established a hybridization capture-based panel
including 124 cancer-associated genes and performed targeted
next-generation sequencing (NGS) of tumor tissues and matched
blood samples from 20 postmenopausal patients with primary breast
cancer. We identified somatic mutations and biological consequences
associated with breast cancer with and without preexisting metabolic
disease including hypertension, type 2 diabetes, and coronary heart
disease. Our sequencing results were further compared with TCGA
data to clarify the difference between them. To our knowledge, we
present the first demonstration of the molecular profile of breast
cancer with and without preexisting metabolic disease. These results
provide further evidence for a critical role of the body metabolism
during the initiation and progression of breast cancer.

Materials and Methods

Patients and Samples
We recruited 20 postmenopausal patients with primary breast

cancer who were divided into metabolic disease group and
nonemetabolic disease group in accordance with whether suffering
from preexisting metabolic disorders including hypertension, type 2
diabetes, and coronary heart disease (Table 1). There were no
significant differences in clinical characteristics of breast cancer
between two groups (Table 2). Fresh frozen tumor tissues and
matched blood samples were collected from each patient. 10 patients
were recruited at the Aviation Hanzhong 3201 Hospital (Shaanxi,
China) between January 2017 and December 2017. 10 patients were
recruited at the Tengzhou Central People's Hospital (Shandong,
China) between January 2017 and December 2017. The experiments
were performed with the understanding and written consent of each
patient, and the investigation was performed in accordance with The
Code of Ethics of the World Medical Association (Declaration of
Helsinki), printed in the British Medical Journal [30]. The present
study was approved by the Medical Ethics Committee of Aviation
Hanzhong 3201 Hospital, Xi'an Jiao Tong University, and Tengzhou
Central People's Hospital, Jining Medical University.

Panel Information
We established a hybridization capture-based NGS panel, Biotecan

PanCancer Detection (BTC-PCD), which is capable of detecting



Table 2. Clinical Characteristics.

Characteristics Metabolic Disease Nonemetabolic Disease P-value

Invasive Ductal Carcinoma
Yes 6 14
No 0 0

Tumor Size (cm)
�2.0 1 5
2.1e5.0 4 6
>5.0 1 3 0.597

Stage
I-II 4 6
III-IV 2 8 0.329

Lymph Nodes
Negative 2 5
Positive 4 9 0.919

ER Status
Negative 4 7
Positive 2 7 0.492

PR Status
Negative 4 9
Positive 2 5 0.919

HER2 Status
Negative 3 6
Positive 3 8 0.769

Ki67 Value
<14% 0 0
�14% 6 14

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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protein-coding mutations in 124 cancer-associated genes including
cancer genetic risk genes, targeted drugs (approved by FDA, clinical
trials) and chemotherapy-associated genes, and prognosis genes.
BTC-PCD panel was designed referring to cancer-related database,
clinical guidelines, and high-quality references.
DNA Extraction and Quality Control
Genomic DNA (gDNA) from fresh tissue was extracted by

QIAamp DNA Mini Kit, and gDNA from blood by QIAamp DNA
Blood Mini Kit (Qiagen, Hilden, Germany). Quantity and purity of
gDNA were assessed by Qubit® 3.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA), and NanoDrop ND-1000 (Thermo Fisher
Scientific, Wilmington, DE, USA). Fragmentation status was
evaluated by the Agilent 2200 TapeStation system using the Genomic
DNA ScreenTape assay (Agilent Technologies, Santa Clara, CA,
USA) which was able to produce a DNA Integrity Number. An
additional quality control (QC) step to assess fresh frozen tissue DNA
integrity was performed using a multiplex polymerase chain reaction
(PCR) approach. Briefly, 30 ng of gDNA were amplified using three
different-size set of primers of glyceraldehyde-3-phosphate dehydro-
genase gene (200e400 base pair), and the concentration of PCR
products was determined by Agilent 2100 Bioanalyzer instrument
(Agilent Technologies). Then, to estimate fresh frozen tissue gDNA
fragmentation, we evaluated an Average Yield Ratio value, calculated
by yield ratio of each amplicon compared with a reference DNA
(Promega Madison, WI, USA).
Library Preparation, Hybridization Capture, and Sequencing
A total of 300 ng of each gDNA sample based on Qubit

quantification were mechanically fragmented on an E220-focused
ultrasonicator Covaris (Covaris, Woburn, MA, USA). 200 ng of
sheared gDNA were used to perform end repair, A-tailing, and
adapter ligation with KAPA library preparation kits (Kapa Biosystems
Inc. Wilmington, MA, USA) following the manufacturer instruc-
tions. Subsequently, the libraries were captured using xGen Lock-
down Probe Pools (Integrated DNA Technologies, Coralville, IA,
USA) and amplified. After QC and quantification by Agilent 2100
Bioanalyzer (Agilent Technologies) and Qubit® 2.0 Fluorometer
(Invitrogen), the libraries were sequenced on an Illumina Next 500
platform (Illumina Inc, San Diego, CA, USA) High Output mode,
2 � 75 cycles.

Bioinformatics Analysis
Clean data were obtained after filtering the low-quality reads,

including reads with adapter sequences, reads with proportion of N
more than 10%, and reads with low-quality base numbers more than
5. Reads were aligned to the reference human genome (UCSC hg19)
using the Burrows-Wheeler Aligner v.0.7.12 [31,32]. Then, the
Picard and Genome Analysis Toolkit (GATK v.3.2) method was
adopted for duplicate removal, local realignment, and base quality
recalibration and generated the quality statistics, including mapped
reads, mean mapping quality, and mean coverage [33,34]. Finally, the
GATK HaplotypeCaller was used for single nucleotide variation
(SNV) and Insertion/Deletion (InDel) calling.

Variants were annotated using the ANNOVAR software tool.
Annotations for mutation function (synonymous, nonsynonymous,
stop-gain, frameshift, and unknown), mutation location (exonic,
intronic, and untranslated region), amino acid changes, 1000
Genomes Project data, and dbSNP reference number were performed.

Somatic SNVs and InDels of tumors compared with matched blood
samples were named using MuTect v.1.1.4 and Varscan2 v.2.3.9
software. The mutations with variant allele frequency >5% were
defined as high confidence mutations. Then, gene mutation data were
downloaded from TCGA database, and comparative analysis was
performed using the sequencing data produced in the present study.

Statistical Analysis
The mutation landscape and lollipop plot were created by the

MafTools (v.1.8.0) in R software. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
were performed to investigate the biological importance of the somatic
mutated genes using the ClusterProfiler (v.3.10.1) in R software [35].
The cutoff of p-values <0.05 and FDR <0.05 were used to assess the
significance of enrichment terms. For comparison of the clinical
characteristics between two groups, Chi-square test was used.

Results

Demographic and Clinical Characteristics of Samples

20 postmenopausal patients with primary breast cancer suffering
invasive ductal carcinoma were recruited (Tables 1 and 2). Among
these patients, 14 cases made up the nonemetabolic disease
group and 6 cases were in the metabolic disease group presenting
with established metabolic disorders including hypertension (4), type
2 diabetes (2), and coronary heart disease (1). In the metabolic disease
group, one woman concurrently suffered from essential hypertension
and type 2 diabetes before she was diagnosed with breast cancer. All
patients were of Han nationality, and there was no statistical bias in
demographic characteristics including age, gender, smoking, drink-
ing, and family history. Fresh frozen tumor tissues were collected after
surgery and histologically confirmed by two pathologists. There were
no significant differences in receptor status, tumor size, TNM stage,
and lymph node metastasis between two groups. Peripheral blood



Figure 1. Frequency and types of mutations in top 30 genes identified by targeted sequencing. Different mutations and subtypes
are colored in the middle panel. Frequencies of mutations are shown on left (%). Top panel shows the number of nonsynonymous
mutations in each sample, and right panel shows the number of samples with nonsynonymous mutations. Yellow bar represents
nonemetabolic disease group, whereas light blue bar stands for metabolic disease group at the bottom. Missense mutation, a
point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. Nonsense mutation, a
point mutation that results in a premature stop codon or a nonsense codon. Frameshift del, a variant caused by deletion that moves
the coding sequence out of frame. In-frame del, a deletion that keeps the sequence in frame. Multihit, contains multiple types of
the aforementioned nonsynonymous mutations.
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samples from these 20 patients were also collected and sequenced by
BTC-PCD in the present study.
Landscape of Somatic Mutations
We performed targeted NGS of tumor tissues and matched blood

samples to study the somatic mutations of breast cancer with and
without preexisting metabolic disease. After annotation of somatic
SNVs and InDels, we focused only on protein-altering variants. As a
result, we identified 170 somatic mutations of 59 genes in total 20
patients, which could be classified into five types including missense
mutation, monsense mutation, frameshift del, in-frame del, and
multihit. Top 30 genes with somatic mutations identified by
BTC-PCD were showed in Figure 1. The five most frequently
mutated genes were TP53 (65%), PIK3CA (50%), PTEN (35%),
EGFR (30%), and TERT (25%).

Most of the genes were present with different frequency and sites of
mutations between two groups. For example, TP53 and PIK3CA
showed different amino acid alterations in two groups (Figure 2).
83.33% patients harbored mutations in TP53 in the metabolic
disease group, whereas only 57.14% patients in the nonemetabo-
lic_disease group. Although half of patients harbored mutations in
PIK3CA in two groups, their mutation frequency and sites were
significantly different.
Analysis of Somatic Mutation Differences Between Two
Groups

Preexisting metabolic diseases are significantly associated with
increasing breast cancer incidence and mortality. However, little is
known about the mechanisms at the molecular level. To further
investigate the difference of somatic mutations between two groups,
we plotted Venn diagram of genes with somatic mutations (Figure 3).
Among 59 somatic mutated genes, 40 mutated genes were found in
the metabolic disease group and 33 mutated genes were found in the
nonemetabolic disease group. Importantly, somatic mutations of 26
genes including MSH3, BRAF, MLH3, MTOR, DDR2, ALK, etc.
were uniquely present in the metabolic disease group, whereas
somatic mutations of 19 genes including NRAS, TPM3, TERT,
CD74, NOTCH2, OBSCN, etc. only emerged in the nonemeta-
bolic disease group. 14 somatic mutated genes including RET, AR,
PIK3CA, PDGFRB, PMS2, EGFR, FGFR1, CDKN2A, PTCH1,
RB1, TP53, ERBB2, JAK3, and PTEN concurrently emerged in two
groups.

Biological Functions and Key Pathways Analysis of Somatic
Mutations in Two Groups

To better understand the biological consequences of the above--
described somatic mutations, we performed GO and KEGG

image of Figure&nbsp;1


Figure 2. Amino acid alterations of TP53 (A) and PIK3CA (B) in two groups. Structure domains are marked in different colors.
Lollipops show the locations of protein-altering variants. The proportion of patient-harbored nonsynonymous mutations in each
group is shown in the square brackets.
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enrichment analysis using the ClusterProfiler (v.3.10.1) in R software
(Figures 4 and 5). GO enrichment results showed that functional
categories were most involved in extracellular signaleregulated kinase
1 (ERK1) and ERK2 signaling in the metabolic disease group
(Figure 4A) and small RNA processing in the nonemetabolic disease
group (Figure 5A). Top 15 pathways were depicted in accordance

image of Figure&nbsp;2


Figure 3. Venn diagram of genes with somatic mutations in
metabolic disease and nonemetabolic disease groups.
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with gene count and p-value enriched by KEGG, and most pathways
involved were cancer-related (Figures 4B and 5B). Furthermore, 26
genes uniquely present in the metabolic disease group were
prevailingly distributed in proteoglycans pathway, epidermal growth
factor receptor (EGFR) signaling, and PI3K-Akt signaling. Compara-
tively, 19 genes that specifically emerged in the nonemetabolic
disease group were more enriched in pathways associated with EGFR
signaling, hormone signaling, and PD-1/PD-L1 signaling.
Comparison of Somatic Mutated Genes Identified by TCGA
Cohort and BTC-PCD Cohort

Comparative analysis of somatic mutated genes was performed
between BTC-PCD cohort and TCGA cohort (Figure 6). The
original data of breast cancer downloaded from TCGA database were
firstly aligned to BTC-PCD panel and excluded genes that were
absent in our panel. Thus, TCGA cohort used in our study only
contained 83 genes which were covered by BTC-PCD panel. We
Figure 4. Biological functions and key pathways analysis of soma
somatic mutations in the metabolic disease group. B. KEGG analy
count represents the number of mutated genes enriched in eac
Genes and Genomes.
observed important differences between two cohorts. 47 somatic
mutated genes identified by TCGA cohort were covered by
BTC-PCD cohort, including TP53, PIK3CA, PTEN, OBSCN,
NF1, AKT1, etc (Figure 6A). Overall, genes identified by BTC-PCD
cohort were at a higher mutation frequency compared with that in
TCGA cohort (Figure 6B). 12 novel somatic mutated genes were
identified in this study, including TERT (25%), CDKN2A (15%),
FGFR1 (15%), IDH2 (10%), BRCA1 (5%), BRCA2 (5%), CDA
(5%), FGFR3 (5%), VHL (5%), STK11 (5%), SMARCB1 (5%),
and NRAS (5%).
Discussion
Altered metabolic features are observed quite generally across many
types of cancer cells, and reprogrammed metabolism is considered a
hallmark of cancer [36,37]. Breast cancer is the most frequent type of
cancer in women worldwide [38]. A lot of studies have found that
preexisting metabolic diseases, including hypertension, type 2
diabetes, and coronary heart disease, are significantly associated
with increasing breast cancer incidence and mortality. However, the
molecular mechanism to address this relationship is still obscure. In
this study, we investigated the role of preexisting metabolic disease in
regulating the development and progression of breast cancer at the
molecular level.

Somatic mutations that occur in tumor cell genomes play a vital
role in cancer development. We used germline DNA from blood
samples as a reference for detecting somatic SNVs and InDels in
tumor tissues of 20 postmenopausal patients with primary breast
cancer. We totally identified 170 somatic mutations of 59 genes.
Intriguingly, 26 genes including MSH3, BRAF, MLH3, MTOR,
DDR2, ALK, KIT, KDR, FBXW7, APC, ROS1, CDK6, MET,
SMO, EZH2, TSC1, NOTCH1, MDM2, PTPN11, BRCA2,
TSC2, NF1, BRCA1, CHEK2, ARAF, and VHL were uniquely
mutated in the metabolic disease group (Figure 3). The clinical
significances of these somatic mutated genes were very important. For
tic mutations in the metabolic disease group. A. GO analysis of
sis of somatic mutations in the metabolic disease group. Gene
h pathway. GO, Gene ontology. KEGG, Kyoto Encyclopedia of
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Figure 5. Biological functions and key pathways analysis of somatic mutations in the nonemetabolic disease group. A. GO analysis
of somatic mutations in the nonemetabolic disease group. B. KEGG analysis of somatic mutations in the nonemetabolic disease
group.
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example, previous works have demonstrated that MSH3 germline
variants were associated with breast cancer risk and radiosensitivity in
patients with breast cancer [39,40]. A somatic variant caused by
deletion was found in our study. This is the first demonstration of
MSH3 as somatic gene in breast cancer with preexisting metabolic
disease. Besides, somatic mutations in BRAF, MLH3, MTOR,
DDR2, ALK, FBXW7, APC, ROS1, CDK6, MET, SMO, EZH2,
TSC1, NOTCH1, MDM2, TSC2, NF1, CHEK2, and ARAF genes
in human breast tumor were reported by TCGA [10]. In the present
study, we further found that these genes were specially mutated in the
metabolic disease group. These results may help to better understand
the underlying mechanism of breast cancer with preexisting metabolic
Figure 6. Comparison of somatic mutated genes identified by T
mutated genes identified by TCGA cohort and BTC-PCD cohort.
identified by TCGA cohort and BTC-PCD cohort. TCGA, The Canc
disease, providing promising therapeutic targets in this specific
subgroup. Further studies are required to verify whether these somatic
mutations cause a different pathogenetic mechanism or correlate with
patients' outcome.

GO and KEGG enrichment analysis were performed to under-
stand the biological consequences of somatic mutations in two
groups. GO enrichment showed that functional categories were most
involved in ERK1 and ERK2 signaling in the metabolic disease group
(Figure 4A). Conventional mitogen-activated protein kinases
(MAPKs) include p38 MAPK, ERK1/2, c-Jun N-terminal kinases/
stress-activated protein kinases, and ERK5 [41]. Activation of ERK1/
2 pathways is important for breast cancerecell proliferation [42,43].
CGA cohort and BTC-PCD cohort. A. Venn diagram of somatic
B. Comparison of the frequency of 47 somatic mutated genes
er Genome Atlas. BTC-PCD, Biotecan PanCancer Detection.
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Furthermore, KEGG enrichment demonstrated that 26 genes
uniquely present in the metabolic disease group were prevailingly
distributed in proteoglycans pathway, EGFR signaling, and PI3K-Akt
signaling (Figure 4B). Hyperactivation of PI3K-Akt signaling path-
way is considered as a hallmark in a wide spectrum of human cancers
[44e46]. A number of studies have demonstrated that PI3K-Akt
signaling involves in regulation of metabolism, growth, survival,
angiogenesis, and metastasis of tumor cell [47,48]. Thus, ERK1/
ERK2 signaling and PI3K-Akt signaling may play a critical role in the
initiation and progression of breast cancer with preexisting metabolic
disease, and how they contribute to pathogenetic mechanism could
be the subject of future exploration.

Finally, we compared somatic mutated genes identified by TCGA
cohort and BTC-PCD cohort. 83 somatic mutated genes reported by
TCGA database were covered by our BTC-PCD panel (Figure 6).
Among these, 47 somatic mutated genes identified by TCGA cohort
were detected by BTC-PCD cohort at a higher mutation frequency.
In particular, 12 novel somatic mutated genes including TERT,
CDKN2A, FGFR1, IDH2, BRCA1, BRCA2, CDA, FGFR3, VHL,
STK11, SMARCB1, and NRAS were identified in the present study,
which were not reported by TCGA before. Actually, many of them,
such as telomerase reverse transcriptase (TERT) promoter hotspot
mutations and cyclin-dependent kinase inhibitor 2A (CDKN2A)
variants, have been found in breast cancer, which were highly
consistent with the BTC-PCD findings [49,50]. These differences
could be resulted from the limited sample size, population, or
bioinformatics tools differences and need further investigation.

Taken together, we investigated the genetic profile of breast cancer
with and without preexisting metabolic disease including hyperten-
sion, type 2 diabetes, and coronary heart disease. By targeted NGS of
tumor tissues and matched blood samples, we identified 170 somatic
mutations of 59 genes in 20 postmenopausal primary patients with
breast cancer. We observed significant differences in somatic
mutations and biological consequences between the metabolic disease
group and the nonemetabolic disease group. How precisely the
regulation occurs and/or whether preexisting metabolic disease
interacts with other known pathways regulating breast cancerecell
proliferation and growth remains to be determined in future studies.
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