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A B S T R A C T

The COVID-19, coronavirus disease is an infectious disease caused by a novel virus called Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2). By March 2020 the novel coronavirus known to cause a pandemic
has infected nearly about 119 thousand people and killed more than 4,300 around 114 countries. Apart from the
current controversial opinions about the origin, spreading, and sociological impact, it is much more imperative to
put a halt to this current situation. Understanding, testing, and early to rapid diagnosis may be now the only key
that can contain COVID-19 by “flattening the curve”. Biosensing is the platform that allows rapid, highly sensitive,
and selective detection of analytes which in turn can serve the purpose for fast and precise detection of COVID-19.
In this article, based on recently reported miniaturized sensing strategies, we hereby propose a promising
personalized smartphone assisted electrochemical sensing platform for diagnosis of COVID-19.
1. The need for rapid diagnosis and point-of-care (POC) detection
devices

The indications of COVID-19 disease are highly non-specific. Similar
to the common flu, the preliminary symptoms of coronavirus disease are
related to respiratory illness including cough, fever, difficulty in
breathing [1]. Coronavirus disease can spread primarily through direct or
indirect contact from an infected person. To date the disease has been
reported to spread over 210 countries and territories, affecting over 11.3
million people (5 July, [2,3]). From the very beginning of the outbreak
scientists all over the world are working extensively to understand the
etiology of COVID-19. Though apart from the conventional molecular
techniques [4,5], serological immunoassays [6,7] and chest CT imaging
[8], there are no relevant methods of detection commercially available
yet [9]. Moreover, these techniques have also testified with various faults
and limitations in their respective applications [10–12]. The rapid lateral
flow-based immunosensing assays detect the immunoglobulin M (IgM)
and immunoglobulin G (IgG) produced in patients in response to
SARS-CoV-2. However, the performance of this assays still demands
critical evaluation for the clinical diagnosis of COVID-19. Thus, it is a
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crucial need indeed to develop a system that can sense and diagnose the
SARS-CoV-2 infection as well by targeting it's specified-potent bio-
markers in a label-free format. Electrochemical biosensors with a
nano-engineered surface in recent years have become a critical area of
research interest [13–15]. Scientists from all over the world are focusing
on the exceptional atomic and molecular properties of engineered
nanomaterials and their composites for better biological/diagnostic ap-
plications [16–19]. Engineered nanomaterials integrated with functional
nanoscale material can provide a new aspect towards the development of
POC based modern immunosensors and other diagnostics platforms [20,
21]). Recently, along with the development of nanostructured materials,
a range of nanomaterials with diverse sizes and shapes have been utilized
as the substrates for biorecognition element (BREs) immobilization
[22–24]. It has been interpreted that the biomolecules immobilized on
the nanostructured materials have various advantages over the bulk solid
substrates. However, to proficiently immobilize biomolecules on nano-
structured, material surfaces required labored work to mod-
ify/functionalize the substrate surface. Additionally, for some of the
nanostructured materials, it is difficult to fully characterize their surfaces
using conventional surface analytical tools. This eventually limits the
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Fig. 1. Conceptualised schematic representation of the SPCE/NPs/nano-Dendroids/GO/Ab probe fabrication for POC diagnosis of COVID-19 infection (Modified with
permission from Ref. [27]).
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detailed understanding of the immobilization mechanism. Hence, new
nanostructured materials design and application towards BREs inter-
facing should be explored for various diseases including development of
labelfree platforms or COVID-19 diagnosis.

2. Development of impedimetric immunosensor for diagnosing
COVID-19

In the last few years, our laboratory has developed various POC-
immunosensors based on electrochemically engineered nanocomposites
modified sensor surface [25–27]. In a recentwork, wehave demonstrated a
miniaturized label-free electrochemical impedance spectroscopy-based
detection of biomarkers using metallic nanoparticles (NPs), electrochemi-
cally engineered nano-dendroids, and graphene oxide (GO) nano-
composites. These materials were sequentially deposited over the
screen-printed carbon electrode (SPCE) and antibodies against the spe-
cific biomarkerwere immobilized using a bioconjugation process [27]. GO,
a wonder material with exceptional electrical property can be used for the
development of high performance COVID-19 biosensing system utilizing
such analytical platform. Besides, the incredibly large specific surface area
(two accessible sides), the abundant oxygen-containing surface function-
alities, such as epoxide, hydroxyl, andcarboxylic groups, and thehighwater
solubility afford GO sheets a great promise for many more sensing appli-
cations [28–30]. It is possible to improvise these sensing systems by inte-
grating the detection platform with newly discovered markers which are
specific to COVID-19. Recently various molecular biology techniques have
used to identify several genes thought to be specific for SARS-CoV-2
detection. In a recent study, an RNA-dependent RNA polymerase
(RdRp)/helicase (H) genes of SARS-CoV-2, an important marker that does
not show any cross-reactivity with other human coronaviruses or respira-
toryviruseshasbeenutilized fordiagnosticpurpose[31].Thus, if anti-RdRp
helicase is successfully immobilized on our recently designed highly con-
ducting surface [27] it may pave a new way to detect the infection inevi-
tably, due to its robustness and high analytical performance (Fig. 1).

In another study, our group has developed a nonenzymatic electro-
chemical nanoprobe for the rapid determination of chemical analyte
2

present in the blood samples [32]. A gold sputtered nano-hierarchical 3D
dendritic structure is used to attain high surface area, high conductivity,
and different degrees of surface roughness possessing a greater catalytic
potential. Multi-walled carbon nanotube (MWCNT) integrated dendrite
modified electrode is another promising sensing surface with very high
conductivity and electrocatalysis [33]. Conducting monomers and poly-
mers can also be used by integrating with the dendritic system for the
development of label-free sensors utilizing their high electron transfer
capacity [34,35]. Surfaces with such high conductivity can be function-
alized using suitable chemistry and additional nanomaterials to accom-
modate BREs and used for label-free sensing of specific protein targets of
COVID-19. These cost-effective nanoprobes can be useful as a platform to
capture and analyze the various reported biomarkers i.e. nucleocapsid
protein (N), spike protein (S), envelope protein (E), and membrane
protein (M) or the open reading frame 1b (ORF1b) of the viral RNA
expressed in COVID-19 disease [36]. The advantage of both these sensors
are in their robustness and label-free mode of operation, which is one of
the most critical parameters when applied in clinical diagnostics in
hospitals and/on in personalized disease monitoring. Another important
feature of such sensors are data accusation in terms of electronic signals,
that can be linked with the smartphone-based analytical systems [15,37].

3. Smartphone-assisted sensing platform

Recently, smartphone-based sensing systems have gained wider
attention as it offers a semi-automated user interface which can be used
by common people without extensive training or technical knowledge
[18,26]. With a tailored hardware and sensing software inbuilt, sensing
systems can be developed within a smartphone to miniaturize the system
to be carried out to any locations and can be operated by any semitrained
personnel. Smartphone-driven monitoring and diagnostic devices might
provide a cost-effective alternative for expensive stand-alone technolo-
gies. It may be possible to develop a COVID-19 biosensor by integrating a
complete disposable sensing module as discussed before to a
smartphone-based application platform for personalized diagnosis
(Fig. 2). Sensing surface can be optimized according to the marker



Fig. 2. Proposed smartphone assisted signal analysis for COVID-19 detection and cloud-based real-time surveillance.
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molecules and can further be improvised for POC diagnosis in real clin-
ical samples. Such a miniaturized system can provide a fast and afford-
able sensing not only to detect, but also to monitor the outbreak on a
large scale.

A smartphone-based “cloud” directory can also provide real-time
surveillance by the means of geo-tagging. Geo-tagging constitutes the
process of defining, creating, and provisioning a set of geolocation in-
formation to a computing device securely [38]. Thus, geolocation can
enable identification of a cloud server's approximate location by adding
contagion/outbreak information to the server's root of trust. Moreover, In
the case of novel outbreaks or pandemics, location and time are indis-
pensable for appropriate clinical administration, infection deterrence,
and control. The information can be accessed using secure protocols to
assert the integrity of the platform and confirm the location of the host
[39]. Once this system is employed within a community, tracking of the
outbreak will be enabled and updated in real-time to comprehend
epidemiological studies through simplifying the restraining strategies.

4. Conclusion

As the race to develop a vaccine for COVID-19 is the primary concern
now, it is essential to understand the epidemiological characteristics to
stand against this outbreak. Moreover, it is suggested to identify the
potent intermediate hosts those who can carry the disease, to prevent as
well as to eradicate it from the near future. These steps require a
compelling approach for the detection of the disease. Hence, POC based
label-free sensing techniques integrated with smartphones can not only
track the disease spreading around the globe, but also allow to form a
library of data and facts required for future preparation to endure such
pandemic. If alarms are raised early in infected areas, physicians can
rapidly decide on the appropriate treatment for each new patient and
public health organizations can manage the spread of the disease. It is
anticipated that powerful integrative electrochemical label-free tech-
nologies can be escalated to develop a personalized analytical system to
combat COVID-19 and other infectious diseases.
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