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Group formation is a common behaviour among prey species. In egg-laying

animals, despite the various factors that promote intra-clutch variation

leading to asynchronous hatching and emergence from nests, synchronous

hatching and emergence occurs in many taxa. This synchrony may be adap-

tive by reducing predation risk, but few data are available in any natural

system, even for iconic examples of the anti-predator function of group for-

mation. Here, we show for the first time that increased group size (number

of hatchlings emerging together from a nest) reduces green turtle (Chelonia
mydas) hatchling predation. This effect was only observed earlier in the

night when predation pressure was greatest, indicated by the greatest pred-

ator abundance and a small proportion of predators preoccupied with

consuming captured prey. Further analysis revealed that the effect of time

of day was due to the number of hatchlings already killed in an evening;

this, along with the apparent lack of other anti-predatory mechanisms for

grouping, suggests that synchronous emergence from a nest appears to

swamp predators, resulting in an attack abatement effect. Using a system

with relatively pristine conditions for turtle hatchlings and their predators

provides a more realistic environmental context within which intra-nest

synchronous emergence has evolved.

1. Introduction
Individuals aggregating in temporary or permanent groups is a common be-

haviour among many species. These aggregations may be driven by a variety

of reasons, such as defence, foraging and movement efficiency, and consider-

able attention has been focused on examining the benefits and costs of group

formation [1]. Of the proposed explanations for grouping, reducing predation

risk is perhaps the most general, and is widely believed to be one of the

main drivers in the evolution of aggregation behaviour [2–4]. The relationship

between prey group size and predation risk has been the target of many studies

in a variety of species. Although costs arise from increased conspicuousness

[5–7] (although see [8]), aggregation provides benefits because risk is diluted

among group members [9], multiple targets visible simultaneously can confuse

predators’ targeting [10], and predators are more likely to be detected sooner

through collective vigilance [11].
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The synchrony of sea turtle hatchlings emerging from

within a nest is typically believed to reduce predation

[12–14] and is often used as a typical example of the anti-

predator role of grouping [15] because predation on these

otherwise helpless hatchlings is high as they crawl to the

sea and swim away from the shore [16,17]. However, studies

quantifying hatchling predation are scarce, especially during

their crawl from their nests toward the sea [18,19]. Despite the

suggestion that synchrony in sea turtle emergence is effective

as an anti-predatory strategy, this hypothesis remains to be

tested [20]. Peterson et al. [19], using freshwater turtles as a

proxy for sea turtle hatchlings, found a decrease in the

per capita predation risk with increased group size. Studying

predation on a natural system (albeit one under anthropogenic

disturbance), Tomillo et al. [18] found that the number

of leatherback hatchlings (Dermochelys coriacea) killed by preda-

tors had a positive relationship with the number of hatchlings

in an emergence. However, they did not present the relation-

ship between per capita risk and group size, leaving it unclear

whether dilution counterbalanced the suggested increased

encounter rate with predators [20]. Thus, neither of these pre-

vious studies demonstrates that synchrony in emerging from

a sea turtle nest has an anti-predator role, and it thus remains

unknown whether the net effect of aggregation is to decrease

per capita predation risk in natural systems [20].

Identifying the mechanism(s) that reduces risk in groups

can be a challenging task, especially in observational studies

of natural systems, due to limitations on monitoring behav-

ioural interactions and control over possible confounding

effects [21,22]. For example, while the confusion effect

involves predators reducing their rate of attacks or success

due to difficultly in targeting [23], and group vigilance

relies on coordinated escape responses by prey after predator

detection [11], both result in a decrease in per capita risk. As

with Foster & Treherne’s [9,24] classic water strider (Halobates
robustus)–fish predator system, however, the potential mech-

anisms that could reduce risk for synchronously emerging

sea turtles are limited. The confusion effect is unlikely to be

important as most hatchings and emergences are nocturnal,

so that visual cues are limited. Inter-individual cues between

hatchlings that could transfer information about the presence

of a predator, a requirement for group vigilance, have not

been observed and neither have any collective defence strat-

egies. Thus, a likely mechanism is attack abatement [4],

which relies on an encounter rate with predators that does

not increase as quickly as (or faster than) group size [8], and

a dilution effect, which limits the number of prey that are

eaten in each encounter [9]. The ‘swamping’ of predators by

synchronous emergence when hatching may occur due to the

highly limited consumption rate of the hatchlings’ main terres-

trial predator in our study area, the yellow crab (Johngarthia
lagostoma), as the size of these predators (adults’ carapace

lengths: 60–120 mm [25]) is relatively close to the typical size

of a green turtle hatchling (carapace length: 50 mm [26]).

Thus, handling times are expected to be relatively long when

a crab captures a hatchling. It is also unlikely that these preda-

tors respond quickly enough to a nest emergence so that their

encounter rate with the group is proportional to group size due

to the wide distribution of nests over the beach and the limited

range over which prey can be detected. Thus, the conditions

necessary for attack abatement may be met when sea turtles

emerge synchronously, and this would be the first demonstration

of attack abatement in a vertebrate prey.
Damage to coastal habitats due to anthropogenic activities

is so pervasive that opportunity to study and understand

natural ecological and evolutionary interactions in coastal com-

munities is rapidly waning [27,28]. Here, we investigated in a

natural system how group size (i.e. the number of hatchlings

emerging together from a nest) influences predation on green

turtle (Chelonia mydas) hatchlings. Synchrony can also occur

in hatching (before emergence) and between nests laid by

different females; our study only concerns synchrony of emer-

gence from a nest (‘within’ nest synchrony). We conducted our

study on an oceanic island (Trindade Island, Brazil) that offers

relatively pristine conditions for green turtle hatchlings and the

yellow crab. The low level of anthropogenic disturbance in

this beach environment provides a system that should be rela-

tively representative of the conditions under which intra-nest

synchronous emergence evolved.
2. Material and methods
(a) Study area
Trindade is a volcanic island uplifted 3–3.5 million years ago

[29,30], with a total area of 9.2 km2 and a narrow platform

(0–50 m depth) [31]. It is located approximately 1200 km east of

mainland Brazil (208300 S; 298200 W), with a Brazilian Navy settle-

ment since 1957. Trindade is considered the only Brazilian nesting

site that has not suffered hunting of female C. mydas in recent

times. The island is the main nesting ground for green sea turtles

in Brazil, hosting approximately 3600 nests y21 on just 3 km of

sand beaches, and is among the most important known rookeries

in the Atlantic system for green turtles [32,33]. Thus, our study area

is a sample of a large population, rather than being a marginal site

that may not be representative of nesting grounds for this species.

The green sea turtle is the only chelonian that nests on the island

and the peak season is January–March [34]. Since 1982,

TAMAR-ICMBio has regularly monitored C. mydas nests in Trin-

dade. Our study was conducted on Tartarugas beach (300 m in

length), the main nesting beach on the island.
(b) Nests and hatchlings group size
We monitored 33 green sea turtle nests that were laid in February

and March 2009. We placed a circular plastic-mesh corral (50 cm

diameter, 50 cm height, 1 cm mesh size) around each nest

40 days after egg deposition to prevent emergent hatchlings

from dispersing. This timing was calculated based on incubation

durations of nests recorded in previous seasons (43–77 days;

TAMAR-ICMBio database). We did not disturb the nests once

they were encircled with mesh, allowing hatchlings to emerge

without assistance.

We visually checked nests every half an hour throughout the

study from 17.30 to 06.00 every night. The corrals remained open

from 06.00 to 17.00 to avoid hatchling desiccation in case of diur-

nal emergence. We checked nests four times daily (10.00, 12.00,

14.00 and 16.00) to count tracks of emerged hatchlings, but

these groups were not included in the analysis. We checked the

integrity of the corrals constantly during the study period to

ensure that no hatchling escaped.

We recorded the following variables to assess group sizes

and timing for each emergence from a nest: the order of the emer-

gence event within a nest, the number of hatchlings in each

emergence event (group size) and the time of emergence

events (hours). We identified an emergence event if at least one

hatchling emerged. When we identified an emergence event,

we waited 10 min from the emergence of the last hatchling to

ensure that the emergence event was concluded.
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(c) Predation
The extant terrestrial fauna of Trindade Island is formed by an

unknown number of insect and arachnid species, seabirds, the

yellow crab (J. lagostoma), the introduced tropical house gecko

(Hemidactylus mabouia) and mice (Mus musculus) [34]. Among

all the extant terrestrial fauna, yellow crabs are the most abun-

dant nocturnal terrestrial animal capable of predating green

turtle hatchlings. Therefore, we evaluated predation on land

focusing on the most abundant predator, the yellow crab

[34,35]. The yellow crab’s absence of a behavioural response to

human presence in Trindade Island is long recognized [35];

this naivety is probably due to the virtual lack of predators

when individuals reach the adult phase. This behaviour of

yellow crabs in Trindade Island helps to minimize any effect of

the observers on predator behaviour in our study. Most of the

yellow crabs do not live on the beach; they live in burrows on

upper vegetated areas and crawl to the beach at night to search

for food. Typically, they will feed each night, given the opportu-

nity; thus, we believe all crabs observed in the surveys were

either actively searching for, or consuming, food. During all the

field activities we did not find these crabs engaging in any

other behaviours during the night (e.g. reproduction). To quan-

tify crab abundance, we used three parallel 50 m transects,

100 m apart, starting at the high tide line and running inland.

We conducted surveys during three time periods (17.30–21.00,

21.00–01.00 and 01.00–05.00) for seven nights during the emer-

gence period of most of the nests (late April to early May). We

counted all crabs detected within 3 m of a transect and the

number of crabs that had captured a sea turtle hatchling. We con-

sidered a crab to have captured prey when we found it holding a

hatchling. Owing to the large size of the prey relative to the pre-

dators, handling times of the prey are long and it is difficult for

the crabs to move prey from where they are caught, so they are

consumed close to the point of capture.

After swiftly counting the hatchlings from an emergence

event at a nest site, we turned off our flashlights and released

the turtles, allowing them to continue freely crawling toward

the sea. We waited a set time until the neonates reached the

sea before we turned on the flashlights and searched for depre-

dated hatchlings. We calculated the waiting time based on the

distance from the nest to the tide line and a hatchling crawling

speed of 5 m min21 (sensu Dial [36]). The search for depredated

hatchlings was conducted by two observers within 5 m of a

transect from the nest to the tide line. To ensure that we counted

hatchlings only from a focal nest, we searched the transect area

for non-target C. mydas prior to releasing the hatchlings.

(d) Statistical analyses
The total number of crabs in each survey was analysed as a func-

tion of time period (the middle time was used for each period,

i.e. 19.15, 23.00 and 03.00) using a generalized linear model

(GLM) with a negative binomial error distribution. The proportion

of crabs that captured a turtle hatchling was also analysed as a

function of time period with the polynomial effect of time inclu-

ded after visually inspecting the data (figure 1). A GLM with a

quasi-binomial error distribution was used due to overdispersion.

The number of hatchlings in an emergence event (i.e. group

size) was analysed as a function of the time of day, date, the dis-

tance from the nest to the high tide line and the order of

emergence within that nest. The analyses were thus carried out

at the level of the emergence (i.e. group, n ¼ 51), rather than at

the level of the nest (n ¼ 33). Two-way interactions between emer-

gence order and each of the other variables were included.

A generalized linear mixed model (GLMM) with a negative bino-

mial error distribution was used. To test for significant effects, each

term was removed in turn from the model and compared with the

model including this term. We removed the least significant two-

way interactions in each model (on the condition that p . 0.1)
before repeating the process with the remaining terms. All main

effects remained in the final model as control variables.

Predation risk was quantified as the number of hatchlings killed

as a proportion of the number of hatchlings in each emergence

event from a nest. We used a GLMM with a binomial error distri-

bution (glmmPQL was used as the data were overdispersed) to

test the effects of group size, time of day, date and the distance

from the nest to the high tide line, with two-way interactions

included between group size and each of the other variables

(non-significant interactions were removed as above). To further

explore predation risk, we calculated the number of depredated

hatchlings found in an evening before the emergence of each

group and repeated the analysis of predation risk per group with

this information as an additional explanatory variable.

Nest was included as a random variable in the GLMMs, as mul-

tiple emergence events were recorded from some nests. In the

analyses, time of day was converted from the 24 h clock to time

elapsed since 00.00 the previous night (e.g. 03.00 was coded as

27 h). The date was converted in a similar manner from the first

date of datacollection. All analyses were performed in R v. 2.15.1 [37].
3. Results
(a) Prey: green sea turtles hatchling emergence
A total of 3177 green sea turtle hatchlings emerged from the 33

monitored nests during the study. The vast majority of hatch-

lings emerged at night (figure 1). Diurnal emergence did

occur for two C. mydas nests and accounted for only 3.7% of

total emerged hatchlings. We observed and recorded data

from 2494 hatchlings in 51 groups. It was not possible to evalu-

ate eight groups (683 hatchlings) due to logistical problems

such as storms. From the first emergence to the last, 21 days

transpired, with 2.2 groups per night on average. Most nests

produced all hatchlings within a single group (figure 2), and

in cases where multiple groups emerged from the same nest,

the number of hatchlings decreased significantly in subsequent

emergences (negative binomial GLMM: deviance4,5¼ 52.80,

p ¼ 3.69 � 10213). The number of hatchlings per emergence

(group size) also tended to increase as the season progressed

(deviance4,5¼ 4.92, p ¼ 0.026), with distance to the sea and

the time of day having no effect ( p . 0.5 in both cases). From

all groups that emerged on the same night, only in seven

occasions were the groups less than 2 h apart. Additionally,

on these occasions, the smallest distance between nests was
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27.8 m (mean ¼ 86.6 m), which makes interactions between

groups unlikely. Group size varied from 1 to 175 individuals,

with an average of 48.9 (s.e.+7.6) hatchlings per group.

(b) Predator: yellow crab
The mean density of yellow crabs was 3.70+
2.04 crabs 100 m22 (range¼ 1.52–6.67 crabs). Based on beach

length (300 m) and distance from the farthest nest to the high

tide line (50 m), the mean number of crabs was more than 500

per night. Crab numbers were highest early in the evening

and declined during the night (figure 1; negative binomial

GLM: LRT1,15¼ 7.56, p ¼ 0.0060), and the proportion of crabs

that were found to have captured a hatchling peaked in the

middle time period of 21.00–01.00 (figure 1; quasi-binomial

GLM, polynomial effect of time: F2,14¼ 5.95, p ¼ 0.013). This

suggests a delay for the predators in becoming active and actu-

ally finding prey to consume. Therefore, the number of crabs

actively searching for food, and hence representing a risk of pre-

dation to emerging hatchlings, was much greater at the start of

the night (17.30–21.00) compared with any other time.

(c) Predation
From all 2494 hatchlings, 2.65% were depredated by crabs prior

to reaching the sea. In the analysis of predation risk, only the

interaction between group size and time of day was significant

(GLMM: F1,16¼ 7.59, p ¼ 0.014), with date and distance from

the sea having non-significant interactions with group size

and main effects ( p . 0.2 in all cases). The significant inter-

action was due to predation risk being greater for smaller

groups, but only earlier in the evening (figure 3a,b).

To explore why the time of day affected predation risk in

small groups, we calculated the number of depredated hatch-

lings found that evening before the emergence of each group.

Although positively related to the time of day as expected, the

two variables were not collinear (Spearman’s rank: rs ¼ 0.43,

p ¼ 0.0014). When this variable and its interaction with group

size was included in the model explaining predation risk, the

previously significant interaction between group size and time

became non-significant (GLMM: F1,12¼ 0.47, p ¼ 0.51), while

the interaction between group size and number of hatchlings

already depredated was significant (F1,15¼ 6.20, p ¼ 0.025; all

other effects p . 0.1). Thus, the effect of time of day on the

safety provided by groups could, at least partially, be explained
by the number of hatchlings already killed and consumed that

evening (figure 3c,d).
4. Discussion
Our study reveals a pattern of highly synchronous nocturnal

emergence within nests, with hatchlings in the majority of

nests departing in a single emergence event. The nocturnal

emergence will prevent death by overheating and desiccation,

and decrease predation by visual and diurnal predators, such

as seabirds [38,39]. Emergence synchrony is predicted to be

favoured by natural selection [40] because mass departure

with large groups of hatchlings should saturate the foraging

ability of predators, thereby reducing the predation threat

to individuals [12]. Predator satiation is used to explain

breeding aggregations that are unpredictable to predators in

time and/or space, such as the mast seeding of some plants

[41], and large aggregations of invertebrates [42,43] and ver-

tebrates [44,45]. Although the large groups formed by sea

turtle hatchlings during their emergence from nests have

long been predicted to be an anti-predator strategy [15], the

relationship between their group size and predation risk

remained unknown [20]. Our results provide evidence for

this hypothesis: risk was reduced in larger groups, at least

early in the evening when the main predator (the yellow

crab) was most abundant, and also unlikely to already be

handling and consuming prey.

It has been argued that the risk of detection (i.e. predator

avoidance) and the risk of being attacked (i.e. the dilution

effect) cannot be considered separately; only the combination

of the two will determine if group living reduces predation

risk (the attack abatement effect) [4]. However, it is often dif-

ficult to isolate predator avoidance and dilution effects from

other anti-predatory grouping mechanisms. Of the few expli-

cit empirical studies of attack abatement, none have used a

vertebrate prey species [6,46,47]. In our system, the highly

stereotyped behaviour of hatchlings crawling towards the

sea shows no indication of information transfer among indi-

viduals, which excludes coordinated evasive behaviour

such as the ‘many eyes’ effect. The very limited visibility at

night and the small visual range of the main predator relative

to the spatial extent of the prey group also makes a confusion

effect highly unlikely. The decrease in risk with increased

group size may instead be best explained by attack abate-

ment, which relies on an encounter rate with predators that

does not increase as fast as (or faster than) group size [8],

and a dilution effect, which limits the number of prey that

are killed in each encounter [9]. The unpredictable and

ephemeral availability of hatchlings and the limited ability

of the crabs to detect hatchlings from far away should

result in a sub-linear (or no) increase in predation relative

to group size, a pattern that is widespread [8,32,43,48],

even in conspicuous prey [5]. Additionally, the size of the

predator relative to the prey limits the number of prey con-

sumed per predator per night due to long handling times

[49]. These effects are supported by our results, which

show a delay between the highest abundance of hatchlings

and the peak in the proportion of crabs found with prey,

suggesting crabs took some time to locate and kill prey,

and the importance of the number of prey already killed in

a night on predation risk, suggesting substantial handling

times once prey had been found (leading to predator
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swamping). To demonstrate an attack abatement mechanism

more directly, behavioural interactions between hatchlings

and crabs could be monitored, for example using infrared

lighting or GPS units on crabs to investigate how crabs

respond to an emergence from a nest and how their foraging

behaviour changes once a hatchling is captured.

Although our study focused on synchrony of emergence

within nests, our results also raise interesting questions regard-

ing the role of female nesting synchrony (i.e. synchrony

between nests), and more generally about the interactions

between multiple groups regarding when to time exposure to

predators. Female nesting synchrony should be favoured to

maximize the number of prey available, and thus swamp pre-

dators [14,50], although predation is only one of the potential

selective agents that may affect the evolution of reproductive

strategies [3]. However, few attempts have been made to test

the predator-swapping hypothesis [50]. The effects of predator

satiation may be stronger for hatchlings that emerge from nests

deposited during the peak of the nest season, where 75% of the

nests were recorded during 56 days (TAMAR-ICMBio dataset;

also see [33]). However, emerging later within an evening was

associated with a decrease in risk, particularly for hatchlings

emerging in smaller group sizes, due to fewer predators and

an increase in the proportion of those already preoccupied

with prey. This result suggests that delaying emergence,

rather than synchrony, would be advantageous at the scale

within the evening. Other factors, such as loss of energy due

to catabolism of residual yolk [51,52] and risk of desiccation
associated with late emergences [53], would need to be con-

sidered, as well as local abundance of both prey and

predators. A modelling approach would thus be useful to

guide further investigations of these systems (e.g. [45]).

Synchronous emergence is commonly reported to be an

anti-predatory behaviour for many species [3]. Synchronous

hatching in turtles is common, and likely to be an ancestral

trait [15,40,54], despite the different rates of development

within single nests [13,55]. Our study reveals a pattern of high

intra-nest synchronicity in emergence and its benefit as an

anti-predator strategy for sea turtles. At a mechanistic level, syn-

chrony may arise from social facilitation during ascent through

the sand column, as hypothesized by Carr & Hirth [56] and

Spencer et al. [13]. It is currently unknown whether individuals

hatching in response to hatching nest-mates evolved to reduce

risk via increased synchronous emergence, or whether it

evolved for reasons other than anti-predator defence (i.e. an

exaptation [57]). The timing of emergence may be influenced

by other factors, such as physiological (e.g. oxygen levels [58])

and thermoregulatory constraints (e.g. thermal cues that signals

hatchlings to emerge from the sand [38,39,59]). Intra-nest emer-

gence synchrony is not universal in all sea turtle nesting areas

[60]. More studies under different predation scenarios are

needed to clarify this question. However, care must be taken

in conducting such studies, because humans have altered

most marine coastal ecosystems before modern ecological inves-

tigations began, and thus the present may not always be the key

to the past [28].
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