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Abstract: The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence
(in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress
and inflammation. These networks contribute to the promotion of age-associated cardiovascular
diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these
cardiovascular diseases as well as senescence and aging. In this review we focus on whether the
(a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated
stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and
inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial
electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway
contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the
importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical
interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular
diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging
by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the
ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center
of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases.
Pharmacological intervention is, therefore, feasible through the continued identification of potent,
non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future
approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.

Keywords: cardiomyopathies; senescence; aging; oxidative stress; inflammation; mitochondrial
dysfunction; ASK1-signalosome; p38 MAPK

1. Introduction

The complex physiological signal transduction networks that respond to inflammatory and
and/or oxidative stress (ROS) challenges are major factors that promote the expression of senescence
characteristics (in vitro-cells in culture) and aging (in vivo, animal and human models). These factors
play a key role in the development of cardiovascular pathologies. Furthermore, these signaling networks
contribute to the development of age-associated diseases of oxidative stress, that suggest cross talk
between challenges of inflammation and oxidative stress and the development of senescence, aging
and cardiovascular disease CVD. Furthermore, the inhibition (or attenuation/suppression) of these
signaling networks delays the onset of these diseases. It appears, therefore, that these inflammation-ROS
responsive signaling networks encompass the physiological processes of (a) senescence and aging,
(b) oxidative stress and inflammation and, (c) cardiomyopathy (diseases of inflammation and oxidative
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stress) and in healthspan and lifespan determination. In this review, we discuss the molecular
mechanisms associated with these physiological responses to inflammation and oxidative stress and
emphasize the nature of the crosstalk by these signaling processes.

Inflammation and oxidative stress are major sources of both endogenous, e.g., sterile
inflammation [1] and exogenous challenges that promote senescence and aging phenotypes. There is,
therefore a physiological interaction that links inflammatory and ROS processes, to the activation
of downstream networks that promote the physiological characteristics of senescence, aging, and
cardiomyopathies. We will address the significance of the cardio-protection caused by attenuating
these pathways, and the role of these inhibitors in the regulation of healthspan and lifespan extension.
The inflammation-oxidative stress cycle of physiological interactions that promote senescence and
aging, may thus favor the progression of such diseases of oxidative stress, as cardiomyopathies.
Our hypothesis proposes that inflammatory and ROS challenges activate common signaling processes
whose integration targets the downstream promotion of senescence, aging and CVD (Figure 1).
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Figure 1. The oxidative stress chronic cycle of aging defines the epigenetic processes in development of
the biochemical characteristics of senescence, aging and aging-associated diseases.

A major pathophysiological characteristic of aging involves the elevated and sustained endogenous
level of expression of the sterile stress response signaling pathways that involve p38 MAPK, SAPK/JNK
and NFkB. These are the major signaling pathways [1–3] that promote the initiation and progression
of senescence and CVD phenotypes. There is, therefore, an elevated and sustained state of chronic
inflammatory-oxidative stress that promotes the age-associated state of chronic stress and may thus
play a key role in conferring increased age-associated tissue vulnerability to initiation and progression
of these diseases [1–3] The signaling networks of tissues in an age-associated state of chronic stress
are thus indicative of inflammatory processes that promote elevated endogenous inflammation and
oxidative stress derived from senescence activated secretory protein (SASP) inflammation. These
physiological signaling processes are key factors that promote the development of characteristics of
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stress-induced-aging and declining tissue functions of aging. These characteristics also contribute to
the progression of age-associated diseases of oxidative stress.

Oxidative stress is a major causative factor of many age-associated cardiac disorders that include
ischemia/reperfusion, hypertensive heart disease, diabetes, etc. These cardiovascular disorders
exhibit endogenous levels of inflammation-promoting factors, i.e., cytokines. The induced/increased
oxidative stress (ROS)-responsive signaling pathways are targeted by inflammatory-oxidative stress
and ROS-generating systems, such as NADPH-oxidases and misfolded protein stress responses of the
endoplasmic reticulum and mitochondria (Figures 1 and 2).
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Figure 2. Thioredoxin links the production of ROS to the activation of stress response pathways.
(A) Thioredoxin plays a major role in the regulation of the redox state of the cell. (B) The redox state of
thioredoxin plays a key role in the regulation of the ASK1→P38 MAPK and SAPK/JNK stress response
signaling pathways.

The significance of inflammation-ROS activated physiological signaling networks to cardiovascular
disorders is evident from studies demonstrating that oxidative stress may play a role in the declining
cardiac contractility of sarcomeres due to oxidative mediated post-translational modification (PTM)
of myofilament and titin proteins [4,5]. These studies emphasize the complexity of cellular responses
to inflammation-ROS syndrome and that both induced (environmental challenges) and endogenous
ROS (age-associated ETC dysfunction) are causative factors that promote the progressive age-associated
declines in tissue functions [6–9]. Thus, we have proposed that the stress response signaling pathways
whose activities are elevated and stabilized in response to age-associated endogenous and induced
inflammation-ROS physiology in aged tissues play a key role in tissue vulnerability i.e., lowered resistance
to the initiation of diseases of oxidative stress. These inflammation-associated signal transduction
processes serve as centers of dissemination that promote senescence, aging and diseases of oxidative
stress. Reactive oxidative radicals of endogenous as well as environmental (exogenous) origin enhance
these signaling processes thus linking, for example, exposure to toxicants with accelerated aging and
promotion of disease. Exposure to elevated levels of the chronic inflammation-oxidative stress thus
regulates signaling pathways that control the development of aging and/or susceptibility to diseases of
oxidative stress. The suppression of these pathways delays the accumulation of senescence products that
promote extended healthspan and lifespan phenotypes.

Mitochondrial ETC dysfunction have been identified as a major source of age-associated
ROS [10–13] thus emphasizing the importance of understanding the mechanisms that link mitochondrial
dysfunction (ROS) to ROS-responsive signaling pathways that promote the characteristics of senescence,
aging and diseases of oxidative stress.
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2. The ASK1-Signalosome, a ROS-Responsive Signaling Complex (Hub), Links Mitochondrial
Generated ROS to Senescence, Aging and Age-Associated Cardiovascular Diseases

The physiological responses to endogenous and/or environmentally induced ROS generated by
mitochondrial ETC dysfunction involves a complex series of ROS-sensitive protein-protein interactions,
protein conformational changes and protein modifications that result in the formation of macromolecular
complexes that promote physiological processes of senescence, aging and age-associated diseases.
The physiological responses to these conformational changes involve the assembly and interaction
of stress response signaling networks that include the activation of the p38 MAPK, SAPK/JNK and
NFκB pathways [14–16]. These pathways play a major role in the promotion of senescence and
aging, and importantly they promote age-associated diseases of oxidative stress. In fact, there is
ample evidence that transduction of mitochondrial generated ROS signals due to ETC dysfunction
is mediated via the ASK1-signalosome→p38 MAPK/SAPK-JNK pathways [17–20]. This raises the
question of the mechanism that links the ROS signals to these pathways; the nature of ROS-responsive
signaling protein complexes; the mechanisms that target the networks that activate the physiological
characteristics of senescence, aging and age-associated diseases of oxidative stress.

3. The Structure, Function and Mechanism of Regulation of the ASK1-Signalosome

The ASK1-signalosome is a high molecular weight (HMW) protein complex (~1500 kDa) composed
of ROS-sensitive inhibitor and activator proteins whose overall functions regulate the response to
ROS and the signaling networks that promote senescence, aging and age- associated diseases of
oxidative stress (Figure 3). The complex serves as a center of distribution of inflammation and ROS
signals [17,20,21] that activate or repress major stress response pathways that include cardiopathology,
i.e., the p38 MAPK, SAPK/JNK and NFκB [14–16] pathways. Its unique protein components function
as potential transducers of inflammatory tumor necrosis factor α and bacterial lipopolysaccharide
(TNFα, LPS) and mitochondrial ETC dysfunction (ROS signals) that target the physiological processes
of senescence, aging and diseases of oxidative stress including cardiomyopathy (Figure 1). The maps
of complexed ASK1 (Figure 3) show the critical binding domains for regulatory proteins that form
the ROS-responsive ASK1-signalosome which consists of an inhibitory N-terminal domain that binds
reduced thioredoxin [(SH)2Trx], a catalytic kinase domain, and a C-terminal regulatory domain that
activates ROS-sensitive activator proteins that make up the activated ASK1-signalosome.

4. Models of the Assembly of the Inhibitory and Activated ASK1-Signalosome

There are two models for the mechanism of assembly of the ASK1-signalosome (Figure 4).
Model 1: The (SH)2Trx-ASK1 complex serves as an attenuator of the ASK1-signalosome→p38

MAPK-JNK pathways. Association of the (SH)2 Trx with ASK1 maintains the ASK1-signalosome in an
inactive form (Figure 3); ROS-mediated oxidation of ASK1-bound (SH)2Trx stimulates dissociation of
the Trx from its N-terminal binding site thereby enabling activation of ASK1 (in its dimerized form)
and its downstream targets [22–27].

Model 2: In the ASK1-oxidation model, ROS (H2O2) induces disulfide bond formation between
ASK1 monomers to form dimers (Figure 3). Both dimerization and phosphorylation are required for
ASK1 activation. The role of (SH)2Trx is to reduce the disulfide bonds of the dimers which decreases
their activity by monomerization. This model is based on the H2O2-mediated activation of ASK1
signaling [28–32]. The ASK1-signalosome thus regulates the levels of expression of its downstream
targets, MKK3/6, and p38 MAPK activation [2,19]; MKK4/7 and JNK activation [33,34] (Figures 2 and 6).
The mechanism of activation of the p38 MAPK and SAPK/JNK, in response to mitochondrial generated
ROS involves the dissociation of the reduced thioredoxin-ASK1 complex [(SH)2 Trx-ASK1] [17,19,22,23,33].
By this mechanism, the inhibitory form of the ASK1-signalosome serves as a negative regulator of
the ASK1→p38 MAPK/SAPK•JNK pathway [17,23,33]. The inhibitory ASK1-signalosome exists as
an inactive-cytoplasmic high molecular weight complex that is 14-3-3 sequestered in unstressed cells.
In this mechanism the ROS-mediated oxidation of ASK1-bound Trx(SH)2 stimulates release from the
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14-3-3 complex. This enables ASK1 dimerization and the assembly of activating proteins at the C-terminal
end Figures 4 and 5) [23,26,35,36].Cells 2019, 8, x FOR PEER REVIEW 5 of 25 
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Figure 4. Two proposed model of the mechanism of activation of the ASK1 ROS-Sensory complex
Model 1: The Tri-oxidation model—The (SH)2Trx-ASK1 complex serves as a negative regulator of
ASK1 and the association of (SH)2 Trx with ASK1 maintains the signalosome in an inactive state.
The signalosome is activated by dissociation of oxidized Tri. Model 2: ASK-oxidation model—ASK1
Monomers are activated by ROS-mediated multimerization (disulfide bond formation). Inactivation of
ASK1 is mediated by (SH)2Trx-mediated reduction of the disulfide bond and ASK monomerization.
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5. The ROS-Sensitive Regulatory Proteins of the ASK1-Signalosome

ASK1 is composed of three regulatory C-terminal domains (Figure 4). These are (a) 14-3-3,
an inhibitory sequestering docking site [37]; (b) AIP1, the ASK1 interacting protein that responds to

ROS by facilitating the dissociation of ASK1-ASK2 heterodimer from its 14-3-3 inhibitor [38], and (c)
homodomain interacting protein kinase 1 (HIPK1), a nuclear sumoylated protein that is desumoylated
in response to ROS and translocated to the cytoplasm where it associates with AIP1-ASK1 and induces
the release of Trx and 14-3-3 from ASK1 [39]. These regulatory proteins form the ROS-sensitive
ASK1-signalosome which is a ROS sensory center that distributes signals of oxidative stress to the p38
MAPK and SAPK/JNK pathways thereby promoting senescence, aging and age-associated diseases of
oxidative stress.

The (SH)2Trx-ASK1 complex in the inhibitory form of the ASK1-signalosome is dissociated by
mitochondrial ETC-generated ROS, i.e., rotenone (ROT) an inhibitor of complex I (CI); 3-nitropropionic
acid (3-NPA) an inhibitor of complex II (CII) and antimycin A (AA), an inhibitor of complex III (CIII) [17,19].
This mechanism links mitochondrial generated ROS to the activation of the ASK1-signalosome→p38
MAPK [17,19] via its downstream substrates, MKK3 and MKK6, and the ASK1-signalosome→SAPK/JNK
via MKK4 and MKK7 (Figure 5).

Linking mitochondrial-generated ROS to the activation of p38 MAPK presents a potential
mechanism for the ROS-mediated activation of pathways that promote characteristics of aging and
senescence (p16Ink4a and p19Arf) via p38 MAPK [40] (Figure 6). This mechanism also identifies the
physiological processes that sustain elevated p38 MAPK activity in aged tissues thereby promoting
this characteristic of aging [19]. The sustained elevated p38 MAPK activity also occurs in myocardial
ischemia and may thus be a key physiological factor in the progression of the myocardial ischemia
phenotype [41].

6. The p38 MAPK and SAPK/JNK Pathways

Our studies have described a mechanism that links mitochondrial-generated ROS to the activation
of stress induced aging phenotypes and that the ROS-responsive ASK1-signalosome regulates the p38
MAPK pathway activity and its downstream targets of senescence and aging, e.g., p16Ink4a, p19Arf,
TNFα, JNK, apoptosis and cardiovascular diseases (Figures 1 and 6). These studies suggest that
development of certain diseases of oxidative stress are linked to the ASK1→p38 MAPK pathway [19] for
example, hypertension induces the cell cycle inhibitor, p16Ink4a which is a characteristic of somatic cell
senescence and is activated by p38 MAPK in rat and human endothelial cells [42]. We have thus proposed
that the ASK1-signalosome distributes signals of oxidative stress and inflammation by activating p38
MAPK which targets the pathways of aging, senescence and age-associated cardiovascular diseases
Figure 6). The fact that ~90% of age-associated ROS originates from mitochondrial dysfunction and
that the p38 MAPK and SAPK/JNK pathways are activated by mitochondrial generated ROS strongly
supports the hypothesis that these signaling pathways promote characteristics of senescence, aging
and diseases of oxidative stress.

7. Oxidative Stress Generated by Mitochondrial Dysfunction Elevates and Sustains p38 MAPK
Activity and Promotes Senescence, Aging and Cardiovascular Disease via the ASK1-Signalosome

Increased and sustained levels of p38 MAPK and SAPK/JNK activities are major physiological
characteristics of aging [1,2,43,44]. Interestingly, these physiological characteristics occur in age- associated
CVD. The elevated age-associated endogenous activity of many of the stress response genes targeted by
p38 MAPK may thus be a consequence of the sustained elevated activities of these pathways. We propose,
therefore, that the chronic elevated levels of endogenous ROS are physiological characteristics that
contribute to the promotion of senescence and [42] aging and to the vulnerability of aged tissues to
diseases of oxidative stress including cardiovascular myopathies [1,2,10,11,40,43,45,46]. The physiological
environment caused by the elevated levels of oxidative stress is favorable for the maintenance of elevated
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levels of ASK1-signalosome, and p38 MAPK activity thereby promoting characteristics of senescence
in vitro and the induction of aging and CVD in vivo. Thus, the consequences of sustained elevated
ASK1-signalosome→p38 MAPK and SAPK/JNK pathways results in the chronic stimulation of the
downstream signals of senescence and aging (Figure 6). We propose that this is a physiological
characteristic that plays a key role in the development of (CVD).
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Figure 5. Regulatory process at the C-terminus14-3-3 domain of ASK1-ASK2-responses to ROS. [A] The
heterodimer of P-ASK2-Ser964-ASK1 is bound to 14-3-3 via P-ASK2-Ser964; [B] Under conditions
of elevated ROS, p38 is activated via the formation of the ASK1-P-ASK1-Thr845 complex which is
released from 14-3-3; [C] Under conditions of decreased ROS[(−)ROS] the P-ASK2-Ser964 stimulates
the phosphorylation of ASK1-Ser967 to form the P-ASK2-Ser964-P-ASK1-Ser967-14-3-3 complex which
suppresses the ASK2-ASK1 signalosome and activation. Activation also involves the recruitment of
C-terminal regulatory proteins AIP and HIPK1.

8. The ASK1-Signalosome Links Mitochondrial ROS to Activation of p38 MAPK and SAPK/JNK
Pathways and Promotion of Senescence, Aging and Cardiovascular Diseases

The elevated levels of endogenous oxidative stress in aged tissues may promote senescence
signaling pathways targeted by p38 MAPK. Furthermore, the decreased levels of oxidative stress
that occur in various long-lived mouse models may be a factor that delays senescence pathways by
attenuating p38 MAPK activity [17,18,47,48].

The endogenous levels of the inhibitory ASK1-signalosome in resting, unchallenged cells are
altered by ROS generated by mitochondrial ETC dysfunction (Figures 5 and 6). Thus, the dissociation
of the (SH)2Trx-ASK1 complex and association of regulatory proteins at the C-terminus activate the
ASK1-signalosome and is part of the molecular mechanism that maintains the elevated endogenous
p38 MAPK activity in aged mice [1,18,19,40,43,48,49]. This mechanism is supported by our studies
with Snell and Ames dwarf long-lived mice in which we have shown that the endogenous level of
the inhibitory ASK1-signalosome is significantly higher in these oxidative stress resistant long-lived
models and in Ames dwarf fibroblasts in culture [17,19]. The lower p38 MAPK activity in these
long-lived mice is consistent, therefore, with their resistance to oxidative stress. A similar correlation
of ASK1-signalosome activity occurs in the oxidatively resistant Klotho overexpressing mouse model
(elevated levels of the inhibitory signalosome) and in the oxidatively stressed Klotho(−/−) model
(elevated levels of the activated signalosome) [18].
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9. Promotion of Senescence and Aging

The sustained elevated level of p38 MAPK activity chronically stimulates the downstream signals
of senescence and cardiovascular pathophysiology. Thus, expression of the Ink4a and Arf cell cycle
inhibitors (of the Cdkn2a tumor suppressor locus) which are also promoters of senescence and
aging [50], are chronically elevated and their sustained activity, i.e., p16Ink4a and p19Arf, which increase
markedly is associated with senescence and aging [51]. Recent studies have indicated that TNFα
activation of the p38 MAPK→p16Ink4a promotes the senescence of endothelial progenitor cells and
demonstrates their vulnerability to atherosclerosis [52].

Several lines of evidence support a role for p38 MAPK in the regulation of mammalian senescence
and aging via the expression of p16Ink4a and p19Arf [53]. The role of p38 MAPK in activating these
cell cycle inhibitors has been convincingly demonstrated by the development of a dominant-negative
allele (p38AF/+) in which the catalytic Tyr182 phosphorylation site was substituted with Phe thereby
inactivating the p38 MAPK activity but not its synthesis [54]. The heterozygous p38 AF/+ mice show a
marked attenuation of p38 MAPK-dependent signaling and age-induced expression of the p16Ink4a

and p19Arf cell cycle inhibitors in different organs as well as in mouse embryonic fibroblast cells in
culture. Furthermore, aged p38AF/+ mice show enhanced proliferation and regeneration of pancreatic
islet cells when compared to wild type littermates, an indication of the attenuation of p16Ink4a and
p19Arf in this mutant. Additional support of this mechanism is provided by the demonstration that
the reduction of expression of Wip1 phosphatase in aged mice, and loss of activity in Wip1 deficient
mice, results in elevated levels of P-p38 MAPK activity and decreased islet proliferation [54,55]. On the
other hand, Wip1 overexpression that attenuates p38 MAPK activity rescues the age-related decline in
proliferation and regenerative capacity. Thus, the upregulation of P-p38, p16Ink4a and p19Arf expression
demonstrates the role of P-p38 MAPK in the regulation of expression of cell cycle inhibitors and
age-related decline of cell proliferation [55].

10. The Inhibitory ASK1-Signalosome and Resistance to Oxidative Stress. Thioredoxin, an
Important Component of the Inhibitory ASK1-Signalosome: Its Role in Cardiovascular Disease

Thioredoxin-1 (Trx1) serves as an oxidoreductase that also interacts with other proteins such as
the ASK1-signalosome via disulfide bridges. In some cases, it translocates to the nucleus where it binds
to different transcription factors, i.e., regulates DNA-binding activity of p53, NFκB, and AP1. Trx2,
another member of the family, is localized in the mitochondria, where it plays a role in cell growth and
inhibition of apoptosis [56–58]. Both Trx1 and Trx2 have been implicated in cardiovascular disease in
that they have cardioprotective activity [59].

Thioredoxin-1 (Trx-1) is a major ROS (redox) sensitive signaling protein whose ability to complex
with other proteins results in the formation of protein complexes that control the signaling pathways
that are (a) responsive to changes of oxidative stress; (b) activate signaling pathways associated with
aging and age-associated CVD of oxidative stress.

The thioredoxin system plays a key role in the cardiovascular and smooth muscle cell physiology,
e.g., in smooth muscle cell proliferation. Overexpression of Trx1 increases DNA synthesis in human
aortic vascular smooth muscle cells [60]. Furthermore, growth factors such as PDGF, EGF and
VitD3-upregulated protein 1(VDUP-1) increase oxidative stress and proliferation of smooth muscle
cells and increase Trx1 activity in smooth muscle cells [60–62].

11. Resistance to Oxidative Stress

The levels of the (SH)2Trx-ASK1 form of the inhibitory ASK1-signalosome decrease while activated
ASK1-signalosome levels increase in response to changes in mitochondrial generated ROS suggesting
that this may be a physiological characteristic of tissue resistance to oxidative stress [18,19,47].
The mechanism of this resistance may thus involve a balance between the inhibitory ASK1-signalosome
vs. the activated ASK1-signalosome based on its mediation of the levels of activities of the p38 MAPK
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and SAPK/JNK pathways. The levels of activities of these pathways are indeed a basic difference
between progressions of aging in wild-type vs. the delayed aging in long-lived mice [17,18].

Recent characterization of the ASK1-signalosome has provided further evidence of its multiple
functions. In resting cells the high molecular weight signalosome is bound to 14-3-3, and contains
thioredoxin and MKK6 (Figure 4) [21]. Resistance to oxidative stress of the long- lived Snell and Ames
dwarf mouse mutants and the overexpressing Klotho model is associated with their increased levels of
(SH)2Trx-ASK1 complex [17–19]. Thus, a decrease of activated ASK1 accounts for the decreased activity
of downstream targets and may be indicative of their resistance to oxidative stress. This occurs in the
Snell and Ames long-lived mice suggesting a sustained lower level of activity associated with the lower
level of endogenous oxidative stress in both young and aged dwarf mice [17]. Furthermore, the fact
that the level of reduced thioredoxin [Trx(SH)2] is significantly higher in dwarf cells is consistent with
the higher inhibitory ASK1-signalosome complex levels, lower stress signaling activity and resistance
to oxidative stress.

12. The Role of the ASK1-Signalosome in Cardiovascular Disease

Activation of ASK1 occurs in cardiovascular injury caused by high-salt diet [63] rennin-angiotensin
II [64–66]-aldosterone [63]; vascular remodeling [65], high-fat diet-induced insulin resistance and vascular
endothelial dysfunction [67] and angiogenesis [68]. These studies y suggest that the ASK1-signalosome→p38
MAPK pathway may play a role in the progression of these cardiomyopathies.

Cardiovascular injury. Cardiovascular injury is closely associated with high-salt diet. The mechanism
of its progression may involve the activation of the ASK1-signalosome network [63]. The major finding
that ASK1 deficiency abolishes high-salt induced inflammation as well as characteristics of cardiovascular
injury suggest that ASK1-signalosome may function as a center of distribution of signals that promote
physiological CVD symptoms. Chronic salt loading enhances cardiac inflammation, fibrosis and vascular
endothelial impairment, and is accompanied by activation of the ASK1-signalosome→p38 MAPK pathway.
These symptoms suggest that the p38 MAPK targets drive these cardiovascular syndromes (Figures 5 and 6).
This hypothesis is strongly supported by the observation that ASK(−/−) mice fed on a high-salt diet do not
develop the pathophysiological characteristics of cardiovascular disease which include enhanced TGFβ-1,
interstitial fibrosis, coronary perivascular fibrosis and inflammatory cell infiltration. Other symptoms
that develop in ASK1(−/−) mice include impairment of vascular endothelium-dependent relaxation by
acetylcholine, increased vascular superoxide and Nox2.

Ischemic Heart Disease. The multiple stress signaling networks activated in response to
myocardial infarction (MI) include the p38 MAPK pathway, which suggests that the senescence
and aging pathophysiology is part of the MI phenotype. Ischemia activates the p38 MAPK pathway in
cardiac cells and the role of p38 MAPK in ischemic cardiomyopathy is indicated by the improvement
of cardiac function after inhibition of p38 MAPK Hypertension, cardiovascular diseases and stroke
are all associated with high-salt intake [68–71]. It is likely, therefore, that high-salt intake promotes
the ASK1-siganlosome→p38 MAPK pathway thereby promoting the physiological networks that are
characteristic of cardiovascular injury [63].

Mycardial Infarction. Ischemic and oxidative stress, and activation of local and systemic hormonal
systems such as rennin angiotensin-aldosterone, endothelin and sympathetic nervous system are
multiple physiological stress stimuli that are activated in response to MI [72]. The p38 MAPK and
SAPK/JNK pathways are major stress/inflammatory response pathways that are activated in cardiac
cells in response to MI. These pathways, which are linked to the ASK1-signalosome, are activated in
cardiac cells by multiple extracellular stimuli that include: ischemia [73]; hemodynamic stress [74]; and
neurohormonal factors such as angiotensin II (AngII) [75,76] hypertrophy [77]; inflammation [75,78];
fibroblast proliferation [75]; and myocyte apoptosis [79]. There are, therefore, multiple p38 MAPK and
JNK dependent processes that characterize the post-MI pathological symptoms. Thus, the activation
of p38 MAPK/JNK may contribute to progressive left ventricle (LV) remodeling post-MI and to the
transition to heart failure. Indeed, sustained p38 MAPK activation in the heart is associated with LV
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remodeling and dysfunction arising from various etiologies both in humans [80] and in animals [81,82].
Interestingly, by inducing or sustaining p38 MAPK activity the MI etiologic agents also activate the
senescence and aging phenotypes. This suggests that the down regulation or inhibition of p38 MAPK
activity which is cardioprotective may also delay characteristics of senescence and aging and promote
longevity [83].Cells 2019, 8, x FOR PEER REVIEW 11 of 25 
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Figure 6. The pathways that promote longevity and resistance to oxidative stress vs. aging and
sensitivity to oxidative stress. (1) Thioredoxin reductase plays a major role in balancing the overall
cellular oxidation-reduction homeostasis; (3) Reduced Thx binds to the amino terminal of ASK1 to
form the inhibited ASK1-signalosome; (4) the inASK1-signalosome attenuates the stress response
pathway; (5,6) the stress response genes are attenuated; (7) the longevity response genes re activated;
(8) Oxidized Thx is reduced by Thx reductase; (9) The actASK1-signalosome activates the stress response
signaling pathway which; (10, 11, 12) activates stress response genes and attenuates longevity assurance
genes; (13) the targets of the attenuated stress response pathway favor longevity and resistance to
oxidative stress; (13) the act Signalosome promotes aging and sensitivity to oxidative stress and
cardiovascular syndromes.

Cardiovascular Fibrosis. A major impact of MI involves the loss of functional myocardium
at the site of injury. This challenge triggers LV remodeling characterized by necrosis and thinning
of the infarcted myocardium, LV chamber dilation, fibrosis at the site of infarct and non-infarcted
myocardium and hypertrophy of viable myocytes [72]. TGFβ1 is a major factor that stimulates tissue
fibrosis [84,85], and plays a role in induction of cardiofibrosis. The role of ASK1 in this process is
supported by the observations that TGF 1 expression is not increased in ASK(−/−) mice and that they
show less cardiac fibrosis.

Oxidative stress is a causative factor in cardiac inflammation and fibrosis, and vascular endothelial
dysfunction [61,62,86,87]. Indeed, a high-salt diet significantly enhances superoxide in WT mice but
not in ASK1-deficient mice. Furthermore, the increased cardiac superoxide is associated with enhanced
Nox2, a subunit of NAD(P)H-oxidase, although the enzyme activities are not altered. There is however
a decrease in Nox2 activity in high-salt fed ASK1(−/−) mice which is attributed to the decreased level
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of oxidative stress in these ASK1-deficient mice. These observations indicate that enhancement of
Nox2 by high-salt diet induces vascular endothelial dysfunction and cardiac injury and that these
symptoms are attenuated in the absence of ASK1, and presumably the ASK1-signalosome→p38
MAPK pathway. In addition, in MI and diabetic cardiomyopathy, cardiomyocytes compensate for
heart tissue damage via cardiac hypertrophy which involves myocyte gene reprogramming and the
accumulation of extracellular matrix (ECM) proteins which play critical roles in ventricular fibrosis
and remodeling [88,89].

Neurohormonal Systems—Rennin-Angiotensin. The rennin-angiotensin system (Angiotensin II)
plays a key role in cardiovascular disease [88]. Furthermore, in cardiac myocytes, ASK1 is activated by
AngII via angiotensin II type I receptor in response to oxidative stress and is involved in the induction
of cardiac hypertrophy. This response to oxidative stress is mediated in part by activation of p38
MAPK and SAPK/JNK pathways via the activation of the ASK1-signalosome [65,90]. Suppression of
AngII-mediated cardiac hypertrophy in ASK1-deficient mice thus suggests that the ASK1-signalosome
p38 MAPK/SAPK-JNK play a role in AngII signaling and links the processes of oxidative stress to
cardiac hypertrophy [64,67].

The impairment of vascular endothelial function by diet-induced diabetes also occurs in ASK1
deficient mice and is attributed to the attenuation of eNOS dimer formation and subsequent reduction
of superoxide production. Thus, ASK1 activation in diabetic mice by AngII-dependent signaling is
associated with superoxide accumulation and the induction of vascular endothelial cell dysfunction
and remodeling. Importantly inhibition of ASK1 by a dominant negative ASK1∆KR expression vector
suppresses ASK1-signalosome activation thereby preventing cardiomyocyte apoptosis and heart failure
progression even after the onset of hereditary cardiomyopathy [91].

13. Cardiomyopathies, Senescence, Aging and Longevity

Insulin-like growth factor-1 (IGF-1) and Sirtuin (Sirt-1) are important mediators of cell survival,
oxidative stress, regeneration and life span and play a key role in cardioprotection against oxidative
stress (Figure 7). The onset of age-associated diseases including cardiovascular diseases is delayed
in mice by caloric restriction and by SIRT-1, leading to a prolonged life span [91]. SIRT-1 increases
upon calorie restriction in several rodents and human tissues, e.g., white adipose, liver, skeletal muscle,
brain and kidney thus suggesting that it plays a role in longevity determination.
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Figure 7. Simplified scheme illustrating the role of mIGF-1-induced SirT activity in protection against
Ang ‖- and PQ-mediated oxidative stress and hypertrophy in cardiomyocytes. The IGF-1-mediated
induction of SirT-1 activity plays a protective role against Ang‖ and PQ-mediated oxidative stress
and hypertrophy in cardiomyocytes. SIRT-1 attenuates the ROS generated by exogenous (PQ) and
endogenous (Ang‖) factors thus down regulating the stress response signaling pathways activated
by the ASK1-signalosome. From: Manlio Vinciguerra, et al., (2010) Local IGF1 isoform protects
cardiomyocytes from hypertrophic and oxidative stress via SirT1 Activity. Aging 2, 1075–1094.
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SIRT-1 is an NAD+-dependent deacetylase; the deacetylation reaction removes acyl groups
from lysine side chains of a protein substrate while cleaving NAD+ in the process to generate the
deacetylated protein 2′-O-acetylADP-ribose and nicotinamide (Figure 8). SIRT-1 influences many
physiological processes that involve senescence, stress resistance, gene expression apoptosis and energy
balance (Figure 9). Some of the longevity-associated characteristics of SIRT-1 involve the activation of
PGC1α by deacetylation of lysine residues that results in increased mitochondriogenesis. A decline
in mitochondrial function with age may be a major factor that contributes to the development of
cardiovascular disease [92,93].
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IGF-1-Sirtuin1-Cardiovascular Disease. The physiological signaling processes that extend life
span, i.e., the IGF-1→SIRT-1 pathway, also protects against oxidative stress generated by AngII and
paraquat [94]. The pathways in Figure 8 show the interactions of the IGF1→SIRT-1 pathway associated
with extended life span and protection against ROS-mediated hypertrophy of cardiomyocytes. Thus,
SIRT-1 exerts its protective effects by its anti-inflammatory functions which include cardioprotection
against oxidative stress, both endogenous by AngII and induced by paraquat, and in general, the
aging of the heart [95]. Its overexpression in mice exhibits some physiological characteristics of
calorie-restricted (CR) mice [95,96]; its beneficial effects are seen in Alzheimer’s and Huntington’s
disease models [97,98] and include the activation of PGC1 and its involvement in mitochondrial
biogenesis [94,99]. In addition to its cardiomyocyte protective effects and anti-senescence and
aging properties, the complexity of its activity is indicted by its multiorgan protective physiological
processes that ameliorate/delay age-associated diseases many of which are diseases of oxidative stress
(Figures 8 and 9; [94,99]). Furthermore, genetic evidence of its cardioprotective role is indicated by
single nucleotide polymorphism (SNP) in the human SIRT-1 gene, which results in lower incidence
of cardiovascular mortality, myocardial infarction, myocardial ischemia, stroke, arterial surgery and
intermittent claudication [100].

14. Atherosclerosis-Premature Senescence of Vascular Endothelial Cells

Vascular endothelial cells also exhibit the characteristics of senescence and aging that are promoted
by oxidative stress and inflammation [52]. This suggests a physiological link between systemic aging
and atherosclerosis Analysis of the senescence characteristics of the highly proliferative epithelial
progenitor cells (EPCs) and their vulnerability to inflammatory stress [52] has shown that these EPCs
have (a) very low basal levels of the physiological characteristics of senescence compared to mature
ECs; (b) that p16Ink4a is expressed at higher levels in the differentiated ECs than in proliferative
EPCs; (c) that exposure to chronic TNFα up-regulates expression of p38 MAPK and the senescence
associated p16Ink4a, both of which play a role in cell cycle arrest, and (d) that inhibition of p38 MAPK
blocks the induction of p16Ink4a and cellular senescence [101]. These studies demonstrated that highly
proliferative EPCs have low levels of intrinsic, baseline senescence compared to mature ECs and are
therefore, vulnerable to the induction of premature senescence by chronic proinflammatory stimulation.

The induction of p16Ink4a and TNFα-mediated chronic inflammation and oxidative stress suggests
that these factors may be involved in the mechanism of the loss of embryonic progenitor cell (EPC)
proliferative capacity and their increased vulnerability to aging and atherosclerosis [102,103]. Chronic
inflammatory stimulation is, therefore, a significant in vivo physiological environment that promotes
premature EPC senescence and atherosclerosis. This physiological environment may also account for
the loss of self-renewal due to the loss of proliferative capacity, a phenomenon that exhausts the repair
potential of the blood vessels. Furthermore, the loss of repair may potentially play a role in conferring
higher EPC vulnerability to disease development. We thus propose that sustained elevated expression
of p38 MAPK due to endogenous chronic sterile inflammation and oxidative stress drives the EPCs out
of the cell cycle thereby decreasing the stem cell population which is known to occur in aged tissues.
Further support for a role of cell cycle inhibitor-senescence associated genes is provided by the fact that
one of the key genetic loci identified as a risk factor for MI is located on chromosome 9p21, in an area that
encodes p16Ink4a [104]. Furthermore, there is evidence that p38 MAPK→p16Ink4a activates senescence
in other stem cell types [103] and that they are also highly vulnerable to stress-induced premature
senescence. The increased vulnerability of age-associated regenerative cardiovascular cells to oxidative
stress is a long-standing question whose mechanism may indeed involve the balance of activity of the
ROS-responsive and sensitive ASK1-signalosome→p38 MAPK and its downstream-targeted pathways.
Thus, with respect to vulnerability to diseases of oxidative stress, we propose that the increased levels
of age-associated endogenous oxidative stress and chronic inflammation elevates and sustains the
levels of the ASK1-signalosome→p38 MAPK pathway thereby priming the promotion of senescence,
aging and proathersclerotic pathophysiological characteristics in aged tissues.
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Activation of p38α MAPK occurs during remodeling of damaged cardiac tissue, i.e., after MI.
Atherosclerotic lesions which are the cause of many forms of cardiovascular disease are characterized
by lipid-laden macrophage foam cells that arise from p38MAPK dependent uptake of oxidized low
density lipoprotein [105]. The mechanism of activation and/or sustained activity of p38 MAPK in
these pathologies may be linked to the ROS-mediated activation of the ASK1-signalosome→p38
MAPK pathway.

15. Oxidative Stress (p66Shc), Senescence, Aging and Cardiovascular Disease

Oxidative stress plays a key role in the signaling networks that regulate vascular homeostasis,
myocardial and vascular disease and aging [101,105]. Although ROS are generated at several intracellular
sites, mitochondria are an established principal source of ROS. The protein p66Shc, an isoform of the
growth factor adaptor, Shc, plays an important role in the generation of mitochondrial ROS. Ablation
of the gene extends life span by about 30% with no pathological consequences [106]. The mutant also
displays increased resistance to oxidative stress and decreased levels of intracellular ROS whereas in the
overexpressing models the increased generation of mitochondrial ROS is a triggering mechanism for the
development of CVD [101]. Thus, the deletion of p66Shc confers protection against diabetes- related
(high glucose levels) cardiovascular symptoms. This mutant has thus provided strong evidence for the
role of ROS generated by mitochondrial dysfunction in senescence and aging [106–110].

The role of p66Shc in generating mitochondrial ROS involves its transport into the intermitochondrial
space (IMS), which is accomplished by the binding of p66Shc with mitochondrial HSP70, a TOM-TIM
complex. Release of p66Shc into the inter mitochondrial space IMS (IMS) results in its activation and
oxidation of cytochrome c thus stimulating the production of H2O2 at ETC complex IV, and initiation of
apoptosis. The mechanism of activation of p66Shc in the IMS is not known, although its transport from
the cytoplasm involves the free radical activation of protein kinase C-β, which phosphorylates Ser36

thereby activating its transfer to the IMS.
The physiological basis for proposing a role of p66Shc in cardiovascular disease lies in its

localization to the IMS where it acts as an ROS generating oxidoreductase leading to mitochondrial
dysfunction and cell death [108,111,112]. The p66Shc system thus provides an alternative redox process
associated with mitochondrial ETC complex IV dysfunction that generates proapoptotic ROS in
response to stress signals. The p66Shc system thus provides a genetic mechanism that links ROS
generated by mitochondrial dysfunction to the pathophysiology of cardiovascular risk factors.

It has been proposed that p66Shc signaling promotes the pathophysiological characteristics
of high-glucose associated endothelial dysfunction and cardiomyopathy. Thus, p66Shc links the
ROS generated by mitochondrial dysfunction at ETC complex IV to the promotion of physiological
characteristics of senescence and aging based on its role in the determination of extended life span,
increased resistance to oxidative stress, and physiological characteristics of cardiovascular disease.

16. Therapeutic Applications to the ASK1-Signalosome and p38 MAPK

The severe inflammatory responses to myocardial dysfunction (myocardial infarction) are initiated
in the myocardium, causing excessive chronic elevation of ROS and inflammatory cytokines [113–116].
The design of anti-inflammatory drugs with emphasis on treatment of CVDs has focused on the
inhibition of p38 MAPK induced inflammation due to enhancement of cytokines.

The significance of p38 MAPK in promoting CVD as well as the senescence and aging phenotypes
is indicated by the demonstration that selective inhibitors of p38α and p38β such as RWJ-67657
(RWJ) and SB203580 attenuate their progression [117–121]. Inhibition of the p38 MAPK cascade by
treatment of rats after MI with RWJ attenuates the natural progression of pathologic LV remodeling
and dysfunction [121]. These results indicate that p38 MAPK signaling targets the pathways that
promote pathologic remodeling after MI as well as the progression of physiological characteristics
of senescence and aging. Genetic evidence of this physiological p38 MAPK function is provided
by delay of the appearance of senescence markers in the dominant negative p38(AF/−) mouse [122].
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Furthermore, a role for p38 MAPK in promoting cardiomyopathies is suggested by the observation that
long-term pharmacological blockage of p38 MAPK reduces hypertrophy and dysfunction and enhances
survival of spontaneously hypertensive stroke-prone rats maintained on high-salt/high fat diet [82].
Inhibitors of p38 MAPK also improve myocardial function of failing human heart owing to ischemic
injury [123]. Together, these data indicate that p38 MAPK pathway plays an important role in the
promotion of LV remodeling and dysfunction and heart failure disease progression. We propose that
the ASK1-signalosome→p38 MAPK pathway enhances the progression of oxidative stress promoted
myocardial dysfunction in cardiomyopathies [124].

The cardioprotective effect of p38 MAPK inhibition by SB203580 is attributed to down regulation
of proinflammatory TNFα thereby attenuating LV remodeling [125]. The overall therapeutic response
to the cardioprotection of SB203580 includes reduced progression of myocardial fibrosis, decreased
TNFα production and down regulation of collagen Type I all of which are physiological markers
whose expressions are associated with the progression of LV remodeling [126], and in the promotion of
senescence and aging phenotypes. The fact that TNFα is induced by p38 MAPK and that elevated
levels of TNFα sustain p38 MAPK activity suggests a locked-in signaling cycle in which TNFα
generated ROS activates the ASK1-signalosome→p38 MAPK pathway and its downstream target,
TNFα. The inhibition of p38 MAPK attenuates TNFα secretion and reverses myocardial fibrosis leading
to improved cardiac function [73,82]. Interestingly, TNFα is also an activator of mitochondrial apoptosis
which is attributed to the activation of the ASK1-signalosme→SAPK/JNK apoptosis pathway [23].
Similarly, the suppression of p38 MAPK activity in vivo in the p38(AF/+) heterozygote and in cells
derived from this mutant suppresses the activation of senescence and aging markers [122]. These
studies suggest that the ASK1-signalosome p38 MAPK is a common signaling pathway that targets
senescence, aging and cardiomyopathy. A major activity of p38 MAPK is its inhibition of cell cycle
check points [127] resulting in growth arrest, apoptosis [53,128,129] and cellular senescence [52,130].

17. Other Diseases of Oxidative Stress

The regulation of ASK1 is implicated in various diseases of oxidative stress, including neuronal cell
death and ROS production in neurodegenerative diseases such as Parkinson’s [44,131,132], Alzheimer’s [133],
and amyotrophic lateral sclerosis [134]. It is interesting that the incidence and prevalence of Parkinson’s
disease is higher in males vs. females [135] and the neuroprotective action of estrogen is acknowledged
to be the underlying mechanism of this protection [131,136]. This gender difference, seen in human
populations, is reflected in the mouse model wherein female mice demonstrate an innate protection from
MPTP (1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine)-mediated neurotoxicity [131,132]. This is attributed
to the estrogen-mediated activation of thioredoxin reductase, which plays a critical role in establishing
elevated levels of the (SH)2Trx-ASK1 form of the inhibitory ASK1-signalosome. Thus, the levels of activity of
redox activated p38 MAPK signaling cascade(s) that are implicated in the selective degeneration of SNpc
dopaminergic neurons in mice are significantly increased [132,137]. The mitochondrial dysfunction at ETC
complex I caused by MPTP is absent in females and is, thus, consistent with the proposed mechanism that
ROS generated by complex I dysfunction activates the p38 MAPK pathway via dissociation of the inhibitory
ASK1-signalosome [17–19]. The higher levels of the inhibitory (SH)2Trx-ASK1 form of the signalosome is
thus maintained by increased levels of thioredoxin reductase activity which attenuates p38 MAPK activity
in females (Figure 1) (Figures 5 and 6) This is consistent with the cardioprotective functions of p38 MAPK
inhibitors discussed above.

p38 MAPK plays an important role in induction of cellular senescence by a diverse set of stimuli,
e.g., Ras-induced senescence which is due to an alternative source of oxidative stress [44,138,139].
The small GTPases, are another source of endogenous ROS that activate p38 MAPK [140]. Future
studies will assess whether the small GTPase-generated ROS enhancement of senescence and aging is
mediated via the ASK1-signalosome. In addition, several studies have identified ETC proteins that are
oxidatively modified in aged tissues. These modified proteins are potential generators of ROS via the
misfolded protein stress response and raise the question of whether misfolded protein-generated ROS
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contribute to the promotion of senescence, aging and cardiomyopathies, and does this involve the
activation of the ASK1-signalosome→p38 MAPK→senescence pathways?

18. The Oxidative Stress-Mediated Post-Translational Modification of Cardiac Muscle
Proteins—Post-Translational Modification of Sarcomere Proteins

The oxidative stress-mediated post-translational modification (PTM) of proteins is a basic
physiological factor associated with age-associated loss of protein functions as well as ROS generation
by the misfolded protein stress response. Both physiological characteristics are attributed to increased
levels of inflammation and oxidative stress. In this respect it is significant that miscommunication
between sarcomeric proteins and contractile dysfunction is attributed to oxidative stress-mediated
PTM of myofilament proteins [4,27].

The specificity of PTM is suggested by studies showing that ROS can preferentially act on
regions of the myofilamental proteins exposed to Ca2+ activation as opposed to inaccessible regions of
attached cross-bridges [141]. This ROS modification induces effects that disrupt the integrity of the
sarcomeric lattice.

The ability of certain proteins to serve as redox sensors is a basic physiological function carried
out by certain tissue specific proteins as well as ASK1. Myosin heavy chain (MHC) is a tissue specific
protein that serves as a redox sensor in the sarcomere due to its redox modifications at Cys697 and
Cys707 which decreases myosin ATPase activity and leads to myofilament dysfunction [4,142–145].
Other proteins that are ROS sensitive and subject to redox modifications include actin and tropomyosin,
which result in defects in actin-myosin cross bridge formation and thin filament activation by Ca2+ [146].
This is attributed to oxidation of Cys374, which results in changes in actomyosin ATPase activity and
actin filament sliding velocity [147].

When cardiomyocytes experience oxidative stress, disulfide bridges are formed in the titin N2-Bus

domain, which is a physiologically extensible region capable of S-S bonding. This increased oxidative
stress due to modification elevates titin-based stiffness of cardiomyocytes, which contribute to the global
myocardial stiffening frequently seen in the aging or failing heart [5,148–150]. This disulfide bonding
occurs specifically in titin’s N2-Bus region, thus showing an important differential modification associated
with the ROS-mediated loss of function of this protein. Oxidative modifications such as S-S bonding in
titin’s N2Bus may add to other aging- or disease- related mechanisms that modify titin-based stiffness,
such as titin-isoform transition and alterations in titin phosphorylation [151]; ligand binding [146],
mechanosensing [152], or phosphorylation-dependent stiffness adjustment [153], thus emphasizing the
S-S bonding property of the N2-Bus, which is likely to be of pathophysiological importance.

19. Conclusions

The ASK1-signalosome network is a major center of distribution of ROS-mediated stress signals
that plays multiple roles in promotion of senescence, aging and diseases of oxidative stress one
of which is cardiomyopathy. Its inhibition attenuates the development of these physiological
diseases and its attenuation is associated with increased life span. Importantly the association
of ASK1-signalosome→p38 MAPK oxidative stress suggests that p38 MAPK is a major center of
dissemination of the ROS-activated ASK1-signalosome thus linking signaling networks that drive
senescence, aging and diseases of oxidative stress. Thus, the ASK1-signalosome and p38 MAPK
are potential master regulators of the activity of many stress response genes associated with aging.
Our proposed mechanism implies that the ASK1-siganalosome linked regulation of p38 MAPK activity
should have multiple gene targets associated with resistance and sensitivity to oxidative stress as well as
diseases of oxidative stress.

Our mechanism suggests that promotion of the premature aging phenotypes as well as
cardiomyopathies may be regulated by ASK1-signalosome→p38 MAPK activity. Thus, the use
of inhibitors that attenuate this pathway, either at the level of ASK1, MKK3 or p38 MAPK could be
beneficial in ameliorating such conditions. Although detailed studies have shown the cardioprotective
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effects of p38 MAPK inhibitors, recent advances in high throughput screening of small molecule
libraries have identified benzodiazepine as a potent inhibitor of ASK1. Pharmacological intervention is,
therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors
of either ASK1 or p38 MAPK kinase activity. This is a fruitful future approach to the attenuation of
physiological aspects of mammalian aging and cardiomyopathies.
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ASK1 apoptosis stimulating kinase
ETC electron transport chain
LV left ventricle
ER endoplasmic reticulum
MKK mitogen-activated protein kinase kinase
MI myocardial infarction
NFκB nuclear factor kappa B
NOX-2 NAD(P)H oxidase
p16Ink4a tumor suppressor/cell cycle inhibitor
p19Arf tumor suppressor/cell cycle inhibitor
p38 MAPK p38 MAPK kinase
p53 nuclear phosphoprotein tumor suppressor
PTM post-translational modification
ROS reactive oxygen species
RWJ inhibitor of p38 MAPK
SAP/JNK stress activated protein kinase/c-JunNH2 terminal kinase
SB203580 inhibitor of p38 MAPK activity
TGFβ1 tumor necrosis factor beta 1
TNFα tumor necrosis factor alpha
Trx-1 thioredoxin-1
Trx-2 thioredoxin-2
Trx(SH)2 reduced thioredoxin
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