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Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients.
In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one
record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same
time. Therefore, it is very important to study the multilabel ECG classification. In this paper, a multiscale residual deep neural
network CSA-MResNet model based on the channel spatial attention mechanism is proposed. Firstly, the residual network is
integrated into a multiscale manner to obtain the characteristics of ECG data at different scales and then increase the channel
spatial attention mechanism to better focus on more important channels and more important ECG data fragments. Finally, the
model is used to classify multilabel in large databases. The experimental results on the multilabel CCDD show that the CSA-
MResNet model has an average F1 score of 88.2% when the multilabel classification of 9 ECGs is performed. Compared with the
benchmark model, the F1 score of CSA-MResNet in the multilabel ECG classification increased by up to 1.7%. And, in the model
verification on another database HF-challenge, the final average F1 score is 85.8%. Compared with the state-of-the-art methods,
CSA-MResNet can help cardiologists perform early-stage rapid screening of ECG and has a certain generalization performance,

providing a feasible analysis method for multilabel ECG classification.

1. Introduction

The mortality rate caused by cardiovascular diseases is still
increasing, which has caused widespread concern in the
health sector [1]. The abnormal detection of cardiovascular
disease is electrocardiography (ECG), which uses electrodes
placed on the skin to record the electrical activity of the heart
over a period of time [2]. Abnormal ECG waveforms can
reflect certain pathologies [3]. The doctor gives a clinical
diagnosis result through detailed evaluation and analysis of
the patient’s ECG. However, the large number of ECGs
collected in homes and hospitals every day may hinder
doctors from reviewing the data in detail [4]. With the
advent of computers and artificial intelligence technologies,
more and more scholars have applied computers in the field

of cardiovascular disease diagnosis, using artificial intelli-
gence methods to predict certain diseases in order to reduce
the workload of doctors.

At present, there are several categories of ECGs, such as
static ECG, dynamic ECG, and ECG collected from wearable
ECG equipment. Considering the monitoring time, ECG
monitoring can be divided into long-term monitoring and
short-term monitoring [5]. The dynamic ECG belongs to
long-term monitoring, while the static ECG and the ECG
obtained through the wearable ECG acquisition device are
short-term monitoring. Taking into account the number of
leads of the ECG, it is divided into single-lead and multilead.
Most of the multileads used in hospitals are mainly 12-lead.
The 12-lead ECG is more comprehensive than the 1-lead or
2-lead ECG and will cover more ECG waveform information


mailto:runchuanli@foxmail.com
mailto:zmwang@ha.edu.cn
https://orcid.org/0000-0002-1921-0281
https://orcid.org/0000-0001-9204-5414
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6630643

[6]. Therefore, for some complex and changeable ECG
categories, many current artificial intelligence algorithm
studies have fused the signals of all 12 leads to more
comprehensive ECG information, which achieves accurate
automatic ECG classification.

The clinical ECG reflects the patient’s heart condition over
a period of time. During this period of time, there may be
many different categories of abnormalities in the ECG at the
same time. For example, Figure 1 shows a patient suffering
from atrial premature beats (APB), premature ventricular
contraction (PVC), and complete right bundle branch block
(CRBBB). In the clinical diagnosis report in real life, the
doctor will conduct a detailed and comprehensive review of
the patient’s ECG, and any abnormal waveforms and rhythms
that may occur will be marked in the patient’s ECG diagnosis
results. This illustrates that there may be more than one
heartbeat category in the patient’s diagnostic results; a piece of
ECG data record may correspond to multiple labels at the
same time.

However, the current artificial intelligence diagnosis
ECG algorithms only judge that the segment of the ECG
belongs to a certain category of significant abnormality and
finally ignore other general abnormal information. But this
information is also a response to the patient’s heart con-
dition, and doctors can judge whether there may be other
hidden heart problems based on this information. It is
therefore of interest to find an efficient artificial intelligence
algorithm for multilabel ECG classification. The multilabel
classification is widely used in the field of target detection
[7, 8] and the multilabel ECG classification is still in the early
exploration stage and has not been effectively applied.

To solve the problem of multilabel ECG classification,
this work presents an end-to-end deep learning model CSA-
MResNet, which combines a multiscale residual network
with a convolutional attention mechanism to perform nine
multilabel ECG classifications on the clinical acquired China
Cardiovascular Disease Database (CCDD) [9]. The main
contributions of this paper are as follows: (1) A multiscale
residual network CSA-MResNet model based on channel
spatial attention mechanism is proposed, which classifies
ECG records by extracting ECG features of different scales of
convolution kernels and using the channel spatial attention
mechanism to pay more attention to abnormal ECG frag-
ments; (2) the proposed method was verified in the CCDD,
and the F1 score reached 88.2%, which achieved better
performance compared with benchmark methods; (3) CSA-
MResNet was also tested on the HF-challenge dataset with
an average F1 score of 85.8%, which proves that the pro-
posed method has some generalization.

The rest of the paper is organized as follows: Section 2
briefly introduces the related works, the method is described
in Section 3, Section 4 gives the experiment and results, and
finally, Section 5 summarizes the full text.

2. Related Work

A detailed review of the patient’s ECG by the clinician,
mainly looking at rhythm and waveform abnormalities,
requires extensive experience and medical theory, but it is
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time-consuming and laborious to produce a clinically ex-
perienced cardiologist. With the advent of artificial intelli-
gence, many computer research scholars use artificial
intelligence technology for abnormal judgment on ECG, which
is able to greatly reduce the workload and intensity of phy-
sicians, but it is still always difficult to realize precise classi-
fication because of the diversity and individual variability of
ECG data. In the past few years, research scholars have
conducted many studies on ECG intelligent classification
[10-12] and proposed various ECG intelligent classification
methods.

In the early days when artificial intelligence was widely
used in medical research, some researchers used traditional
machine learning methods to classify ECG. Acharya et al.
[13] first denoised the ECG signal, then extracted the
nonlinear features, and finally used K-NearestNeighbor
(KNN) classifier to classify normal and myocardial in-
farction, with an average accuracy of 98.80%. Alickovic
et al. [14] used multiscale principal component analysis
(MSPCA) to denoise the ECG signal and used an autor-
egressive (AR) model for feature extraction and examined
different classifiers for comparison. The highest accuracy of
the five arrhythmia categories in the MIT-BIH arrhythmia
database reached 99.93%. Lin et al. [15] extracted the
normalized RR interval and wavelet morphological features
to classify the normal, atrial premature beats and prema-
ture ventricular contraction in the MIT-BIH arrhythmia
database. Pandey et al. [16] used a set of support vector
machines to classify heartbeat into four categories. Rajesh
et al. [17] used intrinsic mode functions to get the final
features and used the AdaBoost classifier to classify
heartbeat. Although the above work achieves better results,
it requires manual feature extraction, which wastes time
and energy for a database with huge ECG data.

Deep learning has been widely applied to the study of
ECG classification because of its characteristic ability to
automatically extract data features that eliminates the steps
of traditional machine learning manual extraction for au-
tomatic learning of large amounts of data. Awni et al. [4]
proposed the use of an end-to-end deep neural network
(DNN) to classify 12 ECG categories from single-lead
electrocardiographic signals, with the mean FI score for
DNN of 0.837 exceeding the mean of 0.780 by general
cardiologists. Acharya et al. [18] developed a 9-layer deep
convolutional neural network that achieved F1 scores of 0.83
for the detection of five different categories of ECGs.
Kamaleswaran et al. [19] identified a 13-layer convolutional
neural network (CNN) model that can be used to detect four
beat categories, normal sinus rhythm, AF, other abnormal
rhythms, and noise on single-lead short ECG recordings,
achieving an average F1 score of 83%. Ullah et al. [20]
changed the one-dimensional time series into two-dimen-
sional spectra by short-time Fourier transform, and the
proposed deep neural network model was a two-dimen-
sional CNN composed of four convolution layers and four
pooling layers to classify eight categories of the ECG in MIT-
BIH arrhythmia database with the accuracy of 99.11%. Li
et al. [21] used the BiLSTM-attention model to perform five
different categories of ECG classification on the MIT-BIH
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FIGURE 1: Record CCDD/96833 (0-5000): Atrial premature beats, premature ventricular contraction, and complete right bundle branch block.

arrhythmia database, which effectively improved the accu-
racy of cardiac beat classification. Yao et al. [2] proposed
attention-based time-incremental convolutional neural
network (ATI-CNN) achieving 81.2% overall classification
accuracy for nine ECG categories.

All of the above research has achieved high precision, but
it is known from clinical experience that a single ECG re-
cording may contain more than one disease label at the same
time and that physicians give more than one diagnostic
result when making an ECG diagnosis, so the above studies
based on single-label ECG recording cannot meet the needs.

A subset of investigators is currently beginning to
explore ECG multilabel classification. Wang et al. [22]
proposed an arrhythmia detection method based on the
multiresolution representation of ECG signals by taking
four different deep neural networks as four channel models
for ECG vector representations learning and finally per-
formed 34 kinds of ECG classification on a multilabel HF-
challenge dataset with the F1 score of 92.38%, all higher
than the results of individual channels. Cai et al. [23]
developed multi-ECGNet to identify patients with multiple
cardiac diseases at the same time, with an F1 score of 86.3%
in identifying 55 arrhythmia classifications. Sun et al. [24]
proposed a novel ensemble multilabel classification model
to perform 7 kinds of multilabel ECG classification on the
CCDD, and the final F1 score was 75.2%. All of the above
provided feasible analysis methods for ECG multilabel

classification, but all of the above validation methods were
performed on a single database, which could not reflect the
generalizability of the model. Li et al. [25] proposed a
model consisting of inception, GRU, and attention
mechanism on a private multilabel ECG dataset for nine
multilabel ECG classifications with an average F1 score
over 88.6% and a maximum of 91.9% and also extracted the
relevant category on the publicly available database
PhysioNet for validation with an accuracy of 92.8% but
only extracted 500 pieces of data from public databases and
the results were not representative. Although the above
methods accomplish multilabel ECG classification, there
are still shortcomings in terms of accuracy and general-
izability. Therefore, applying deep learning for multilabel
ECG classification remains a challenge.

3. Methods

The multilabel ECG classification problem uses a deep
learning model to automatically extract effective informa-
tion from ECG records and predicts multiple categories for
each record at the same time. In this work, the key issue is to
construct an effective algorithm to classify 9 kinds of
multilabel ECG signals. In response to this problem, this
work proposes the CSA-MResNet architecture, which in-
tegrates the multiscale residual network and the channel



spatial attention mechanism structure and can automatically
extract useful information from the 12-lead ECG signal to
perform multilabel ECG classification.

3.1. Problem Formulation. The multilabel classification task
of ECG signals is to automatically classify 9 ECG categories
using clinical 12-lead ECG. The proposed model requires
the input of 12-lead ECG records and the output of the
possible prediction labels. In the original ECG record x;,
together with the corresponding reference label space Y; =
{yl,yz, e ,yq}, 0<q<8 represents a label space with g
possible class labels, where x; € R°®%!2 is a signal with

q

loss(f (x;),Y;) = mean(Z —w; (Y; %

i=1

where g is the total number of arrhythmia categories, and
1 <i<gqg; weight w; = 1/log, is the weight assigned to each
category of arrhythmia; 7; is the number of samples of this
category of arrhythmia. This allows the model to pay more
attention to the categories of arrhythmias with a small
number of samples, thereby reducing the impact on data
imbalance to a certain extent.

3.2. Model Architecture. Figure 2 illustrates that the overall
structure of the CSA-MResNet model is composed of a
multiscale residual network and a channel spatial attention
mechanism module. The network is mainly designed and
constructed based on the experience of GoogleNet [26] and
ResNet [27]. Both GoogleNet and ResNet are relatively
mature neural networks, which can solve various image
classification and target detection problems in the field of
computer vision. The CSA-MResNet model contains 2
streams after the convolutional layer and the maximum
pooling layer. Each stream has 32 layers of convolution and
an average pooling layer, and residual connections are added
on the basis of convolution to prevent the accuracy rate
caused by deepening from degrading rapidly after satura-
tion, and the channel spatial attention mechanism [28] is
added before each pooling layer to obtain more important
weights. The model is divided into two parts: feature fusion
and multiscale feature fusion. The feature fusion includes
convolution, channel spatial attention mechanism, and
pooling layer. In this part, convolution is set to 15, and only
the feature set of data in this scale is extracted. Then im-
portant information is filtered through the channel spatial
attention mechanism, and finally the information is fused
through the pooling layer. In the multiscale feature fusion
part, two streams are assigned convolution kernels of dif-
ferent scales, which can extract convolution kernels of
different scales. In each stream, a 32-layer residual network
and channel spatial attention mechanism are set. Then, the
features of two streams with different scales are aggregated
through the pooling layer. Finally, the information on the
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length 5000 and 12 leads. The multilabel ECG classification

task is from the multilabel training set D =
{(X;,Y)I1<i<N} learning function fix;
— (¥1,¥2---»¥4)> where N is the total number of

samples, and 0<y; <1, 1<j<gq. The output threshold is
set to 0.5. If some ECG predicts that the j, category
prediction probability is greater than 0.5, then these signals
are considered to belong to this j category, if not, oth-
erwise. The work uses CSA-MResNet as an ECG multilabel
classifier. This work uses binary cross-entropy to measure
the loss between the model output and the actual sample
label, as shown in

log f(x;) +(1-Y); xlog (1~ f(xz)))>¢ (1)

two scales is merged and sent to the fully connected layer for
9 multilabel ECG classifications.

3.2.1. Multiscale Residual Network. The multiscale residual
network layer configuration is illustrated in Figure 3, where
/2 means that the number of neurons passing through this
layer is halved.x3,@64 represents the number of this
structure multiplied by 3, and the convolution kernel
number of this part is 64. (x3@64; x4@128; x6@256; X3@
512) is the same as the above. The main structure of this
model is the residual network of two streams. The residual
network is used to prevent the accuracy degradation caused
by the model depth being too deep. Two streams with
different scales can pay attention to the ECG features of
different data segments and different leads. Finally, the
features extracted from different scales of the two streams
can be merged to achieve a better classification effect. One
of the streams in this model is ResNet, but on the basis of its
structure, the first layer of the convolutional layer and the
last layer of the fully connected layer are removed, and
there are 32 convolutional layers. Different convolution
kernel sizes are used in the residual structure of the two
streams, and the convolution kernel size of one stream is set
to 3, and the convolution kernel size of the other stream is
set to 7. After each convolution layer, there are a Batch-
Norm layer and a ReLU layer. BatchNorm [29] can speed
up the convergence speed of the model, and ReLU [30]
activation function can avoid gradient saturation problem.

3.2.2. Channel Spatial Attention Mechanism. To better focus
on abnormal ECG data, a channel spatial attention mechanism
is added to the model, which can focus on channel information
and spatial information at the same time, compared with the
“Squeeze-and-Excitation” (SE) module that only focuses on
channels [31] which has better performance. The structure is
shown in Figure 4, which can combine channel information
and spatial information at the same time.
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The channel spatial attention mechanism includes two
submodules, the channel attention mechanism (Figure 4(a))
and the spatial attention mechanism (Figure 4(b)). The
channel attention mechanism obtains the channel attention
map M, through the selection of the channel, and in the

other spatial attention mechanism to the important part of
the feature of the channel, the spatial attention map M, is
obtained. The input feature F passes through these two parts
to obtain the detailed feature F”. These two steps are rep-
resented by equations (2) and (3), respectively:
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FIGURE 4: Channel convolution attention mechanism diagram (top (a): channel attention mechanism; bottom (b): spatial attention

mechanism).

F' = M.(F)®F, (2)

F'"=M/(F)®F. (3)

Figure 4(a) shows how the channel attention mechanism
works, and its ability to channel the selection of input
features allows the model to focus more on channels that are
useful for the task. The parameters of this module were
obtained by calculating the global average pooling and the
global maximum pooling information about input features,
followed by merging these two parts of information, in this

process both share the same fully connected network, and
finally the spatial attention weights are compressed into 0-1
using the sigmoid activation function. This process can be
shown as

M_(F) = a(MLP(AvgPool) (F)) + MLP(MaxPool (F)))
= o(W,(Wy(Fig)) + Wi(Wo (Firp))-
(4)

Figure 4(b) shows how the spatial attention mechanism
works, which can reduce the interference of other
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nonimportant information on the same channel to the task
and improve the accuracy of the model. Features that un-
derwent a global maximum pooling and global average
pooling of features output by the channel attention mech-
anism were convolved, using the sigmoid activation function
to compress spatial attention weights to 0-1. This process can
be shown as

M, (F) = o( f* ([AvgPool) (F); MaxPool (F)]))
= (77 ([Fasgi Frax]))

The channel attention mechanism focuses on the
channels that contribute more to the ECG signal. The spatial
attention mechanism assigns greater weight to more im-
portant information in different time periods of the ECG
signal. The channel attention mechanism is a global appli-
cation, and the spatial attention mechanism is local to the
feature which plays an important role. Literature [28] shows
that sequential placement has better performance than
parallel placement, and the performance of channel priority
is higher than spatial priority. Therefore, the attention
mechanism is placed between the first convolution layer and
the pooling layer and before the last pooling layer for the two
streams, respectively. And the channel attention mechanism
is prior to the spatial attention mechanism.

(5)

4. Experiments and Results

The data used in this work were obtained from a clinical 12-
lead multilabel CCDD, including nine categories of ECG
signals: (1) sinus arrhythmia (SA); (2) sinus bradycardia
(SB); (3) T wave low and flat (TWLF); (4) sinus tachycardia
(ST); (5) complete right bundle branch block (CRBBB); (6)
atrial fibrillation (AF); (7) atrial premature beat (APB); (8)
first-degree atrioventricular block (I-AVB); (9) premature
ventricular contraction (PVC).

4.1. Environment. This work proposes model training and
testing on XeonR Silver-4114CPU, 32GB memory, and
Geforce2080Ti graphics card. The server runs on the ubuntu
18.04 system, and the model is run on the PyTorch 1.2.0
framework.

4.2. Data. In this work, the CCDD multilabel dataset and
HEF-challenge multilabel dataset are used. In the experiment,
contrasts to each indicator on different models on the CCDD
are done to find the best model, followed by model gen-
eralization validation on the HF-challenge dataset. The
number of ECGs used in detail is shown in Table 1.

4.2.1. CCDD. The multilabel ECG samples used in this work
were collected from the China Cardiovascular Disease
Database [9] (CCDD). The database contains 190,000 12-
lead clinical multilabel ECGs’ data, the sampling rate is
500 Hz, and the data duration is 10~20 seconds. In the
CCDD, the ECG is divided into 12 primary disease types,
and there are many secondary disease types. In order to

TaBLE 1: The number of 9 disease types used in this work is in
different databases.

CCDD training CCDD testing HF-challenge testA

SA 2411 2507 54
SB 2903 2042 724
TWFL 4603 2015 262
ST 2747 1737 357
CRBBB 1892 1056 46
AF 1746 769 121
APB 1714 711 51
I-AVB 1534 634 9
PVC 1158 427 35
Total 17952 10635 1247

make better use of the advantages of deep learning, we
choose to follow the two criteria of including as many types
as possible and large amounts of data. And finally this work
mainly selected 9 common disease categories in the CCDD
for multilabel ECG classification (when selecting data, only
ECG records containing these 9 categories of labels are
retained; once a label other than the above 9 types of labels
appears in an ECG record, these data will be deleted). The
training set and test set were divided according to the lit-
erature [32], and the validation set was randomly selected
from 10% of the training set. Data processing takes 5000
points of all the ECG signals, and to ensure the quality of the
signal, the first 1.25s is discarded, and the middle 10s data
are taken. If they are less than 10 seconds, delete the data
directly. The detailed data information of the final experi-
ment can be seen in Table 1.

4.2.2. HF-Challenge. The HF-challenge multilabel dataset
is an ECG smart competition organized by the Tianchi
platform [23]. The preliminary data contain 24106 records
in the training set and 8036 in the test set A (testA), each
record has 8 leads (mainly I, II and six limb lead V1~V6),
the length is 10 seconds, a total of 55 categories, the
sampling rate is 500 Hz, and the unit voltage is 4.88 mi-
crovolts. This work mainly used the 9 disease categories
described in Section 4.2 in the testA and expanded each
piece of data to a length of 5000 = 12 according to the
official equation (6), which is Einthoven’s law [33], and
then multiplied by the unit voltage and converted it into
real data for experiments. The ECG of cardiovascular
disease may manifest in many ways. After the ECGs of
different databases are marked by different doctors, the
final marking description is not completely consistent due
to the different degree of disease segmentation and expert
marking standards, but the clinical manifestations of the
disease are the same. For example, the use of flat T waves
and low frequencies in the CCDD and the use of T wave
changes in the HF-challenge testA are all abnormal T
waveforms [34]. And the abnormal T wave is a typical
manifestation of myocardial ischemia on the ECG [35].
Therefore, no distinction is made between T wave
anomalies and T wave changes in this work. The distri-
bution of the number of different categories of ECG is
shown in Table I.
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4.3. Training Setting. This work training uses clinical multi-
label CCDD, grouping them into batches of 64 records and
sending them into the model. The larger the batch, the faster the
network model training, and at the same time, more memory is
required. Through fine-tuning of hyperparameters, 64 were
selected as the batch size. The weight initialization of the
convolutional layer and the fully connected layer in CSA-
MResNet uses the kaiming initializer [36] and the Adam op-
timizer [37] to accelerate the convergence of the network model.
The default learning rate is from 0.001. In a total of 256 epochs,
the learning rate is multiplied by 0.1 whenever 32, 64, and 128
epochs are encountered. The first convolution of the model is set
to 15. In the two streams of the model, one of the convolution
kernels is fixed at 7, and the convolution kernel size of the other
stream is set differently, and the results are compared on the test
set. The number of filters is performed in the order of 64, 128,
256, 512 according to different block combinations. The con-
volution step size of the residual connection is set to 2 to make
the output size equal, and the step size of the remaining
convolution and pooling is set to 1. Dropout [38] uses a ratio of
0.2 to prevent neurons from adapting to the training data. After
the CSA-MResNet model is trained, the binary cross-entropy
loss between the output of each batch and the actual label is
calculated, and then backpropagation is performed. During the
entire training period, save the model weight when the F1 score
of the validation set is the highest.

4.4. Result

4.4.1. Performance Metrics. This work evaluates the
performance of 9 multilabel ECG classifications using the
CSA-MResNet model on a large-scale test set. The work uses
a multilabel classification method [39]; for the j class label
yj» the four basic quantities characterizing the binary
classification performance can be defined as equations

(7)~(10).

TP; =|{xily; € Yy € f(x;), 1<i<N}), (7)
FP; =|{x;ly; ¢ Yy p; € f(x;), 1<i<N}|, (8)
TN; =[{xily; ¢ Yiyi ¢ f(x;), 1<i<N}|, 9

EN; =|{x;ly; €Y,y ¢ f(x;), 1<i<N},  (10)
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where 0<j<8, and N is the total number of samples. TP
represents the number of correctly classified records of a
category. FP represents the number of records that belong to
other categories and are incorrectly classified into a certain
category. TN represents the number of records that actually
belong to other categories and are finally classified into other
categories. FN refers to the number of samples belonging to
a certain class that were misclassified as in other classes.

Based on the above four quantities, typical classification
indicators [40-42] on each class including specificity (Spe),
precision (Pre), recall (Rec), accuracy (Acc), and F1 score
(F1) are derived accordingly and defined as equations
(11)~(15).

TN
Spe= N 11
Pe = TN+ FP (1)
TP
Pre= __* 12
TP+ FP (12)
TP
Rec= - 13
“TTPIEN (13)
TP + TN
Acc = , 14
T TPITN+FP+FN (14)
1:2-Pre-ReC. (15)
Pre + Rec

The FI1 score is a comprehensive index with a certain
degree of stability, so it is used as the final evaluation index.

4.4.2. Optimal Size of Convolution Kernel. The size of the
convolution kernel in deep neural networks is a key pa-
rameter that determines the performance of the model.
Therefore, in this experiment, a comparison of different
convolution kernel sizes is set. After the model structure is
fixed, ensure that the convolution kernel size of one
stream is 7, and the convolution kernel of the other stream
is selected in (3, 5, 7, 9, 11), which are MResDNN-37,
MResDNN-57, MResDNN-77, MResDNN-79, and
MResDNN-711. For comparison to derive the most ap-
propriate number of streams, three different convolution
kernel scale sizes of MResDNN-357 were set. The above
models all set the same hyperparameters such as opti-
mizer, batch size, and learning rate. The classification
results of different convolution kernel size models in the
multilabel CCDD test set are shown in Table 2.

Table 2 compares the Acc, Sen, Pre, Rec, and F1 of
different convolution kernel size models in the classifi-
cation of nine multilabel ECGs. The results show that
when performing multilabel abnormal ECG classification,
comparing the results of MResDNN-357 with the other
three models, the average F1 score is only 86.2%, which
indicates that the classification performance of the three
streams is the lowest. In the MResDNN-37, CRBBB in-
creased by up to 3.7%, APB increased by up to 3.4%, and
the final F1 score was also the highest among the above
models, reaching 86.8%, which may be because the greater
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TaBLE 2: Results of different convolution kernel size models on the CCDD testing (%).

F1
MResDNN-37 MResDNN-57 MResDNN-77 MResDNN-79 MResDNN-711 MResDNN-357

SA 86.1 84.9 85.7 85.0 85.6 85.9
SB 93.0 93.2 92.9 93.0 93.2 93.0
TWFL 79.6 79.6 78.8 79.5 78.5 78.2
ST 95.3 95.6 95.6 95.2 95.8 95.5
CRBBB 97.5 95.1 96.6 96.2 95.6 93.8
AF 95.7 96.0 96.0 95.8 94.6 95.9
APB 61.7 60.7 58.3 58.9 59.0 58.4
I-AVB 78.6 78.4 79.1 79.2 76.6 77.6
PVC 60.4 66.6 72.8 75.3 59.0 67.3
Average

Acc 96.8 96.7 96.8 96.7 96.7 96.7
Spe 98.6 98.5 98.6 98.5 97.6 98.5
Pre 89.7 88.8 90.3 88.6 83.1 88.9
Rec 84.0 84.2 83.5 84.6 89.4 83.6
F1 86.8 86.5 86.7 86.5 86.1 86.2

the difference in scale, the greater the degree of difference
in obtaining ECG features. It can be seen from the results
in the table that the final score of F1 of PVC and APB is
lower, because the deep learning performance is greatly
affected by the amount of data. PVC has fewer data pieces
in the training set, and the model does not fully learn all
the characteristics, while APB accounts for the largest
proportion of all the data in the training set and the test
set, and the data distribution affects the model perfor-
mance to a certain extent. And TWFL has a low F1 score
because of the largest proportion difference between the
training set and the test set. It can better represent the
more comprehensive characteristics of the ECG signal.
According to the experimental results, the two convolu-
tion kernel sizes of 3 and 7 are selected as the benchmark
in the two streams.

4.4.3. Optimal Position of Channel Spatial Attention
Mechanism. The results of Section 4.4.2 show that the best
result is when the convolution kernel size of one stream is
fixed to 3 and the convolution kernel size of the other stream
is 7, so the channel spatial attention mechanism is embedded
on this benchmark. In order to select the embedding po-
sition of the channel spatial attention mechanism, the
module is embedded in the residual block structure and
named MCSA-ResDNN, and in the model CSA-MResNet
proposed in this paper, the attention mechanism is placed
between the first convolution layer and the pooling layer and
before the last pooling layer for the two streams, respectively.
Compare the above two models with the channel spatial
attention mechanism and the model without this mecha-
nism. The convolution size in the channel spatial attention
mechanism is set to 7. The position comparison results of the
channel spatial attention mechanism are shown in Table 3.

From the results in Table 3, it can be seen that the overall
F1 score of MCSA-ResDNN is increased by 0.7% compared
to MResDNN-37 without the channel spatial attention
mechanism. The F1 score on the PVC category is increased
by 10.8%; almost all the average indicators are higher than

TaBLE 3: Results of different positions of channel spatial attention
mechanism on the CCDD testing (%).

F1
MResDNN-37 MCSA-ResDNN CSA-MResNet

SA 86.1 86.9 87.3
SB 93.0 93.3 93.0
TWEFL 79.6 79.7 80.5
ST 95.3 95.7 95.8
CRBBB 97.5 95.9 96.4
AF 95.7 95.6 96.9
APB 61.7 69.9 69.9
I-AVB 78.6 78.6 80.2
PVC 60.4 71.2 76.6
Average

Acc 96.8 97.0 97.1
Spe 98.6 98.6 98.7
Pre 89.7 89.8 90.6
Rec 84.0 85.4 85.9
F1 86.8 87.5 88.2

MResDNN-37. It proves that using the channel spatial at-
tention mechanism can improve performance to a certain
extent. The comparison of the results from the different
embedding positions of the channel spatial attention
mechanism shows that the F1 scores of almost all categories
of CSA-MResNet are better than MCSA-ResDNN, and the
F1 scores on the SA category are increased by 1.2%. The F1
score of the PVC category has increased by 16.2%. From the
above results, it can be seen that CSA-MResNet is the best
model in the comprehensive index F1 score among the above
models. From the model point of view, CSA-MResNet which
adds channel spatial attention mechanism to the first two
ends of multiscale residual network can pay more attention
to more important channels and more important data
fragments, while the MCSA-ResDNN which adds channel
spatial attention mechanism to a multiscale residual network
has better performance than MResDNN-37 which does not
add attention mechanism. However, the channel spatial
attention mechanism added to the residual structure
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TaBLE 4: The classification performance of the proposed model is verified in HF-challenge testA (%).
Acc Spe Pre Rec F1
SA 93.7 94.6 37.9 72.2 49.7
SB 93.4 100 100 88.7 94.0
TWFL 84 99.7 95.7 25.2 39.9
ST 99.4 100 100 97.8 98.9
CRBBB 99.8 99.9 97.8 97.8 97.8
AF 99.8 99.9 99.2 99.2 99.2
APB 97.0 99.6 79.2 37.3 50.7
I-AVB 99.6 99.9 83.3 55.6 66.7
PVC 98.6 99.8 87.0 57.1 69.0
Average 96.1 99.1 94.0 78.9 85.8
TaBLE 5: Comparison results of different research work on the CCDD.
Literature ECG categories Classifier Performance
Spe=76.32%
[32] 2 CBRNN Se=75.52%
Acc=287.69%
Spe=286.86 + 3.51%
[44] 2 Ensemble deep learning Se=280.23 + 4.49%
Acc=84.84 + 1.82%
Spe =83.84%
[45] 2 LCNN Se =83.43%
Acc=83.66%
Spe =84.45%
[46] 2 Heart rate and LCNN fuse Se=85.19%
Acc=84.77%
Spe =91.63%
[47] 2 ResNet50 Se=287.73%
Acc=89.43%
Se (Rec) =71.6%
. . . . Acc=75.2%
[24] 7 multilabel Ensemble multilabel classification model Pre = 80.8%
F1=752%
Spe=98.7%
Se (Rec) =85.9%
This work 9 multilabel CSA-MResNet Acc=97.1%
Pre=90.6%
F1=288.2%

destroys the performance of the original residual connection
to a certain extent, resulting in the model ignoring the
information of identity connection in learning and training,
thus reducing the learning ability of the model. Therefore,
the CSA-MResNet model with channel spatial attention
mechanism added to both ends of multiscale residual net-
work performs best.

4.4.4. Other Database Generalization Verification. There are
many deep learning methods for intelligent ECG classifi-
cation, but most previous studies used only one database to
verify the results, and there is no independent cross-vali-
dation method. Generalization is the difficulty of traditional
deep learning [43]. In the actual clinical environment, the
ECG data obtained by different collection devices are

different, and the ECG data contain a variety of abnormal
information about the human body. Whether a single da-
tabase ECG can cover all ECG features is questionable, so
generalization is worth analyzing.

In this work, we verify the CSA-MResNet deep learning
model on the HF-challenge testA, use the same network
structure and parameter test as Section 3.2, select the cor-
responding 9 diseases from the database, expand it to 12-lead
ECG data according to equation (6), and test it on the dataset
with the trained model. The results are shown in Table 4.

The results in Table 4 show that the CSA-MResNet
model has lower average F1 scores, less than 60% in all, and
lower generalization performance on the SA, TWFL, and
APB categories. This may be because the ECG data for these
categories are more complex or because of the small amount
of experimental data, illustrating that these categories in the
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CCDD cannot contain all the abnormal information. We can
think that if samples of the abovementioned poor perfor-
mance diseases are collected from other databases, and the
HEF-challenge dataset is generalized and verified after mul-
tidatabase training, the performance of the model on these
types can be improved. But the mean F1 scores on the
categories SB, ST, CRBBB, and AF were all greater than 90%
and comparable to those tested on the CCDD. Finally, on
average metrics, both Acc and Rec were lower than results on
the CCDD, and Spe and Pre were higher than the CCDD
average results. The average F1 score of 85.8% on this dataset
and the average F1 score obtained on the CCDD do not
differ much, demonstrating a certain generalization of the
model proposed in this work.

4.4.5. Comparison with Previous Studies. Table 5 shows the
contrasting results of different classification methods on the
clinical CCDD between our method and others. The results
show that CSA-MResNet end-to-end deep learning model is
able to provide better classification performance and
compare with other works discussed in this paper. The F1
score for multilabel classification of the final model was
88.2%, which provided a better method for multilabel
classification.

Previous studies in the CCDD [32, 45], respectively, used
CBRNN and LCNN models to conduct two normal and
abnormal classifications on the database. Literature [44]
used ensemble learning methods to identify both normal
and abnormal categories, and [46] used heart rate to screen
the ECGs and then use LCNN to conduct two normal and
abnormal classifications. Literature [47] used ResNet50 for
two classifications with a classification accuracy of 89.43%,
demonstrating that the ResNet had a good performance on
the CCDD. The above research works performed normal
and abnormal classifications on the CCDD, and the clas-
sification performance indexes were expressed by the ac-
curacy, and it can be seen that the best result was 89.43%,
while literature [24] is the only experiment in a comparative
research work using the CCDD for multilabel ECG classi-
fication. For multilabel classification experiments, it is more
reasonable to use the average F1 score as an evaluation index
due to the problem of sample imbalance. Literature [24] used
the integrated multilabel classification model to achieve a
final F1 score of 75.2% in 7 ECG categories. This work uses
the CSA-MResNet model to classify 9 ECG multilabels, and
the F1 score of this work is 88.2%, indicating that this model
is more competitive than the latest methods.

5. Conclusion

In order to solve the problem of multilabel classification of
clinical ECG, a multiscale residual deep neural network
CSA-MResNet model based on the channel spatial attention
mechanism for automatic multilabel classification is pro-
posed in this work. The final F1 score is 88.2%. The model
has a good recognition rate for multilabel ECG classification
and provides a feasible analysis method for multilabel ECG
classification. This work also verified the model on other HE-
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challenge testA, and the final F1 score was 85.8%, proving
that the model is generalizable. However, the experimental
data do not include all ECG categories and more experi-
mental data are needed. In the future work, we will pay more
attention to this aspect of research.
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