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Abstract
δ-Crystallin is the major structural protein in avian eye lenses and is homologous to the urea

cycle enzyme argininosuccinate lyase. This protein is structurally assembled as double

dimers. Lys-315 is the only residue which is arranged symmetrically at the diagonal subunit

interfaces to interact with each other. This study found that wild-type protein had both

dimers and monomers present in 2–4 M urea whilst only monomers of the K315A mutant

were observed under the same conditions, as judged by sedimentation velocity analysis.

The assembly of monomeric K315A mutant was reversible in contrast to wild-type protein.

Molecular dynamics simulations showed that the dissociation of primary dimers is prior to

the diagonal dimers in wild-type protein. These results suggest the critical role of Lys-315 in

stabilization of the diagonal dimer structure. Guanidinium hydrochloride (GdmCl) denatured

wild-type or K315A mutant protein did not fold into functional protein. However, the urea dis-

sociated monomers of K315A mutant protein in GdmCl were reversible folding through a

multiple steps mechanism as measured by tryptophan and ANS fluorescence. Two partly

unfolded intermediates were detected in the pathway. Refolding of the intermediates

resulted in a conformation with greater amounts of hydrophobic regions exposed which was

prone to the formation of protein aggregates. The formation of aggregates was not pre-

vented by the addition of α-crystallin. These results highlight that the conformational status

of the monomers is critical for determining whether reversible oligomerization or aggregate

formation occurs.

Introduction
δ-Crystallin is a taxon-specific eye lens protein. It is the major soluble protein in the eye lens of
reptiles and birds and functions as a structural protein to maintain the refraction properties of
the lens [1,2]. δ-Crystallin and argininosuccinate lyase (ASL) are homologous proteins. ASL is
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responsible for the conversion of argininosuccinate into arginine and fumarate in the urea
cycle. δ-Crystallin and ASL share about 70% amino acid sequence identity and function as
homotetramers, with four identical multi-subunit active sites [1–6].

δ-Crystallin and ASL have similar X-ray crystal structures. Each monomer consists of three
domains. The helices in domain 2 of each monomer associate to form a central helix bundle,
comprising the core structure of the protein (Fig 1A) [4,5,7–10]. The active sites of the enzyme
are located in a cleft between three different monomers [4]. The quaternary structure of δ-crys-
tallin consists of a double dimer. The contact surface between the two dimers is smaller than
the interface within the primary dimer of the structure [11]. Hydrogen bonding, salt bridges
and hydrophobic interactions are the major forces which stabilize the quaternary structure of
the protein.

In the presence of guanidinium chloride (GdmCl), tetrameric δ-crystallin is unfolded via a
multistep pathway involving subunit dissociation into a monomeric molten globule intermedi-
ate, followed by denaturation [12,13]. The dimeric form is transiently detected during this
unfolding/refolding process. These dimers are unstable and they are prone to self-associate
into protein aggregates, and this process competes with the formation of native tetramers [8].
Hence, the assembly of two dimers acts as a kinetic barrier in the refolding pathway [14]. The
proper assembly of double dimers is thus important for producing a stable δ-crystallin quater-
nary structure.

The N-terminus of δ-crystallin has been identified as being critical for the proper assembly
of the double dimers [8]. In the quaternary structure, the first 25 N-terminal amino acid resi-
dues protrude into the neighboring monomer and interact with a hydrophobic cavity. When
this sequence of amino acids was deleted the protein became unstable and was prone to form
protein aggregates. The salt bridge formed by residues of R302 and E330, located in the helix
bundle at the dimer-dimer interface, is also important interaction for stabilization of the qua-
ternary structure of δ-crystallin. When this interaction was disrupted by site-directed mutagen-
esis, the exchange rate of subunits was dramatically accelerated [15]. The interactions of E327
with both K299 and R302 and the interaction of E267 with Y158 at the dimer interface were
found to stabilize the quaternary structure of δ-crystallin in a cooperative manner. Mutations
of the residues involved in both these interactions caused the majority of dimers to dissociate,
whilst only partial dissociation was observed when these interactions were individually dis-
rupted, as judged by sedimentation velocity experiments [11].

Inspection of the structure of δ-crystallin showed that the primary interactions between two
symmetrically associated monomers in diagonal positions were provided by residues located at
the top and bottom sides of the helical bundles (Fig 1B). K315 is one of the residues symmetri-
cal located at this interface, interacting with the same residue in other monomers by hydrogen
bonds (Fig 1C and 1D). Substitution of this residue with leucine resulted in part dissociation of
the quaternary structure. In contrast, the K315A mutant protein was relatively stable. This pro-
tein was unfolded into an intermediate with a stable conformation at 3 M urea [11]. This phe-
nomenon was not observed for the K315L mutant protein, which was unfolded under the same
conditions. The results lead to the hypothesis that the bulky and charged side-chain of K315
might affect the stability of the intermediate during the process of protein unfolding. When
wild-type δ-crystallin was unfolded in GdmCl, the first transition for subunit dissociation
resulted in a monomeric intermediate with a molten globule conformation [12,13]. During the
refolding of 5 M GdmCl denatured δ-crystallin a marked hysteresis was observed, suggesting
that the quaternary structure of that inappropriate assembled species might be related to the
conformation of the refolded monomers [14,16]. The presence of stable intermediate during
unfolding of K315A mutant protein in the presence of urea suggests that the interactions pro-
vided by this residue at the interfaces might provide an energy barrier for subunit dissociation.
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Fig 1. The structure of goose δ–crystallin. (A) The quaternary structure (PDB accession no: 1XWO) and (B) the A-B dimeric pairs from diagonal subunits.
Monomers of A, B, C and D are colored as green, blue, yellow and gray, respectively. Residues of K315 andW74/W169 are highlighted as CPK and colored
as magenta and yellow, respectively. (C) Superimposition of wild-type and K315Amutant proteins present as green and grey color, respectively. A expand
view of the interactions of K315 at the interface of A and B subunit is highlighted in (D). Residues of K315 and A315 are displayed as stick models. The
interactions are present by dashed green lines.

doi:10.1371/journal.pone.0145957.g001
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In this study, the effects of this interaction on the folding pathway of wild-type and mutant
proteins were investigated using urea as a denaturant. The different distributions of dissociated
component from wild-type and mutant proteins, as measured by sedimentation velocity exper-
iment, suggests the quaternary structure dissociates in different ways for wild-type and mutant
proteins. Structural simulation supports different dissociation processes for the two proteins.
These results highlight the critical role of K315 in stabilizing the quaternary structure of δ-crys-
tallin. The residue appears to control both the dissociation of dimers into monomers and the
stability of the produced monomers. The monomers dissociated from the K315A mutant pro-
tein with a stable and compact conformation provided a good model for studying the folding
mechanism of the δ-crystallin. This study reveals the conformational status of the monomers,
which determines whether functional protein or aggregates are formed.

Materials and Methods

Protein production and purification
The recombinant wild-type and the K315A mutant δ-crystallin or αA-crystallin plasmid were
transformed and over-expressed in E. coli BL21 (DE3) with induction by isopropyl-β-D-thio-
galactopyranoside (IPTG). Proteins were purified as previously described [8,17]. The superna-
tants of crude cell extracts were loaded onto a Q-Sepharose anion exchange column (HiPrep
16/10 Q XL, GE Healthcare) pre-equilibrated in buffer A (50 mM Tris-HCl buffer, pH 7.5) and
eluted with a linear gradient of 0 to 0.4 M NaCl in buffer A. Recombinant protein was eluted at
approximately 0.15 M NaCl. The eluted protein was pooled and treated with ammonium sul-
fate to 1.2 M. After filtration, the sample was loaded onto a hydrophobic interaction column
(Source™ 15PHE) pre-equilibrated in buffer A containing 10% (v/v) glycerol and 1.2 M ammo-
nium sulfate and eluted with a linear gradient to the same buffer lacking ammonium sulfate.
The retained proteins were eluted at ~0.3 M ammonium sulfate. Fractions were pooled and
loaded onto S-300 Sephacryl column (26 mm x 85 cm) pre-equilibrated in 50 mM Tris-acetic
acid buffer, pH 7.5. Fractions were analyzed by SDS-PAGE and protein concentrations deter-
mined by the method of Bradford [18]. Proteins possessing a C-terminal His6 tag were purified
on Ni affinity column (Chelating Sepharose FF, GE Healthcare) then desalted using a Sephadex
G-25 column (26 mm x 12 cm) as previously reported [11].

Equilibrium unfolding and refolding experiments
Equilibrium unfolding experiments were carried out by overnight incubation of δ-crystallin
with various concentrations of urea or GdmCl in 50 mM Tris-acetic acid buffer, pH 7.5 at
25°C. The refolding experiments were undertaken by dilution of equilibrium-denatured δ-crys-
tallin to a series of urea or GdmCl concentrations in the same buffer.

The experiments for equilibrium unfolding of monomeric δ-crystallin were undertaken by
overnight incubation of δ-crystallin in 1.5 M urea at 25°C followed by addition of various con-
centrations of GdmCl to the solution followed by incubation for 2 hrs. The refolding experi-
ments were carried out by dilution of the denatured δ-crystallin into a solution containing 1.5
M urea and 0.8, 3 or 5 M GdmCl in 50 mM Tris-acetic acid buffer, pH 7.5. To analyze the con-
formation and quaternary structure of the refolded δ-crystallin, the refolding experiments were
undertaken by 20-fold dilution of the denatured monomeric δ-crystallin with buffer.

Data analysis
The transition region in Fig 2B for the reversible dissociation of K315A mutant δ-crystallin in
urea solution was analyzed using the following method. The unfolding process was described
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as a two-state transition for the conversion of the tetramer (T) into monomers (M). The ther-
modynamic parameters were obtained by global fitting of the tryptophan fluorescence signal to
Eq 1 [19]:

y0 ¼ fðyn þmf ½D�Þ þ ðyu þmu½D�Þexpð�ðDGu
0 �m½D�Þ=RTÞg=f1þ expð�ðDGu

0 �m½D�Þ=RTÞg ð1Þ

where y is the observed signal from tryptophan fluorescence, yn and yu are the signals in the folded and

unfolded states, andmf andmu are the slopes of the baselines preceding and following the transition

region. ΔGu
0 is the free energy difference in the absence of urea andm is the variation in the free energy of

unfolding with the urea concentration.

Reversible unfolding of monomeric K315A mutant δ-crystallin were described as a four
state process (M$I1$I2$U). The unfolding curve from tryptophan fluorescence was ana-
lyzed using a four-state unfolding model described as the transition from N to U with two
intermediates, I1 and I2, in the process. The thermodynamic parameters were calculated by fit-
ting the data to Eq 2 [8,20]:

y0 ¼ fyN þ yI1 expf�ðDG1
0 �m1½D�Þ=RTg þ yI2 expf�ðDG1

0 �m1½D� þ DG2
0 �m2½D�Þ=RTgþ

yU expf�ðDG1
0 �m1½D� þ DG2

0 �m2½D� þ DG3
0 �m3½D�Þ=RTgg=f1þ expf�ðDG1

0 �m1½D�Þ=RTg
þexpf�ðDG1

0 �m1½D� þ DG2
0 �m2½D�Þ=RTg þ expf�ðDG1

0 �m1½D� þ DG2
0 �m2½D� þ DG3

0�
m3½D�Þ=RTgg

ð2Þ

where yI1 and yI2 are the signals in the I1 and I2 states. ΔG1
0, ΔG2

0 and ΔG3
0 are the free energy differences in the

absence of GdmCl for N to I1, I1 to I2 and I2 to U transition, respectively, andm1,m2 andm3 are the variation in

the free energy of unfolding with the GdmCl concentration.

Enzymatic activity assay
δ-crystallin was assayed for ASL activity by monitoring the absorption of fumarate at 240 nm
in a Perkin-Elmer Lambda 40 spectrophotometer. Assays were performed at least in triplicate
in 50 mM Tris-HCl buffer (pH 7.5) with 1 mM sodium argininosuccinate as substrate. A molar
absorption coefficient of 2.44 x 103 M-1cm-1 was used for all calculations [21].

Fluorescence studies
The fluorescence spectra were measured on a Perkin-Elmer LS-50 luminescence spectropho-
tometer at 25°C. Intrinsic tryptophan fluorescence spectra of the protein were recorded with
excitation wavelength set at 295 nm and using 5 nm band-width for both excitation and emis-
sion wavelength. All spectra were corrected for buffer or denaturant absorption. The average
emission wavelength was utilized for data analysis [22].

The ANS (1-anilinonaphthalene-8-sulfonic acid) (Molecular Probes; Eugene, Oregon) was
used as probe to bind with proteins and the fluorescence was recorded from 450 to 550 nm

Fig 2. The unfolding transition of the wild-type andmutant δ-crystallin. Changes in average emission
wavelength (AEW) of tryptophan fluorescence are represented as a function of GdmCl (A) and urea (B)
concentration. (C) The integrated area of the fluorescence emission spectrum of ANS at varied urea
concentration. The labels of (●) and (�), and (▲) and (Δ) represent the unfolding and refolding of wild-type and
K315Amutant protein, respectively. In (B) and (C), the dark or grey open circles and triangles represent the
refolding transition from 3.5 or 4 M urea denatured wild-type and 2.5 or 6 M urea denatured mutant protein,
respectively. The (■) and (□) in (B) represent the changes of mean residue of ellipticity (MRE) in the unfolding
of wild-type and mutant protein, respectively. The protein concentrations used in the assays were 0.03, 0.2
and 0.1 mg/mL for tryptophan fluorescence, CD and ANS fluorescence measurements, respectively.

doi:10.1371/journal.pone.0145957.g002
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with the excitation wavelength set at 370 nm. The band-widths were set at 5 nm for both the
excitation and emission wavelengths. The final concentration of ANS was 0.2 mM.

Circular dichroism studies
The circular dichroism (CD) spectra were measured on a Jasco J-810 spectropolarimeter at
25°C. Experiments were performed in 20 mM Tris-acetic acid buffer (pH 7.5) with a 1 mm
path-length over a wavelength range from 200 to 250 nm. All spectra were averaged from three
accumulations and were buffer corrected. The observed ellipticity (θ) (degrees) was converted
into the mean residue ellipticity [θ] by the equation: [Θ] = Θ×MMRW/10×d×c [23], where
MMRW is the mean residue weight, d is the light path (cm), and c is the concentration of protein
in g/ml.

Analytical ultracentrifugation studies
The protein sedimentation were performed on a Beckman-Coulter (Palo Alto, CA) XL-A ana-
lytical ultracentrifuge (AUC) with an An50 Ti rotor at 20°C with 130 000 g in standard double
sectors aluminum centerpieces. The radial scans were recorded with a time interval of 7-min
and a step size of 0.003 cm. All data were fitted to the continuous c(s) distribution model and a
continuous size-distribution with respect to frictional ratio (f/fo) model using the SEDFIT pro-
gram [24,25]. The partial specific volume of the protein, solvent density and viscosity were cal-
culated using the SEDNTERP program [26]. The solvent density and viscosity of varied urea
concentrations were calculated and included in the fitting.

Non-denaturing gradient gel electrophoresis
Electrophoresis was performed using a PhastSystem (GE Healthcare). The samples were sub-
jected a PhastGel 4–15% gradient gel which contains the Native Buffer Strip (0.88 M L-alanine,
0.25 M Tris/HCl pH 8.8) attached to the surface of the gel and both electrodes. The electropho-
resis was carried out at 10 mA and 15°C for 400 Vh. After electrophoresis, the gel was fixed in
20% (w/v) trichloroacetic acid and stained with Coomassie Brilliant Blue R250.

Protein aggregation measurements
The turbidity of protein solution was measured using a PerkinElmer Lambda 40 spectropho-
tometer equipped with a Peltier temperature control accessory to monitor the light scattering
at 360 nm. All measurements were carried out at 25°C. Spectra were corrected using measure-
ments recorded for native protein in the absence of denaturants. The aggregation rate was cal-
culated by fitting the data to the single or double exponential equation:

yt ¼ y0 þ
Xn

i¼1

yi½1� expð�kitÞ�

Where yt is the signal at time t, y0 is the signal of the final state, yi is the change in amplitude,
and ki is the rate constant for aggregation. Data for the linear increase in signals was fitted to a
linear equation using SigmaPlot 10.

Thioflavin T assay
The assay was performed by setting the excitation wavelength at 440 nm and measuring the
emission spectrum from 460 to 600 nm. Proteins unfolded in denaturant were diluted into 50
mM Tris-acetic acid buffer (pH 7.5) to give 0.05 mg/ml of protein in the presence of thioflavin
T (ThT) (50 μM). The spectrum of ThT alone was used as a correction for each assay.
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Structural simulation
The crystal structure of goose δ–crystallin (PDB code: 1XWO) with all water molecule removed
was subjected to the CHARMm force field and energy minimized with the smart minimization
algorithm to satisfy (RMS Gradient ~0.1 kcal/mol/Å). The implicit solvent model of General-
ized Born was included in the calculation. The structural model was used as a template to build
the K315A mutant model using the build mutant protocol (Accelrys Discovery Studio 3.5,
Accelrys Inc.). The best scoring model conformation was selected for energy minimization.

Molecular Dynamics (MD) simulations were performed using the standard dynamics cas-
cade protocol. The structures of wild-type and mutant δ-crystallin in the CHARMm force field
were subjected to initial energy minimization for 500 steps by steepest descent followed by a
conjugate gradient for 500 steps. The minimized models were then heated from 50 to 300 K in
2 ps MD simulations followed by equilibration for 2 ps at 300 K in the absence of any structural
restraint. Finally, the equilibrated models were submitted to MD simulations for 100 ps at
NVT (constant number of particles, volume, and temperature) using the Berendsen coupling
algorithm [27].

Results

Conformational reversibility of δ-crystallins in the presence of
denaturants
Wild-type and K315A mutant δ-crystallin purified to near homogeneity were used for all anal-
ysis. Equilibrium unfolding experiments were conducted by incubation of proteins in buffer
supplemented with different GdmCl or urea concentrations overnight. Tryptophan fluores-
cence was used to monitor the conformational changes during the unfolding process in the
microenvironment around the tryptophan residues (Fig 2A and 2B). There are two tryptophan
residues, W74 and W169, in the structure of δ-crystallin. They are located in the solvent acces-
sible domain 1 and the helix bundle of domain 2, respectively (Fig 1A and 1B). Unfolding of
the wild-type and K315A mutant protein follows a multistep process in GdmCl solution and
was not reversible after 20-fold dilution (Fig 2A). As shown in Fig 2A, the dramatic changes in
the signal for the first transition were due to subunit dissociation as reported previously, with
the GdmCl concentrations for half transition ([D]1/2) at 1 ± 0.05 and 0.5 ± 0.01 M for wild-
type and K315A mutant protein, respectively [28]. Unfolding of the two proteins in urea solu-
tion followed a three-state process, with the [D]1/2 values in the first transition at 3.6 ± 0.1 and
1.7 ± 0.1 M urea, respectively (Fig 2B) [8,12]. The differences in the denaturant concentration
required for the half transition clearly show the potency of GdmCl when disrupting of the con-
formation of δ-crystallin [11].

In the presence of urea, the K315A mutant protein was dissociated and stayed in a stable
conformation between 2 and 5 M urea. The conformation was more stable than for wild-type
protein at urea concentrations exceeding 4 M. When the urea was removed by 20-fold dilution
into buffer, the denatured mutant protein was able to refold into a conformation similar to the
original state (Fig 2B). In contrast, dilution of 3.5 or 4 M urea denatured wild-type δ-crystallin
or 6 M urea denatured K315A mutant protein did not result in the restoration of the properly
folded conformation. These results suggest that the reversible assembly of the quaternary struc-
ture of δ-crystallin is correlated with the conformation of the dissociated monomers.

The exposure of hydrophobic surfaces in the presence of urea was investigated using ANS
titration. A dramatic increase in fluorescence was observed at around 3 M and 1 M urea, for
wild-type and the K315A mutant, respectively, indicating that subunit dissociation had
occurred due to the exposure of hydrophobic areas (Figs 2C and 3). The result is consistent
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Fig 3. Sedimentation velocity analysis. The continuous sedimentation coefficient distribution of (A) wild-
type and (B) K315A mutant protein at different urea concentration were shown. Peaks in grey color represent
the unfolded wild-type and mutant protein in 0, 2.5, 3, 3.5 and 4.5 M urea and in 0, 0.25, 0.7, 1.3, 1.5, 2, 2.5,
3.5 and 4.5 M urea, respectively. Wild-type and mutant protein denatured in 3.5 and 2.5 M urea were diluted
to final 0.6 and 0.3 M urea, respectively, in 50 mM Tris-acetic acid buffer, pH 7.5, were shown as dark gray
peaks. The protein concentration used in all assays was 0.2 mg/mL.

doi:10.1371/journal.pone.0145957.g003
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with the observed changes in the tryptophan micro-environment as probed by tryptophan fluo-
rescence (Fig 2B). The highest signals occurred around 2 and 5M urea for the mutant and wild-
type protein, respectively. Dilution of the 2.5 M urea denatured K315Amutant protein resulted
in restoration of a native-like conformation. However, dilution of 4 or 6 M urea denatured wild-
type or mutant protein, respectively, resulted in higher levels exposure of hydrophobic areas.

Since α-helices are the major secondary structure in δ-crystallin, the ellipticity at 222 nm was
used to analyze the structural changes induced by the presence of urea (Fig 2B). The results
showed both proteins retaining relatively stable α-helical structure at concentrations of urea
below 2M. There was about 13% and 30% loss of the structure at 3 M and 4 M urea, respectively.

Effect of urea on the size-and-shape changes of δ-crystallin variants
The size and size-and-shape changes of wild-type and K315A mutant protein in different urea
concentrations were determined by sedimentation velocity measurements and using continu-
ous c(s) distribution and c(s, f/f0) distribution analysis, respectively (Figs 3 and 4) (S1 and S2
Figs) [29]. In the absence of urea, the two proteins appeared as one major component with sed-
imentation coefficients about 8.5 and 8.4 S, respectively (Fig 3). This peak corresponds to tetra-
meric δ-crystallin [11]. They possessed the native conformation as judged from the friction
ratio (f/f0) distribution profile (with the centre region below 1.5 as shown by red in the contour)
(Fig 4A and 4B).

At 2.5 M urea two components were observed for wild-type protein with sedimentation
coefficients about 6.6 and 3.2 S, and these are assumed to be the dissociated dimeric and mono-
meric forms. The S values of the two peaks decreased with increasing urea concentration. The
proportion of the second (monomeric) peak increased from 6% to 27% to 60% in the presence
of 2.5, 3.0 to 3.5 M urea, respectively. Dilution of the denatured wild-type protein at 3.5 M urea
resulted in refolding into one major component with an S value of 8.1 (Fig 3A). Measurement
of ASL activity showed that around 25% activity was recovered following refolding (Table 1).

Subunit dissociation was observed at about 1.2 M urea for the K315A mutant protein, with
S values for the major peak of 6.8 and a shoulder at about 4.5 S (Fig 3B). A single peak with an
S value of 4.5 was observed for the mutant protein at ~1.5 M urea. This species is thought to be
dissociated monomers possessing the native conformation as judged from the friction ratio (f/
f0) distribution profile (Fig 4C). The monomers were reassembled into a similar quaternary
structure of wild-type protein after removing the urea (Fig 4D). When the urea concentration
was increased to 4.5 M, the S values for the single component were gradually decreased to
about 2.4 (Fig 3B). Dilution of the protein denatured with 2.5 M urea resulted in refolding into
one major peak with a S value of 8.1 S. The refolded protein showed around 80% ASL activity
was recovered (Table 1).

Conformational reversibility of monomeric K315A mutant δ-crystallin
Since K315A mutant protein was reversible dissociated into stable monomers at 1.5 M urea,
the conformational reversibility of monomers was investigated. Monomeric K315A mutant
protein that had been produced by equilibrium incubation of the native protein in 1.5 M urea
was treated with various GdmCl concentrations. Unfolding of monomeric K315A mutant pro-
teins followed a multistep pathway as measured by both tryptophan and ANS fluorescence (Fig
5A and 5B). Stable intermediates were identified from the unfolding curve of ANS fluorescence
which included the highest ANS fluorescence region at around 1 M GdmCl and a steady state
at ~ 3 M GdmCl (Fig 5B). The monomeric protein had lost about 30 and 55% of its secondary
structures at 1 and 3 M GdmCl, respectively. The changes in tryptophan fluorescence were
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Fig 4. Size-and-shape distribution analysis. The sedimentation velocity experiments were performed and presented as the c(s, f/fo) distribution for (A)
wild-type, (B) and (C) K315A protein in the absence and presence of 1.5 M urea, respectively. (D), K315A protein dissociated in 1.5 M urea was diluted to
final of 0.26 M urea in 50 mM Tris-acetic acid buffer (pH 7.5).

doi:10.1371/journal.pone.0145957.g004

Table 1. Specific activity of δ-crystallin under the denaturant effect.

Renaturation conditions Specific activity(nmol/min/mg)

Wild-type

no treatment 4.4 ± 0.1

refolded from 3.5 M ureaa 1.1 ± 0.2

refolded from 5 M GdmClb -d

K315A mutant

no treatment 0.28 ± 0.03

refolded from 1.5 M urea 0.26 ± 0.1

refolded from 2.5 M urea 0.23 ± 0.08

refolded from 5 M GdmCl -

refolded from 1.5 M urea and 5 M GdmClc 0.9 ± 0.01

0.04 M urea and 0.13 M GdmCl 1.5 ± 0.05

a The proteins unfolded in 3.5, 2.5 or 1.5 M urea were 20-fold diluted with 50 mM Tris-acetic acid buffer (pH

7.5).
b The proteins unfolded in 5 M GdmCl were 40-fold diluted and incubated for overnight.
c The mutant protein was unfolded in 1.5 M urea for overnight followed by addition of 5 M GdmCl and

incubation for 2 hrs. Then, the protein was diluted 40-fold and incubated for overnight before activity

measurement.
d no detectable activity.

doi:10.1371/journal.pone.0145957.t001
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Fig 5. The unfolding and refolding of GdmCl denatured monomeric K315Amutant δ-crystallin. (A)
Changes in average emission wavelength (AEW) of tryptophan fluorescence and (B) the integrated area of
the fluorescence emission spectrum of ANS are presented as a function of GdmCl concentration. Monomeric
K315Amutant δ-crystallin was incubated in 1.5 M urea before introducing varied GdmCl concentration. The
labels of (●) and (�) represent the unfolding and refolding of monomeric K315Amutant protein, respectively.
The (▲) and (Δ) in (B) are the refolding transition from 3 and 0.8 MGdmCl denatured monomeric protein,
respectively. The solid line in (A) is the best fitted result. The fitting residuals are shown as open triangles in
(A). (C) The non-denaturing gel electrophoresis. Lanes 1 and 2 represent the wild-type and mutant protein
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correlated with the exposure of hydrophobic areas, which suggests the possible four-state
unfolding model for monomeric δ-crystallin.

Dilution of monomeric K315A mutant protein denatured in 5 M GdmCl resulted in refold-
ing to a similar conformation as the original monomeric state (Fig 5A and 5B). However, dilu-
tion of 1 and 3 M GdmCl denatured monomeric protein resulted in the increasing of the ANS
fluorescence, indicating higher exposure of hydrophobic area (Fig 5B). The results suggest the
conformation of the partly unfolded intermediate could affect the folding reversibility of the
monomeric K315A δ-crystallin mutant.

Thermodynamic parameters calculation
K315A mutant δ-crystallin that denatured in 3 M urea was reversible folded back to the origi-
nal conformation after dilution (Fig 2B). Signal changes in the tryptophan fluorescence with
different urea concentration were used to calculate the thermodynamic parameters by directly
fitted to the two-state mechanism (Eq 1) [19]. The free energy difference in the absence urea
(ΔG0) for the transition was determined to be 6.5 ± 0.3 kcal/mol (Table 2).

The changes of tryptophan fluorescence as a function of GdmCl concentration were used to
calculate the thermodynamic parameters for the reversible unfolding of the monomeric K315A
δ-crystallin mutant (Fig 5A). The unfolding curve was best fitted into a four-state model [8,20].
The [GdmCl]1/2 for the transitions from the M to I1, I1 to I2 and I2 to U (denaturation) were
about 0.6 ± 0.04 M, 2.1 ± 0.2 M and 3.9 ± 0.1 M, respectively. The thermodynamic parameters
determined are summarized in Table 2. The total free energy difference (ΔG0) for folding of
monomeric K315A δ-crystallin mutant was determined to be 12.8 ± 0.7 kcal/mol.

Reversibility of the quaternary structure from denatured monomeric
K315A mutant δ-crystallin
To determine the ability about refolding of denatured monomeric K315A mutant followed by
reassembly to a tetrameric protein, the monomeric proteins that denatured by GdmCl were
diluted with buffer to remove both of the urea and GdmCl. The results showed that the quater-
nary structure of K315A mutant protein was recovered from the denatured monomers
instantly after dilution. The amount of the assembled protein was increased with the incuba-
tion time possessing about 60% of the activity recovered (Fig 5C and Table 1). In contrast,

without denaturant treatment, respectively. Samples from refolding of 5 M GdmCl denatured wild-type and
mutant protein for time period of zero or overnight are shown in lanes 3–4 and 5–6, respectively. The protein
concentrations used in the assays were 0.03, 0.1 and 0.1 mg/mL for (A), (B) and (C), respectively.

doi:10.1371/journal.pone.0145957.g005

Table 2. Thermodynamic parameters for K315Amutant δ-crystallin.

Equilibrium unfolding ΔGu
0 (kcal/mol) m (kcal/mol/M) [D]1/2 (M)

T $ Ma 6.5 ± 0.3 3.8 ± 0.2 1.7 ± 0.05

M$I1
b 1.3 ± 0.2 2.1 ± 0.4 0.6 ± 0.04

I1$I2 2.6 ± 0.8 1.2 ± 0.2 2.1 ± 0.2

I2$U 8.9 ± 0.4 2.3 ± 0.1 3.9 ± 0.1

a The reversible dissociation process was described as a two-state transition from the conversion of the tetramer (T) to monomeric intermediate (M). [D]1/2
is the concentration of denaturant at which the transition is half completed. The data was calculated by global fitting to Eq 1.
b The data were fitted to a 4-state unfolding model (Eq 2) described as the transition from M to U. Two intermediates, I1 and I2, were assumed in the

process before denatured species (U). These data are the mean ± SD of at least three independent experiments.

doi:10.1371/journal.pone.0145957.t002
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dilution of 5 M GdmCl denatured wild-type δ-crystallin, the quaternary structure was recov-
ered after overnight incubation with no detectable activity (Table 1). The similar result was
also shown for 5 M GdmCl denatured K315A mutant protein. These results suggested the dif-
ferent pathway for protein folding that seems due to the distinct conformation of the denatured
protein caused by different means of denaturation.

Protein aggregate formation from refolding of monomeric intermediate
Since refolding of partly unfolded monomeric mutant δ-crystallin resulted in a conformation
with high exposure of hydrophobic regions, the occurrence of protein aggregation in the process
was determined using light scattering measurement. No protein aggregation was detected upon
dilution of 0.84, 3 and 5 MGdmCl denatured monomeric mutant protein into buffer containing
1.5 M urea. However, when 0.84 and 3 MGdmCl denatured monomeric mutant protein was
diluted into buffer, protein aggregation was occurred. The rates for aggregate formation were cal-
culated to be ca. 0.14 and 0.0004 min-1, respectively (Fig 6A). When αA-crystallin, the chaperone
protein, was added in a 5:1 ratio to 0.84M GdmCl denatured monomeric mutant protein in fold-
ing buffer, no change in the rate of protein aggregation was observed. Formation of aggregates by
αA-crystallin alone did not occur under the same conditions. It is notable that upon dilution of 5
M GdmCl denatured monomeric mutant protein into buffer, no aggregation occurred.

The structural features of the protein aggregate were investigated using the thioflavin T
assay [30]. An increase in fluorescence intensity resulting from binding of ThT with the aggre-
gates over time was observed following dilution of 0.84 and 3 M GdmCl denatured monomeric
mutant δ-crystallin into buffer (Fig 6B). The results suggest the possible formation of ordered
aggregates. No changes in the signal were observed during the incubation period upon refold-
ing of 5 M GdmCl denatured monomeric mutant protein.

Molecular dynamics simulation
To determine the effect of the interactions provided by K315 at the diagonal subunits in disas-
sembly of the quaternary structure, a MD simulation were run for 100 ps for wild-type and
mutant δ-crystallin in the absence of any structural restraints. From the simulation trajectory,
the dynamic motion for disassembly of the quaternary structure and conformational changes
in the tertiary structure were elucidated. The distances between the Cα of D237 and R182, R302
and E330 and the two K315 or A315 residues were measured to evaluate the extent for subunit
dissociation between the A-C, A-D and A-B dimeric pairs, respectively (Fig 7A). These residues
interact with each other by hydrogen bonding or salt bridges at the dimeric pair interface in the
native structure. These interactions are lost on replacement of K315 with A315. The results
showed that the distances between D237 and R182, R302 and E330 and the two A315 residues
increased linearly at a similar rate, except that the rate of change for the R302-E330 interaction
in wild-type protein was about half of that for the mutant protein. In contrast, no changes in
the distance between the K315 residues were observed before 80 ps. Inspection of the time-
course at 20 ps in wild-type protein showed that the primary dimers of subunit A and C or B
and D showed were separated, while the diagonal dimers of subunit A and B or C and D were
connected by the interactions of residue K315 (Fig 7B). However, the subunits for both of the
primary and diagonal dimers were separated from each other in the mutant protein. The
results suggest a different disassembly process for tetrameric wild-type and mutant proteins.

Discussion
The quaternary structure of δ-crystallin is assembled as two pairs of closely associated dimers.
Previous mutagenesis studies have used to investigate the interactions at the interfaces of
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double dimers to elucidate their role in the stabilization of the quaternary structure [11]. The
unique stable conformation from unfolding of K315A mutant protein in the presence of urea
suggests that the interactions provided by this residue at the interfaces may play a critical role
in stabilization of the quaternary structure of δ-crystallin.

Lys-315 is the only residue which is arranged symmetrically at the diagonal subunit inter-
faces (Fig 1B). The ε-amino group in the side-chain of this residue forms hydrogen bonds with
the carbonyl groups of M312, V313 and K315 within the symmetric subunit (from PISA analy-
sis: http://www.ebi.ac.uk/msd-srv/prpt_int/cgi-bin/piserver) (Fig 1D). Substitution of this

Fig 6. Aggregates formation from refolding of denaturedmonomeric K315Amutant δ-crystallin. (A)
Light scattering measurement. Monomeric K315Amutant δ-crystallin was incubated in 1.5 M urea before
introducing varied GdmCl concentration. Refolding of 0.84, 3 and 5 M GdmCl denatured monomeric K315A
mutant protein by dilution with 50 mM Tris-acetic acid buffer (pH7.5) or the buffer containing 1.5 M urea are
shown as (●, ▲ and ■) or (�, Δ, and □), respectively. The label of (♦) represents refolding of 0.84 M GdmCl
denatured monomers by dilution with buffer including αA-crystallin. αA-Crystallin alone in 1.5 M urea and 0.84
M GdmCl is shown as (^). The protein concentrations of monomeric K315A and αA-crystallin used in the
assays were 0.1 and 0.5 mg/mL, respectively. (B) The fluorescence spectrum of ThT were shown from
refolding of 0.84 (dark), 3 (gray) and 5 M (dark gray) GdmCl denatured monomeric K315A mutant protein by
dilution with buffer and incubated for zero (solid-line), 1 (dash-line) or 2 (dot-line) hrs, respectively.

doi:10.1371/journal.pone.0145957.g006
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Fig 7. Molecular dynamics simulations. (A) The distances between the Cα of specific residues located at the interfaces along the simulation. (B) The
conformation of wild-type and K315Amutant protein at trajectory frame of 20 ps.

doi:10.1371/journal.pone.0145957.g007
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residue by alanine reduces the structural stability of the protein. The results from the previous
study showed about a 9°C reduction in the thermal stability of the secondary structure and the
changes in the micro-environment surrounding the tryptophan residues [11]. This mutant
protein was also more susceptible to chemical denaturation, since about half of the concentra-
tion of denaturant was required to disrupt its quaternary structure compared to wild-type pro-
tein. Both of the wild-type and mutant protein showed similar and not reversible denaturation
in the presence of GdmCl. However, differences in the denaturation pathway were observed
when urea was used as the denaturant. The results suggest that the non-covalent interactions
between the intra and inter-subunits might be disrupted by the ionic character of GdmCl, with
subunit dissociation and denaturation occurring simultaneously for both proteins [31]. The
previous studies showing the presence of only a monomeric molten globule intermediate in the
dissociation pathway of wild-type δ-crystallin in GdmCl supports this assumption [12,13].
Thus, the role of K315 in the folding process of δ-crystallin cannot be distinguished under the
strong denaturant.

Around 2~5 M urea, the K315A mutant δ-crystallin is in a stable conformation, as judged
by tryptophan fluorescence measurements (Fig 2B). Subunit dissociation occurs under these
conditions, resulting in the exposure of hydrophobic regions (Figs 2C and 3B). Only mono-
mers were identified in this state, as measured by sedimentation velocity analysis. The mono-
mers that dissociated from the tetramers at ~1.5 M urea possessed a nearly identical content of
secondary structure as native protein and native-like conformation (Figs 2B and 4C). Mono-
mers in this conformation were able to refold and re-associate into tetramers with a similar
conformation as the native protein, and possessed significant ASL activity. When the urea con-
centration was increased to 2.5 M, the conformational changes led to further exposure of
hydrophobic regions. However, following this conformational change at higher urea concen-
trations, protein folding was not reversible. The contrasting result found for wild-type protein
was that the dissociation and denaturation were concurrent under the effect of urea (Fig 3A).
In this condition, the conformation of the dissociated monomers was partly unfolded, as
judged from the reduced level of α-helix (Fig 2B). The dissociated monomers seem to refold
into alternative conformations then re-associate into tetramers with only part of the catalytic
activity recovered (Table 1). These results indicated that the conformation of the monomers
seems related to the assembly pattern for functional protein.

It is interesting that the interactions provided by K315 at the interfaces seem to affect the
disassembly pathway of the quaternary structure of wild-type protein. It was found that both of
the dimers and monomers were dissociated from the wild-type protein at around 2 to 4 M
urea, as measured by sedimentation velocity while only monomers were dissociated from the
mutant protein (Fig 3). These results suggest that the interactions provided by K315 at the
interfaces seem to increase the energy barrier for dimeric dissociation. When these interactions
were disrupted by mutation, the monomers could be isolated with intact conformation from
the tetramers earlier than for the wild-type protein in urea. Thus, the steps for dissociation and
denaturation could be distinguished in the unfolding process of the K315A mutant δ-crystallin.
In this study, the dynamic motion of protein structure in the process was simulated for elucida-
tion the dissociation mechanism of δ-crystallin. From the trajectory, the tetramers were found
to disassemble at the early stage. Due to the interactions by K315, the interfaces between the
diagonal dimers remain connected while distances increase between the subunits of the pri-
mary dimers in wild-type protein. In contrast, the subunits between both of the diagonal and
primary dimers were dissociated in the K315A mutant protein (Fig 7). As δ-crystallin was
assembled by two close contact dimers as transthyretin, dissociation at the two primary dimer
interfaces would be expected to occur at the initial stage [4,32]. The simulation result provides
a novel pattern for dissociation of the double dimeric protein consistent with the results of
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sedimentation velocity experiments. A possible explanation for this earlier dissociation of the
subunit from the primary dimers compared to diagonal dimers is differences in solvent accessi-
bility. Unlike the location of the interfaces between the subunits of the primary dimer, the posi-
tion of K315 is buried at the interior interfaces away from solvent. Thus, the interactions of
K315 at the interfaces of the protein seem to elevate the stability of the quaternary structure.
For wild-type protein, two diagonal dimers were presumed to disassemble initially from the tet-
ramers followed by subunit dissociation of the diagonal dimers. However, dissociation at the
interfaces of two primary dimers would assume to be the first step in the unfolding process of
the K315A mutant protein (Fig 8).

The detail mechanism for folding of monomeric protein remains elusive due to the mono-
mers dissociated from wild-type δ-crystallin were in a molten globule conformation. Thus, the
monomers that reversible dissociated from K315A mutant δ-crystallin with a stable conforma-
tion and possessing similar level of secondary structure as the original state, and this would be
a good model for studying the folding process. The monomeric protein was reversible dena-
tured in a four-state mechanism in the presence of GdmCl and two intermediates were
detected in the process (Fig 5). Refolding of the partly unfolded intermediate was not reversible
which in turn resulted in a conformation with more exposure of hydrophobic regions. Only
denatured δ-crystallin was reversible folded into the monomers with a similar conformation to
the original state. It is interesting that the refolded monomers were able to reassemble into tet-
ramer instantly upon dilutions, with substantial recovery of activity (Fig 5 and Table 1). This
contrasts with the slow refolding of GdmCl denatured wild-type protein into its tetrameric
form with no detectable activity. The slow recovery of the quaternary structure for the latter
protein is due to an energy barrier for the appropriate assembly of double dimers, as reported
previously [14]. The results suggest that the conformation of the denatured monomers which

Fig 8. A workingmodel proposed for the folding pathway of wild-type and K315Amutant δ-crystallin.
The tetrameric wild-type (T) and K315A mutant (T*) δ-crystallin was dissociated through the diagonal dimer
(D) and primary dimer (D*) to monomers with partial unfolded (M) and stable (M*) conformation, respectively.
Monomers of the wild-type or the mutant protein were then denatured through intermediate (I or I*) into
respective unfolded form (U or U*). The monomers (M) of wild-type protein in partial unfolded conformation
was associated in alternative pathway to form dimers (D1), and then assembled into tetramers (T1) or
aggregates (A). The aggregation was prevented by αA-crystallin. Refolding followed by assembly of the
intermediates (I1* and I2*) of the mutant protein resulted in the aggregates (A1 and A2) formation and the
chaperone function of αA-crystallin was invalid in this process.

doi:10.1371/journal.pone.0145957.g008
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was unfolded by stepwise dissociation or directly unfolded with 5 M GdmCl could be different.
The consequence of this might be that protein folding occurs via different pathways leading to
the refolded monomers with different conformations to associate into native structure or alter-
native structures without function.

Protein aggregates are prone to form during the reassembly process from refolding of partly
unfolded monomeric intermediates of δ-crystallin. The intermediate with the highest exposure
of hydrophobic conformation is particularly prone to aggregate formation (Fig 5). Aggregate
formation by monomeric intermediates with defined conformations was also reported for
transthyretin under mildly acidic conditions [33]. The result implies that the conformational
status of the monomers influences subunit association. It is interesting that the presence of α-
crystallin seems to increase the formation of aggregates from the monomeric intermediates of
δ-crystallin with partly unfolded conformation, while α-crystallin alone was not affected under
these conditions (Fig 6). The studies for αA peptide which induces the aggregation of soluble
α-crystallin suggested that the mechanism for aggregate formation might due to the changes in
the hydrophobicity of α-crystallin induced by the peptide [34,35]. Our previous study reported
that aggregate formation during refolding of GdmCl denatured wild-type δ-crystallin was due
to the improper assembling of double dimers and was prevented by the presence of α-crystallin
[14]. In this study, the aggregate formation was caused by assembly of the refolded monomeric
intermediate which facilitated the aggregate formation of α-crystallin. It thus postulated that
the electrostatic interaction with the substrate seems to be key factors to determine the chap-
eron-like or anti-chaperone activity of the α-crystallin [34,36]. The underlying mechanism
requires further investigation. Nonetheless, the result highlights the conformational status of
the monomers which play a critical role in the folding pathway for reversible oligomerization
or aggregate formation.

In conclusion, the folding pathways of wild-type and mutant δ-crystallin are summarized as
the working models shown in Fig 8. This model depicts the key interactions from K315 at the
interfaces of diagonal subunits not only to stabilize the quaternary structure of δ-crystallin but
also to act as the energy barrier for dissociation of stable monomers. The stability might be one
of the reasons for recruitment of the metabolic enzyme ASL into the lens as a crystallin protein
[37]. The single polypeptide chain of δ-crystallin after translation would be assumed to fold
into functional tetramers as the proposed refolding pathway for K315A mutant. However, due
to the interactions by K315, the tetrameric protein would be assumed to dissemble in an alter-
native manner to form the diagonal dimers, followed by simultaneous subunit dissociation and
denaturation. Monomers in this status might associate into dimers via a different pathway
which then assemble slowly into a non-native tetrameric form or self-associate into aggregates
which can be prevented by the presence of α-crystallin. The reversible folding of the monomers
that dissociated from the K315A mutant protein with near native conformation provided the
folding mechanism of the δ-crystallin. In this process, the ordered aggregate formation from
re-association of the partly unfolded intermediate reveals a specific status of the protein to
avoid the chaperone function of α-crystallin. This model proposes a possible mechanism about
the aggregate formation for lens protein under stress effect and their interaction with α-crystal-
lin. This study reveals the key role of monomers that dissociated from the oligomeric crystallin;
their conformational status determines the levels of aggregate formation.

Supporting Information
S1 Fig. Sedimentation velocity analysis of wild-type δ-crystallin. (A) and (B), the panels
show the raw sedimentation and theoretical fitted data (solid lines), and the fitting residual,
respectively. (C) Grayscale of residual bitmap. The raw sedimentation data were fitted to the
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continuous size distribution model including the solvent using the SEDFIT program [25].
(TIF)

S2 Fig. Sedimentation velocity analysis of K315A mutant δ-crystallin. (A) and (B), the pan-
els show the raw sedimentation and theoretical fitted data (solid lines), and the fitting residual,
respectively. (C) Grayscale of residual bitmap. The raw sedimentation data were fitted to the
continuous size distribution model using the SEDFIT program [25].
(TIF)
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