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Abstract Despite significant advances in its detection, understanding and management, atrial fibrillation (AF) remains a highly
prevalent cardiac arrhythmia with a major impact on morbidity and mortality of millions of patients. AF results
from complex, dynamic interactions between risk factors and comorbidities that induce diverse atrial remodelling
processes. Atrial remodelling increases AF vulnerability and persistence, while promoting disease progression. The
variability in presentation and wide range of mechanisms involved in initiation, maintenance and progression of AF,
as well as its associated adverse outcomes, make the early identification of causal factors modifiable with therapeu-
tic interventions challenging, likely contributing to suboptimal efficacy of current AF management. Computational
modelling facilitates the multilevel integration of multiple datasets and offers new opportunities for mechanistic un-
derstanding, risk prediction and personalized therapy. Mathematical simulations of cardiac electrophysiology have
been around for 60 years and are being increasingly used to improve our understanding of AF mechanisms and
guide AF therapy. This narrative review focuses on the emerging and future applications of computational modelling
in AF management. We summarize clinical challenges that may benefit from computational modelling, provide an
overview of the different in silico approaches that are available together with their notable achievements, and discuss
the major limitations that hinder the routine clinical application of these approaches. Finally, future perspectives are
addressed. With the rapid progress in electronic technologies including computing, clinical applications of computa-
tional modelling are advancing rapidly. We expect that their application will progressively increase in prominence,
especially if their added value can be demonstrated in clinical trials.
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This article is part of the Spotlight Issue on Atrial Fibrillation.

1. Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting
>43 million individuals globally.1 In the European Union, AF currently
affects >10 million adults, half of whom are >_75 years old.2 These num-
bers are projected to double by 2060.1, 2 Current European guidelines
recommend a holistic AF Better Care (ABC) pathway, involving anticoa-
gulation to avoid stroke, better symptom management through rate-
and rhythm control, and cardiovascular and comorbidity optimization.1

AF management according to the ABC pathway improves outcomes and
reduces healthcare costs in retrospective cohort studies,3, 4 with limited
data available from randomized clinical trials on the ABC pathway,5 or
related components such as comprehensive nurse-led care.6 Recent
data indicate that the adherence and persistence of AF patients during
long-term use of mHealth-supported care based on the ABC pathway
was good and was associated with a reduction in adverse clinical out-
comes.7 However, despite significant advances in its detection, mecha-
nistic understanding and management, AF continues to have a major

impact on morbidity and mortality of millions of patients,1 partly because
of unresolved knowledge gaps in AF pathophysiology, screening, and
therapeutic strategies, including rate/rhythm control and stroke preven-
tion.8 The development of actionable personalized approaches, which
take into account patient-specific profiles and arrhythmia mechanisms,
will likely be essential to overcome current challenges in AF manage-
ment.9 Over the last decades, multiscale computational modelling of car-
diac electrophysiology has emerged as a modality to better understand
complex arrhythmia mechanisms and the multifaceted interactions be-
tween arrhythmia substrates, drivers and triggers.10–14 Employing the full
control over parameters and complete observability inherent to compu-
tational models (e.g. enabling simultaneous evaluation of multiple read-
outs under precisely defined conditions), the key contributors to cardiac
arrhythmias in various experimental settings and pathologies have been
identified in realistic simulated contexts. In this narrative review, we high-
light the emerging and future applications of computational modelling in
AF management, providing a conceptual overview of the different in silico
approaches that are available together with their notable achievements.
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.We also discuss challenges to the routine clinical application of these
approaches. For more methodological details on model development,
the interested reader is referred to other reviews.13, 15–17

2. AF pathophysiology

AF is a complex multifactorial disease promoted by several dynamic pre-
disposing factors, including genetics, age-/disease-associated remodelling,
and AF-related remodelling. The occurrence of AF is modulated by sev-
eral systemic regulators such as the autonomic nervous system, haemo-
dynamic changes and inflammation.18–20 Strong interactions between AF
determinants, including autonomic remodelling, calcium-handling abnor-
malities, ion-channel alterations, and structural remodelling are evident
and have been described in detail in recent reviews.21–23 In brief, the inci-
dence of diastolic spontaneous calcium release events (SCaEs) is in-
creased in paroxysmal, persistent and post-operative AF (POAF).18, 24

Together with AF-associated ion-channel remodelling, SCaEs can lead to
early and delayed afterdepolarizations (EADs and DADs, respectively).
At the tissue and organ levels, afterdepolarizations can induce focal ec-
topic firing, often arising from myocardial sleeves around the pulmonary
veins. Re-entrant activity initiated by ectopic activity acting on a vulnera-
ble substrate (characterized by short effective refractory periods and
slow, heterogeneous conduction) is considered a primary AF-maintain-
ing mechanism and becomes more complex with advancing atrial
remodelling.18, 21 Atrial structural remodelling is a major cause of AF-
promoting conduction abnormalities. AF is generally a progressive condi-
tion, moving from paroxysmal (resolving in <7 days) to persistent
(remaining for >7 days) and, if not adequately managed, may become re-
sistant to pharmacological and interventional therapies (permanent AF).
AF progression is in part due to advancing age, the effects of underlying
risk factors and AF-related atrial remodelling, and is independently asso-
ciated with worse outcomes.18 Of note, most patients have multiple AF-
promoting factors and their interaction can produce distinct atrial
remodelling patterns. For example, AF-related remodelling is distinct in
dogs with and without ventricular tachycardiomyopathy (due to the ab-
sence or presence of atrioventricular block), as well as in persistent AF
patients with and without left ventricular (LV) dysfunction.25, 26

Although a major part of the AF-promoting substrate develops second-
ary to advancing age and acquired risk factors, AF also has an important
genetic component. Common and rare genetic variants in numerous
genes have been associated with AF, although for many variants, includ-
ing the most common ones at 4q25 near PITX2, the exact pathophysio-
logical mechanisms remain unknown.27 Despite the growing knowledge
of the arrhythmia substrates and triggers in AF, the contribution of each
component in specific patient subgroups and individuals remains incom-
pletely understood.21

3. Clinical challenges in AF
management potentially benefiting
from computational modelling

Important knowledge gaps and challenges in AF management have re-
cently been summarized.8, 9 Two challenges in particular have received
significant attention in computational modelling studies: identification of
asymptomatic AF to enable early therapy and personalized rhythm-

control therapy, including prediction of AF recurrences. This section
summarizes the clinical motivation for addressing these challenges. The
contributions of computational modelling are detailed in the next
section.

It is estimated that 10–40% of AF patients are asymptomatic.28, 29

These patients often remain undiagnosed and therefore do not receive
appropriate treatment, including early anticoagulation therapy, increasing
their risk of thromboembolic strokes that may even be the first recogniz-
able manifestation of the arrhythmia.28–30 Undetected asymptomatic AF
also delays initiation of rhythm-control therapy, allowing irreversible
structural remodelling to develop, reducing therapeutic efficacy. Earlier
AF-detection may enable prompt treatment, preventing disease progres-
sion and AF-related complications. In agreement, the EAST-AFNET4
trial demonstrated the benefit of early rhythm-control therapy in reduc-
ing the risk of adverse cardiovascular outcomes.31 Although opportunis-
tic screening is recommended and new technologies for recording heart
rhythm might greatly facilitate AF-screening, the optimal approach for
systematic screening and its potential benefit remain uncertain.29, 30 By
analysing large amounts of data and quantitatively projecting the effects
of different screening strategies, computational approaches may facilitate
AF-risk prediction and enable more reliable, cost-effective identification
of asymptomatic AF.

Rate and rhythm control strategies using antiarrhythmic drugs
(AADs) and catheter ablation are the cornerstones of symptomatic AF
management. Historically, rate control was shown to be equally effective
as rhythm control for the prevention of mortality and morbidity from
cardiovascular causes in several studies.32–35 The lack of benefit of
rhythm control in earlier trials has largely been attributed to the limited
efficacy and proarrhythmic side-effects of AADs.36 Pulmonary vein isola-
tion (PVI) through catheter ablation improves sinus rhythm maintenance
compared to AADs and is devoid of ventricular proarrhythmia, poten-
tially enabling better rhythm control. Indeed, a number of recent clinical
trials have suggested that modern rhythm-control strategies may im-
prove outcomes, at least in certain subpopulations of AF patients.31, 37,

38 Nonetheless, the efficacy of catheter ablation remains suboptimal,39,

40 largely due to a one-size-fits-most approach. For example, in patients
with persistent AF,41 arrhythmia-free survival rates after a single proce-
dure were 35.3 ± 3.9%, 28.0± 3.7%, and 16.8 ± 3.2% at 1, 2, and 5 years,
respectively.42 Time to AF recurrence is a major determinant of AF out-
come, where patients with later recurrences were more likely to have
sporadic episodes and respond better to AADs and repeat ablation.43

Despite the increasing prominence of catheter ablation,44–46 AADs re-
main a major component of AF management, because of the large num-
ber of affected individuals, as well as the costs and risks of the invasive
procedure required for ablation.1, 47–50 However, drug-induced proar-
rhythmia and long-term toxicity often limit the choice of AADs.36, 51 It is
likely that specific rate- or rhythm-control strategies respond differently
to distinct fundamental molecular and cellular determinants of AF, mod-
ulating the outcome of specific treatments. The underlying molecular
and cellular determinants of AF might also be associated with the likeli-
hood and time to AF recurrence.52 Nevertheless, predicting which
patients are likely to recur and may therefore require additional follow-
up or more aggressive therapy is challenging. As such, a more personal-
ized approach is needed to better stratify the benefit and risk of each
treatment strategy, and select the optimal (combination of) AF therapies.
Using personalized multiscale computational modelling, the outcome of
both pharmacological and interventional rhythm-control strategies in an

1684 J. Heijman et al.



Figure 1 Overview of existing computational approaches, achievements, challenges, and their potential future directions in AF management. Both mecha-
nistic and data-driven models are available and currently being used to study the AF pathophysiology (blue box) and improve AF clinical care (yellow box).
However, several limitations exist (red box) that need to be resolved, e.g. through experimental and technological advances. By overcoming these limita-
tions, demonstrating clinical benefit in randomized clinical trials (RCTs) and improving ease of use, computational modelling can improve AF management.
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..individual patient might be predicted, facilitating the identification of the
best patient-specific treatment strategy for AF.

4. Key achievements of
computational modelling in AF

Conceptually, most of the computational models employed for studying
AF can be divided into mechanistic and data-driven models (Figure 1,
top). Mechanistic models integrate fundamental biophysical laws and
concepts with experimental data to simulate cardiac electrophysiology.
These models are usually dynamic, simulating changes in quantities of in-
terest (membrane potential, intracellular concentrations, etc.) over time,
and are therefore typically represented by systems of non-linear ordi-
nary or partial differential equations. Their dynamic nature also means
that they are inherently causal, e.g. reflecting how electrical activity
spreads from a stimulus site by successively activating neighbouring cells.
As such, these models are frequently employed to investigate the under-
lying pathophysiology of cardiac arrhythmia and to unravel the complex
dynamic interactions among variables of interest, from atomic to organ

levels.53 Meanwhile, data-driven models employ statistical or machine
learning (ML) approaches to establish associations between predefined
inputs and outputs. These models require fewer a priori assumptions
than mechanistic models and can suggest hitherto unknown factors con-
tributing to AF. Inputs of data-driven models are typically clinical data, in-
cluding (semi-)quantitative clinical characteristics, as well as raw signals
[e.g. electrocardiogram (ECG) or telemetry data] and imaging data.
Their outputs are most often clinical outcomes or diagnoses, making
their clinical application more direct than that of mechanistic models.
Classically, data-driven models have employed multivariable regression
to link inputs and outputs, but recent advances in ML and artificial intelli-
gence have significantly expanded their abilities and range of applica-
tions.54 Finally, some approaches fall somewhere in between
mechanistic and data-driven models. For example, health-technology as-
sessment models used in cost-effectiveness assessment of medical thera-
pies,55, 56 are dynamic and causal, but do not include fundamental
biophysical laws and are primarily based on data from clinical trials. The
following three subsections provide key examples of these computa-
tional approaches that are relevant for AF management (as summarized
in Table 1 and Figure 1, blue and yellow boxes).

..............................................................................................................................................................................................................................

Table 1 The current contributions of computational modelling of atrial electrophysiology on AF pathophysiology and clinical
care

Clinical challenge Model scale/type Contribution Example

Mechanistic models

Early AF detection Cellular and organ Insights on proarrhythmic electrical and structural remodelling associated with AF risk

factors

57–66

Personalized rhythm-

control therapy

Subcellular and cellular Identification of the ionic mechanisms underlying atrial arrhythmias and consequences

of AF-related remodelling

12, 24, 67–74

Cellular and tissue Evaluation of potential novel AAD targets, notably Kv1.5 and K2P3.1 75, 76

Cellular and tissue Identification of optimal pharmacodynamic characteristics of new AADs, including

state-dependent and multi-channel inhibition properties

77–79

Cellular Evaluation of drug safety as part of the comprehensive in vitro proarrhythmia assay

(CiPA) initiative

80

Organ Evaluating the outcome of different catheter ablation strategies in patient-specific

models

81–84

Organ Simulation driven-targeting of AF (emergent) re-entrant drivers 85–87

Organ Prediction and prevention of post-ablation atrial arrhythmia and AF recurrences 88, 89

Data-driven models

Early AF detection Statistical Prediction of AF risk based on clinical and genetic information 90–94

ML Prediction of AF based on sinus rhythm ECGs 95–97

ML Detection of AF based on facial pulsatile photoplethysmographic signals 98

Statistical Estimation of patient-specific atrial electrical remodelling patterns based on remote-

monitoring technology

99

Personalized therapy Statistical Predicting spontaneous conversion to sinus rhythm in symptomatic atrial fibrillation 100

Statistical Predicting the likelihood of AF recurrence 101

ML Prediction of AF recurrence after the first catheter ablation procedure 102–104

ML Classification of intracardiac activation patterns during AF to detect regional rotational

activity

105, 106

ML Identification of patients who may benefit from AF cardioversion 107

Health-technology assessment models

Early AF detection Population Cost-effectiveness analyses of AF screening 56, 108

Personalized therapy Population Cost-effectiveness analyses of AF therapies (e.g. AADs, anticoagulants and ablation) 55, 109–111

1686 J. Heijman et al.
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5. The role of mechanistic models
to improve understanding and
management of AF

5.1 Brief overview of the historical
evolution of mechanistic models of AF
Computational modelling of electrophysiology began following the fa-
mous experimental work on cellular electrical activity in the squid giant

axon by Hodgkin and Huxley in 1952 (Figure 2).112 Subsequently, various
mathematical models of both neural and cardiac electrophysiology have
been developed to address specific research questions and bridge
knowledge gaps identified during laboratory experiments.13 In 1962,
Denis Noble for the first time utilized the Hodgkin-Huxley equations to
explain the action potential of cardiac Purkinje fibres.113 A similar ap-
proach was employed by Beeler and Reuter to develop the first ventricu-
lar cardiomyocyte model in 1977.114 Inspired by the detailed ionic model
of cardiac electrical activity by DiFrancesco and Noble,115 the 1987

Figure 2 Timeline of milestones in multiscale mechanistic modelling of atrial electrophysiology. The subcellular spatial models of human atria are depicted
in yellow, the cellular models in blue/grey, and the tissue/organ-level (whole atria) models in red. Two of the earliest electrophysiological models are shown
in grey. As displayed in the figure, the model complexity and prominence has increased over the year, from covering only four ionic currents in 1977 to ad-
vanced patient-specific whole-atria models and detailed models of subcellular calcium handling in 2020.
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.
mathematical model by Hilgemann and Noble116 was among the first to
explore the electrophysiological properties of mammalian atrial cardio-
myocytes. In 1998, the first human atrial in silico models were formulated
by Nygren et al.117 and Courtemanche et al.118 These models were
employed to study the consequences of experimentally characterized
AF-induced electrical remodelling.75 Subsequently, computational mod-
els of atrial cellular electrophysiology were refined to study atrial cell-
cell interactions119 and calcium-handling abnormalities.120 Advances in
experimental modalities such as (super-resolution) confocal microscopy
revealed important differences in subcellular structure between atrial
and ventricular cardiomyocytes, which motivated atrial cardiomyocyte-
specific model structures. For example, atrial cardiomyocytes have a lim-
ited transverse-tubule network, which causes centripetal calcium wave
propagation from the cell periphery towards the centre of the cell.13, 121

This phenomenon can only be captured by models with spatial calcium
handling.67, 122 In 2014, a population modelling approach in which a large
population of models is generated by varying individual parameters was
first applied to atrial cardiomyocyte models to capture interindividual
and intercellular variability.123

Already in 1964, Moe et al.124 described a mathematical model of im-
pulse propagation in a non-uniform two-dimensional system exhibiting
self-sustained turbulent activity resembling AF. This seminal work has
provided insights into the determinants of AF maintenance and revealed
potential therapeutic interventions to control multiple wavelets in atrial
tissue, which subsequently gave rise to the Cox maze procedure. Since
the early 2000s, morphologically realistic organ-level atrial models, in-
corporating the major atrial structures, have also been developed125 and
advances in clinical imaging and computational resources have enabled
the development of patient-specific models. For example, in 2015
McDowell et al.57 provided the first proof-of-concept that a modelling
approach with patient-specific fibrosis patterns could non-invasively
identify AF ablation targets prior to the clinical procedure. This approach
was subsequently expanded to better predict, diagnose or treat atrial
arrhythmias.57, 58, 85, 126, 127 Taken together, during the past 35 years, nu-
merous atrial models ranging from subcellular to organ levels have been
developed to examine atrial electrophysiology under both physiological
and disease conditions.120–123, 125 The milestones that have been briefly
mentioned in this section are summarized in Figure 2, and those relevant
for clinical AF management are discussed in detail below.

5.2 Cellular electrophysiology modelling
(Sub)cellular and multicellular computational models of cardiac electro-
physiology (Figure 3A) can help to overcome experimental limitations by
providing full control over parameters of interest. Among other things,
(sub)cellular in silico modelling of atrial electrophysiology has contributed
to the identification of the ionic mechanisms underlying atrial arrhyth-
mias, including the determinants of alternans, as well as DADs and asso-
ciated triggered activities in different forms of AF (Figure 3B). For
example, a two-dimensional spatial calcium-handling model indicated
that both ryanodine receptor (RyR) dysregulation and enhanced
SERCA2a activity promoted increased sarcoplasmic reticulum calcium
leak and SCaEs, causing DADs/triggered activity in paroxysmal AF.67

Meanwhile, interleukin-1b-induced RyR dysfunction exacerbated the
pre-existing calcium-handling abnormalities, leading to DADs in models
of POAF.24 In silico studies also demonstrated that AF-promoting atrial
repolarization alternans might occur due to decreased RyR inactivation,
and that calcium-driven repolarization alternans due to AF-associated
electrical remodelling increased the vulnerability to ectopy-induced ar-
rhythmia.12, 68, 69 Finally, in silico models of human atrial

cardiomyocytes75, 118, 120 have been used to study the impact of AF-re-
lated ion-channel remodelling70–74 and remodelling associated with AF
risk factors.59 Until recently, most computational studies employed a sin-
gle deterministic model, reflecting a representative atrial cardiomyocyte,
thereby disregarding experimentally observed variability. However, with
growing awareness on the importance of such variability, several model-
ling studies have started incorporating intra- and inter-individual variabil-
ity of cellular parameters. The most common method involves
stochastic scaling of the cellular parameters, typically the maximal ionic
conductances, reflecting variability in ion-channel expression, resulting in
a population of models.123, 128, 129 Subsequently, models within this pop-
ulation that are too far outside of the experimental range are removed.
The resulting calibrated populations reflect the natural heterogeneity
within a population, encompass a wide range of cellular phenotypes and
are therefore expected to yield more representative results.

Together, these cellular studies suggest a potential for model-based
identification of therapeutic targets (Figure 3C). Moreover, by integrating
experimental data on disease- and AF-associated remodelling, these
computer models may provide insight into therapeutic effectiveness un-
der different clinical conditions. For example, the atrial-selective expres-
sion of Kv1.5 ion-channels suggested that they may constitute an
interesting atrial-selective ionic target for AAD therapy, but simulation
of their role in atrial repolarization raised concerns75 that were subse-
quently confirmed in clinical trials.130 Simulations indicated that remodel-
ling of K2P3.1 plays a major role in APD-shortening in long-standing
persistent AF, but that down-regulation of K2P3.1 with LV dysfunction
reduced antiarrhythmic efficacy of K2P3.1 current inhibition.76 The per-
fect control offered by computer models in combination with the in-
creasing availability of detailed Markov models of cardiac ion channels
may also help to identify the optimal pharmacodynamic characteristics of
new AADs, including state-dependent and multi-channel inhibition prop-
erties.77–79 Thus, detailed cellular models provide information that might
be relevant for future tailored rhythm-control therapy of AF.

In addition to their potential for AF drug development, computational
cardiomyocyte models play an increasingly important role in cardiac
safety pharmacology as part of the comprehensive in vitro proarrhythmia
assay (CiPA) initiative (Figure 3D).80 Although the main focus of CiPA is
predicting the risk of potentially life-threatening ventricular arrhythmias,
the initiative has shown, using stringent predefined validation criteria,
that a population of ventricular cell models can reliably predict the risk
of drug-induced proarrhythmia. This gives credibility to the use of com-
putational models for guiding (regulatory) decisions with major financial
and healthcare implications. Furthermore, in the future the CiPA initia-
tive may indirectly affect AF management by influencing the regulatory
approval of drugs involved in risk-factor management.

5.3 Organ-level modelling
The majority of contemporary simulation research in organ-level elec-
trophysiology of the atria and AF accurately captures the complex 3-di-
mensional human atrial geometry acquired from computed
tomography81, 131 and magnetic resonance imaging (MRI),57, 60, 61, 132 or
employs surface models reconstructed from invasively-acquired electro-
anatomic maps.133 Such atrial models incorporate multi-scale represen-
tations of cell and tissue properties (Figure 4). Several of the aforemen-
tioned cellular ionic models have been used to capture atrial cell
electrophysiology, including AF-promoting electrical remodelling, while
properties at the tissue level account for the orthotropic conduction of
electrical waves governed by atrial fibre orientation, which is commonly
retrieved from atlases as atrial fibre orientation currently cannot be

1688 J. Heijman et al.



Figure 3 (Multi)cellular models of atrial electrophysiology and their roles in AF management. (A) Illustrations of currently available subcellular, cellular,
and multicellular atrial electrophysiology models. (B–D) The role of cellular modelling to improve the understanding of basic AF mechanisms and determi-
nants (B), in drug-target discovery, exemplified by IKur and IK2P block, resulting in prolongation of APD and destabilization of reentrant waves (C), and in safety
pharmacology (i.e. the CiPA initiative; D).
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acquired in vivo.134, 136 Studies have modelled atrial fibrosis detected on
late gadolinium enhancement (LGE) MRI by changes in cellular electro-
physiology and tissue conductivities, by stochastic removal of mesh ele-
ments in fibrotic areas, or by introducing patchy areas of electrical
isolation.58, 62, 137 Fibrotic remodelling has also been represented by ex-
plicitly modelling fibroblasts, which affect the electrophysiological prop-
erties of neighbouring cardiomyocytes via direct electrical coupling or
paracrine mechanisms.10 The multi-scale personalized atrial models sim-
ulate, following electrical stimulation, the propagation of electrical waves,
as well as emergent phenomena such as the generation and maintenance
of AF. The incorporation of structural and electrical remodelling in these
models has enabled investigating the links between the altered electro-
anatomical substrate and the dynamics of AF re-entrant drivers, as well
as to propose options for simulation-guided AF treatment.

Organ-scale atrial computational modelling has provided insights into
the fundamental mechanisms that govern propensity to AF. Notably, the
extent and distribution of atrial fibrosis have been identified as critical
determinants of atrial arrhythmogenicity and propagation dynamics dur-
ing AF. The patient-specific distribution of fibrosis significantly affects AF
dynamics in personalized atrial models. A number of studies have pro-
vided evidence that re-entrant drivers within regions of structural inho-
mogeneities and fibrotic remodelling have a significant role in
maintenance of persistent AF.57, 58, 62–65 Re-entrant drivers persisted in
fibrosis boundary zones characterized by high fibrosis density and fibrosis
entropy (Figure 5), corresponding to atrial regions with a high degree of
intermingling between fibrotic and non-fibrotic tissue. Patient-specific

simulation studies have also explored the role of fibrosis in atrial arrhyth-
mogenic propensity in relation to other atrial parameters. In atrial mod-
els reconstructed from LGE-MRI and histological data, re-entrant drivers
persist in atrial areas of distinct structural ‘fingerprints’,66 i.e. a combina-
tion of intermediate wall thickness, intermediate fibrosis, and twisted
myofibre orientation. However, removal of fibrosis rendered the atrial
model non-inducible for AF, reinforcing the primary role of fibrosis.66

Furthermore, changes in action potential duration or conduction veloc-
ity changed the likelihood of a re-entrant driver being anchored in a spe-
cific fibrosis location.60 Atrial wall thickness was also found to be an
important determinant of re-entrant driver behaviour but only in the
right atrium, while in the left atrium AF dynamics were primarily deter-
mined by fibrosis distribution.61

One of the most impactful applications of organ-level atrial modelling
is the potential for developing personalized AF ablation strategies, tai-
lored to target each patient’s unique atrial AF substrate. A number of
simulation studies presented personalized AF ablation strategies adjuvant
to standard-of-care PVI.81–84 Atrial models reconstructed from cardiac
computed tomography scans of AF patients have been used to compare
the outcome of different ablation strategies,81 identifying PVI with poste-
rior box isolation and anterior line ablation as the most effective strategy.
The efficacy of these ablation strategies was subsequently evaluated in a
prospective clinical trial of 108 patients with persistent AF, randomized
to receive either standard-of-care ablation or ablation guided by the pa-
tient-specific models.82 The study demonstrated that simulation-guided
selection of the adjuvant lesion geometry is non-inferior to empirical AF
ablation, but generally resulted in more extensive lesion sets.82 This
groundbreaking work showed the feasibility of applying simulation-
guided AF-ablation therapy, but showed that further work is needed be-
fore any added-value can be confirmed. The atrial models used in these
studies were homogeneous atrial models and did not incorporate pa-
tient-specific fibrosis or fibre orientations, possibly explaining failure to
show improvement.

Similar ablation approaches were tested using bilayer atrial models
but incorporating patient-specific fibrosis derived from LGE-MRI83;
lesions used in clinical practice such as PVI, roof, and mitral lines were
compared to circle lesions, perforated circles, lines, and crosses, as well
as to lines streamlining the sequence of electrical activation during sinus
rhythm, with the latter found to be most effective. Using the same
modelling approach, Roney et al.84 recently demonstrated that model
ablation approaches based on clinical standards had limited success. To
develop an optimal AF ablation approach for each patient, a random for-
est algorithm was trained to predict simulated ablation outcome for sev-
eral input variables, including imaging metrics and simulated
electrophysiological and lesion metrics. The results indicate that achiev-
ing optimal outcomes may require different AF ablation strategies in dif-
ferent patients.

Targeting AF-sustaining re-entrant drivers is a natural ablation strat-
egy. However, as these drivers are difficult to localize during the proce-
dure, simulations with personalized atrial models have offered an
alternative strategy—determining the re-entrant driver locations in the
models prior to the procedure. McDowell et al.57, 86 were the first to
demonstrate, in a four-patient proof-of-concept study, that ablation of
atrial regions encompassing the meander of persistent re-entrant drivers
rendered the model non-inducible for AF. The current methods for clini-
cal intra-procedure localization of AF re-entrant drivers include focal im-
pulse and rotor mapping (FIRM),138 local electrogram-based parameters
such as spatiotemporal electrogram dispersion139 and instantaneous fre-
quency modulation of single atrial signals,140 as well as non-invasive

Figure 4 Organ-level atrial models integrate information from cell-,
tissue-, and organ-level scales. For cell-level atrial electrophysiology, an
example of atrial action potentials in fibrotic (green) and normal cells
(black) is shown. At the tissue scale, atrial fibre architecture creates a
preferential direction for wave propagation along the atrial fibres, as
shown by the diffusion-tensor MRI fibre orientations acquired in
explanted human atria.134 At the organ scale, personalized atrial models
with patient-specific geometry and fibrotic remodelling are recon-
structed from patients’ LGE-MRI scans and used in simulations of AF in-
ducibility. Shown is an activation map of an AF episode. Modified with
permission from Aronis et al.135
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..electrocardiographic imaging (ECGI).141 AF patients that underwent
FIRM-guided (11 patients)126 or ECGI-guided (12 patients)142 re-entrant
driver ablation, in addition to PVI, had a significantly higher risk for AF re-
currence if the clinical ablation sites were different from those found in
the atrial models, suggesting that simulation driven-targeting of re-en-
trant drivers for AF can play a role in the clinical procedure. However, as
personalized atrial models are reconstructed from cardiac images, and
cannot prospectively incorporate invasively-acquired personalized elec-
trophysiological information, so that predictions are rendered pre-pro-
cedurally, there is uncertainty in the predicted location of re-entrant
drivers. Hakim et al.87 demonstrated that this uncertainty can be substan-
tially mitigated by repeating the AF inducibility simulations post-simula-
tion of the initial ablation to capture and ablate emergent re-entrant
drivers. Nonetheless, because of the reliance on non-invasive pre-proce-
dural information, simulation-guided identification of AF ablation targets
can at present not be applied to patients with a primarily functional
substrate.

The first prospective entirely simulation-driven ablation study85 en-
rolled 10 patients with persistent AF, for whom personalized atrial
model with fibrosis distribution were reconstructed from LGE-MRI
scans. Optimal ablation targets were determined pre-procedure non-
invasively via computational modelling and utilized to steer patient treat-
ment in an approach termed optimal target identification via modelling
of arrhythmogenesis (OPTIMA). The approach was designed to
completely eliminate the ability of the patient’s fibrotic substrate to sus-
tain AF: not only the clinically manifested AF but also emergent atrial

arrhythmias that could arise from the fibrotic substrate, e.g. following ini-
tial ablation. OPTIMA was thus designed not only to make ablation effica-
cious in patients with persistent AF but also to potentially eliminate the
need for repeat ablations. An example of the OPTIMA ablation target
set in one patient is shown in Figure 6A, together with the procedure to
import the predicted ablation targets in the electro-anatomical mapping
system (Figure 6B), so that the ablation catheter can be directly navigated
to the targets. The initial feasibility study evaluating the OPTIMA ap-
proach included a limited number of patients and ablation times were
not evaluated. Of the 10 patients enrolled, only one returned for re-abla-
tion during the follow-up period, with atrial flutter rather than AF. For
clinical acceptance, OPTIMA’s efficacy will need to be evaluated in larger
studies. A 160-patient randomized clinical study based on the OPTIMA
approach has been approved (ClinicalTrials.gov identifier NCT04
101539) and will establish the potential of computer modelling for the
personalized management of AF.

Atrial macro-reentrant tachycardias or left-atrial flutters frequently
occur after AF ablation due to modifications of the substrate introduced
by the ablation lesions. Patient-specific atrial modelling has been
employed to determine what lesion would render atrial flutter no longer
inducible in a study of patients who were successfully treated for AF via
catheter ablation, but experienced post-procedure left atrial flutter.88 In
a longitudinal study of 12 paroxysmal or persistent AF patients, Ali
et al.89 applied LGE-MRI-based atrial computational modelling to under-
stand the differences in AF propensity of atrial fibrotic substrates pre-
and post-ablation. The study demonstrated that AF recurrence

Figure 5 Re-entrant drivers sustain AF in persistent AF patients. (A) Dynamic (i.e. time-varying) locations of the re-entrant driver organizing centre during
an AF episode in a patient. An activation map (left) shows a re-entrant driver near the inferior vena cava. Inset panels show a zoomed-in view of the organiz-
ing centre (purple) at four timepoints. The fibrotic tissue boundaries are indicated by black outlines. Right-most panel shows the trajectory of the organizing
centre over time superimposed on the activation map of the reentry and the fibrosis spatial pattern (green regions). (B) Location of the re-entrant driver or-
ganizing centre over time overlaid on the regions of the atria with characteristic fibrosis density and fibrosis entropy values predicted to be most likely to har-
bour re-entrant drivers (green). Modified with permission from Zahid et al.58
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..correlated with the presence of re-entrant drivers, which were either
drivers unaffected by ablation, or new ones emerging post-ablation.
Taken together, atrial organ-level modelling constitutes a unique tool for
designing ablation strategies that optimize efficacy and minimize ablation-
induced atrial pro-arrhythmia, thus providing new opportunities for im-
proved rhythm control, as well as prediction and prevention of post-ab-
lation recurrences.

6. Data-driven models for AF
management

Traditional statistical models have significantly contributed to contempo-
rary clinical AF management, e.g. in the prediction of stroke and bleeding
risks143, 144 and are typically derived from large-scale registries and trials

that investigated the relevant clinical outcomes. Statistical models have
also been applied to several of the current challenges in AF management,
including early AF detection,90, 91 rhythm-control management,100 and
AF recurrence prediction.101 Several statistical models have combined
conventional risk scores based on clinical characteristics with biomarkers
to increase their predictive performance.145 Advanced statistical models
have also been applied to large-scale genetic analyses, e.g. genome-wide
association studies, to derive polygenic risk scores for the development
of AF.92–94 Nonetheless, statistical approaches are limited in their ability
to identify relevant, potentially non-linear, interactions between numer-
ous parameters that may be required for optimal prediction of the out-
come of interest in today’s large data sets. Artificial intelligence and ML
may overcome this limitation.

Applications of artificial intelligence and ML in cardiac electrophysiol-
ogy are emerging54, 146, 147 and are discussed in more detail in a separate

Figure 6 Example of the process to determine the OPTIMA ablation targets in a patient with two previous failed ablations. (A) Left-most: Posterior (top)
and anterior (bottom) views of the patient-specific atrial model as reconstructed from segmented LGE-MRI scans, including the distribution of fibrotic tissue.
Middle-left: Two examples of AF activation sequences induced by rapid pacing, and the corresponding persistent reentrant drivers (pink). Middle-right: Two
examples of activation sequences associated with arrhythmia emerging in the model following virtual ablation (lesions shown in orange), and the corre-
sponding emergent re-entrant drivers. Right-most: Custom-tailored OPTIMA ablation treatment plan, including targets corresponding to all reentrant driv-
ers (pre-ablation and emergent) and lesion lines connecting these target drivers to non-conductive tissue boundaries. RD, re-entrant driver. (B) Schematic
summarizing the process of importing OPTIMA ablation targets into the CARTO electroanatomical navigation system. Modified with permission from Boyle
et al.85
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review of this spotlight issue.148 In brief, the ability of ML and ‘big data’ to
identify complex associations between numerous variables of interest in
a data-driven, hypothesis-free approach make them attractive for identi-
fying occult AF determinants and establishing clinical decision support
systems.146 ML has been employed to predict the future AF incidence
from electronic health records95, 96 and sinus rhythm ECGs,97 predict
stroke risk from a daily AF burden signature,149 define AF clinical classifi-
cations based on different risks for adverse clinical outcomes,150 classify
intracardiac activation patterns during AF to detect regional rotational
activity,105, 106 identify patients who may benefit from AF cardiover-
sion,107 and predict AF recurrence after the first catheter ablation proce-
dure.102–104 These ML approaches exploited diverse pre-procedural
patient characteristics as inputs, including laboratory and clinical parame-
ters,102, 103 atrial geometry,151 and imaging data.104 Recent work has also
demonstrated the feasibility of contact-free AF detection by ML-sup-
ported classification of facial pulsatile photoplethysmographic signals,98

as well as data-driven estimation of patient-specific atrial electrical
remodelling patterns based on remote-monitoring technology.99 Such
approaches may expand the opportunities for AF screening and subse-
quent monitoring in the future.

There is a growing interest in combining mechanistic and data-driven
models to leverage the advantages of both approaches. In theory, data-
driven approaches could directly predict the functional consequences of
point mutations in ion-channel genes, which could then automatically be
integrated in mechanistic models to study their impact on cardiac elec-
trophysiology and arrhythmogenic risk. However, current experimental
data sets are heavily skewed towards disease-causing variants, which lim-
ited the predictive accuracy of various ML approaches.152 Alternatively,
ML may support molecular dynamics simulations to study ion-channel
gating in health and disease over physiological time scales,153 thereby in-
directly supporting mechanistic simulations of cardiac electrophysiology.
At the organ-level, the perfect observability provided by mechanistic
computer models creates unique opportunities for analysing and validat-
ing data-driven approaches to the detection of AF drivers, as has already
been done for several electrogram-based biomarkers.139, 140 Such
approaches may help to evaluate and optimize the specificity of driver-
detection algorithms (ML-based or otherwise), potentially reducing the
number of unnecessary lesions. The recurrence of AF post-PVI could be
predicted pre-procedurally by conducting mechanistic simulations of AF
induction in atrial models reconstructed from paroxysmal AF patients
with fibrosis on LGE-MRI, and training an ML classifier on simulated AF
episodes and imaging features.104 If this approach is confirmed to predict
failure of PVI pre-procedurally, the patient’s ablation plan could then po-
tentially be adjusted to include targeting of patient-specific extra-PVI
areas of arrhythmogenic driver propensity using the simulation-driven
OPTIMA ablation approach,85 highlighting the potential of hybrid mecha-
nistic- and ML-based modelling approaches.

7. Health-technology assessment
models

Besides mechanistic and data-driven modelling, health-technology as-
sessment models also play an important role in AF management, particu-
larly for cost-effectiveness analyses of AF screening56, 108 and AF
therapies (e.g., AADs, anticoagulants and ablation).55, 109–111 Health-
technology assessment models are typically implemented using Markov
models that simulate the transition of virtual populations between differ-
ent clinical states, each of which have a specific value (e.g. quality-of-life)

and are associated with certain costs. The probability of individual transi-
tions may differ for specific conditions, enabling the comparison of differ-
ent therapies. For example, using a lifelong decision-analytic Markov
model, cost-effectiveness of screening for asymptomatic AF was ana-
lysed and shown to be of clinical interest beyond the age of 75 years.108

Meanwhile, a Markov model to calculate the total costs and quality-ad-
justed life-years associated with cryoablation and AAD therapy in parox-
ysmal AF patients demonstrated the superiority of cryoablation over
AADs.111 Some of these models have been combined with conventional
statistical models (e.g., to detect asymptomatic AF154) or ML
approaches. For example, a cost-effectiveness analysis of targeted
screening for AF identification utilized a hybrid screening decision tree
and Markov disease progression model.56 Finally, patient-level Markov
models can also be used to simulate AF progression patterns in an indi-
vidual patient.155

8. Major limitations hindering
application of computational
modelling in clinical AF
management

Despite the significant contributions of multiscale computational model-
ling of cardiac electrophysiology in improving the understanding of basic
AF mechanisms, several challenges remain (summarized in Table 2 and in
the red box in Figure 1) and their routine clinical application remains
limited.

Cellular electrophysiology models have proven useful for elucidating
fundamental arrhythmia mechanisms. However, for tailoring AF therapy
more detailed personalization of these models is needed. For example,
accumulating evidence suggests that the antiarrhythmic efficacy of AADs
is modulated by genetic and acquired risk factors.156 Although cardio-
myocyte models for a few subgroups of AF patients, including paroxys-
mal/long-standing persistent AF and absence or presence of left-
ventricular dysfunction have been developed,67, 76 more detailed per-
sonalization of cellular electrophysiology is hindered by the numerous
interactions between individual risk factors producing complex atrial
remodelling and the limited availability of experimental data. Cellular
electrophysiological data are only available from patients undergoing
open heart surgery (who may have a different risk-factor profile than
typical AF patients) and are mostly restricted to the right-atrial append-
age (which may not always be representative for other regions of the
atria). Moreover, most experimental data were not obtained from stud-
ies with a predefined prospective design, potentially introducing a bias
when post hoc defined subpopulations are used for model personaliza-
tion. Due to the limited availability of human atrial samples and the chal-
lenging nature of cellular electrophysiology experiments, most currently
available models still contain numerous components that have been pa-
rametrized based on data from various non-human species, which could
also affect their ability to accurately reproduce arrhythmogenic mecha-
nisms observed in patients. These and other challenges involved in trans-
lating mechanistic discoveries into clinically applicable therapies are
discussed in more detail in another review in this spotlight issue.157

Similarly, although anatomical differences and patient-specific fibrosis
patterns can be personalized in organ-level models based on LGE-MRI,
the pre-procedural availability of electrophysiological information, which
can affect model behaviour,60 is limited. As such, currently available or-
gan-level models are also not able to predict AF ablation targets in
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patients with a primarily functional substrate. Furthermore, it is at pre-
sent not possible to model patient-specific fibre orientations and the lim-
ited spatial resolution of traditional MRI makes resolving the complex
atrial fibrosis patterns, including thin endomysial fibrosis and patches of
surviving cardiomyocytes, difficult. Thus, model personalization at all spa-
tial scales remains challenging.

Even when models can be personalized, it might be necessary to ad-
dress intra-individual heterogeneities to capture uncertainty and tempo-
ral variation of electrophysiological properties. Although recent studies
have integrated variability by applying population-modelling approaches,
this is typically done by varying the maximum conductance of atrial ionic
currents, based on in vitro experiments.128, 129 However, at present, the
extent of the variability of each cellular component is unknown and co-

expression of some channels, which has been recently observed,158 is
not considered. Furthermore, the electrotonic coupling influencing this
intrinsic variability might vary across regions of the atria (affected by cell
types, number of (myo)fibroblasts and neighbouring structures). At pre-
sent, it is unknown to what extent variability in atrial anatomical, struc-
tural and functional properties would influence the overall behaviour of
proarrhythmic substrates, drivers and triggers.

The computational requirements associated with multiscale mechanis-
tic modelling represent another challenge potentially hindering clinical ap-
plication, particularly when variability needs to be assessed in large-scale
populations of models. While early in silico models were able to simulate
the cellular behaviour of cardiomyocytes by only using a limited number
of parameters and state variables, these are insufficient to capture all rele-
vant properties of cardiomyocytes. Although detailed cell models have
been developed, their computational complexity precludes their incorpo-
ration in organ-level models. Recent work has proposed innovative
approaches to phenomenologically reproduce the electrophysiological
consequences of subcellular calcium-handling abnormalities in multiscale
models, enabling investigation of the interactions between ectopic activity
and re-entry.159 Nonetheless, some elements from detailed cell models
may have to be sacrificed in organ-level models to retain a reasonable
computational cost, which may limit their applications. For example, al-
though simplified ionic models might be sufficient for tailored ablation
therapy, evaluation of concomitant AAD effects will likely require more
detailed ion-channel models that can capture state-dependent drug
effects. Similarly, although organ-level computational investigations of AF
recurrence following ablation therapy have provided important insight
into the role of untreated and emergent re-entrant drivers,89 issues re-
lated to the simulation of potential intervening gaps, pulmonary vein
reconnection, focal ectopic firing and progression of the underlying sub-
strates due to continued atrial remodelling remain unresolved.160 Thus,
more accurate representations of currently available therapies may be
needed for model-guided selection of AF therapy in clinical practice.

Finally, the clinical application of personalized organ-level models
requires significant multidisciplinary expertise and integration with com-
plex existing workflows and systems, including availability of (high-reso-
lution) LGE-MRI and integration in electro-anatomical mapping systems
employed during ablation procedures. Moreover, processing of clinical
data for model personalization (e.g. segmentation of atrial structures on
LGE-MRI) is time consuming. Together, these challenges make routine
application in the large population of AF patients across the globe
challenging.

After data-driven models have been derived, their computational
costs are significantly lower than those of mechanistic models and their
integration in clinical workflows is more readily achieved, e.g. as clinical
decision-support systems accessible through websites, apps or other dig-
ital systems. One weakness of deep learning-based ML approaches is
their ‘black box’ characteristic, in which the intermediate process cannot
be scrutinized. This property has traditionally hindered application of
these models for clinical decision with potentially severe consequences,
despite their popularity in research settings.161 However, as ML predic-
tions are being more extensively validated in multiple independent data
sets, the confidence in their clinical applicability is expected to increase.

9. Future perspectives

As summarized in the lower part of Table 2, continuing advances in ex-
perimental methodologies (e.g. induced pluripotent stem cell-derived

......................................................................................................

.......................................................................................................

Table 2 Current challenges and future perspectives of
computational modelling in AF management

No. Challenge

1 Lack of personalization details (e.g. incorporation of genetic and

acquired risk factors)

2 Limited availability of experimental data used to validate computa-

tional models (e.g. limited access to atrial tissues other than

atrial appendage and to patient cohorts without an indication

for cardiac surgery)

3 Limited pre-procedural availability of patient-specific electrophysi-

ological information

4 Inability to image patient-specific fibre orientations

5 Limited spatial resolution of traditional MRI makes resolving the

complex fibrosis patterns in the thin atrial walls challenging

6 Intra-individual heterogeneities are not fully characterized

7 Lack of cellular details in organ-level models that may be required

to simulate realistic AAD effects due to high computational cost

8 Issues regarding simulation of intervening gaps, PV reconnection,

focal ectopic firing and progression of the underlying substrates

due to continued atrial remodelling remain unresolved

9 Complex integration with existing workflows and systems (e.g. re-

quirement for LGE-MRI and its time-consuming segmentation,

integration with electro-anatomical mapping systems)

10 ‘Black box’ characteristic of deep-learning based machine learning

models

No. Future perspective

1 Advances in experimental methodologies as well as clinical imaging

modalities may provide new opportunities for model develop-

ment and personalization

2 Technological innovations in combination with new approaches

for model simplification are expected to provide additional

computational performance, enabling simulation of more de-

tailed mechanistic-models

3 Increased standardization and improved attention to re-usability

will likely facilitate the exchange of modelling approaches and

their integration into existing workflows

4 An increasing availability of large data sets and modern (explain-

able) machine learning models

5 Hard evidence for the clinical benefit of using computational mod-

els (e.g. RCT) will be needed to motivate their routine use
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.
cardiomyocytes,80 medium/high-throughput automated patch-clamp-
ing),162 as well as clinical imaging modalities (high-resolution MRI and
contrast-enhanced computed tomography, advanced mapping sys-
tems)163 may provide new opportunities for model development and
personalization. At the same time, technological innovations in combina-
tion with new approaches for model simplification are expected to pro-
vide additional computational performance, enabling simulation of more
detailed mechanistic models.159 Increased standardization and improved
attention to re-usability will likely facilitate the exchange of modelling
approaches and their integration into existing workflows, in preparation
for routine clinical care. The integration of ML and mechanistic modelling
is expected to continue, e.g. through ML-based automated segmentation
of LGE-MRI data to generate personalized models and to integrate simu-
lation data and clinical characteristics.104 For data-driven models used di-
rectly in clinical decision-making, there is an increasing emphasis on
explainable ML models.164 Explainable models may help to overcome
some of the reservations towards black-box models, but, may also give a
false sense of security, and inaccurate (low-fidelity) explanation models
may limit trust in the explanation, and by extension, trust in the black
box that it is trying to explain.165

Given the promise of recent proof-of-concept studies, but also in light
of the aforementioned challenges, hard evidence for the clinical benefit
of using computational models will be needed to motivate their routine
use. Ideally, this evidence will come in the form of randomized controlled
trials comparing model-guided care with routine clinical care. Since there
are no commercial incentives to improve the use of currently available
pharmacological AF therapies, and given the developmental challenges,
as well as the size and costs of clinical trials required for approval of new
AADs (reviewed in detail elsewhere in this spotlight issue157) it is likely
that such trials will initially focus on optimizing AF ablation. In addition,
AF ablation can be simulated with simpler cellular models, reducing the
computational burden. Nonetheless, such trials will require personalized
simulations for hundreds of patients, requiring significantly more resour-
ces than existing proof-of-concept studies. For example, assuming an AF
recurrence rate of 25% with model-guided therapy instead of 35% with
an alpha of 0.05 and 80% power would require a trial with 2� 328 AF
patients. As such, these studies can only be initiated after the methodo-
logical and logistical challenges have been solved. However, if such stud-
ies confirm that simulation-guided AF ablation improves sinus rhythm
maintenance, this may help to establish the clinical value of AF ablation in
subsequent large outcome studies.

10. Conclusions

AF remains a major healthcare burden in need of better management
approaches. Several challenges in AF management might benefit from
computational modelling, including the detection of asymptomatic AF,
improved rhythm-control management and prediction of AF recurrence.
Computational modelling of atrial electrophysiology and arrhythmogen-
esis has advanced significantly over the last decades and initial regulatory
and clinical applications are emerging (Figure 1). Nonetheless, several lim-
itations remain, including the extent of personalization, incorporation of
intra- and inter-individual variability, computational requirements, and
model integration into clinical tools. These limitations have to be over-
come to enable the randomized controlled trials required for routine
clinical adoption of model-guided AF management (Figure 1). Finally,
computational modelling has also provided important insight into AF

mechanisms. The indirect contribution of this mechanistic understanding
is hard to quantify, but will also facilitate improved AF management.
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Villacastı́n J, Filgueiras-Rama D. Instantaneous amplitude and frequency modulations
detect the footprint of rotational activity and reveal stable driver regions as targets
for persistent atrial fibrillation ablation. Circ Res 2019;125:609–627.

141. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, Daly M,
Amraoui S, Zellerhoff S, Picat MQ, Quotb A, Jesel L, Lim H, Ploux S, Bordachar P,
Attuel G, Meillet V, Ritter P, Derval N, Sacher F, Bernus O, Cochet H, Jais P,
Dubois R. Driver domains in persistent atrial fibrillation. Circulation 2014;130:
530–538.

142. Boyle PM, Hakim JB, Zahid S, Franceschi WH, Murphy MJ, Vigmond EJ, Dubois R,
Haissaguerre M, Hocini M, Jais P, Trayanova NA, Cochet H. Comparing reentrant
drivers predicted by image-based computational modeling and mapped by electro-
cardiographic imaging in persistent atrial fibrillation. Front Physiol 2018;9:414.

143. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification
for predicting stroke and thromboembolism in atrial fibrillation using a novel risk
factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010;137:
263–272.

144. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-
friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with
atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093–1100.

1698 J. Heijman et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.145. Rivera-Caravaca JM, Marı́n F, Vilchez JA, Gálvez J, Esteve-Pastor MA, Vicente V, Lip
GYH, Roldán V. Refining stroke and bleeding prediction in atrial fibrillation by add-
ing consecutive biomarkers to clinical risk scores. Stroke 2019;50:1372–1379.

146. Wang QC, Wang ZY. Big data and atrial fibrillation: current understanding and new
opportunities. J Cardiovasc Transl Res 2020;13(6):944–952.

147. Trayanova NA, Popescu DM, Shade JK. Machine learning in arrhythmia and electro-
physiology. Circ Res 2021;128:544–566.

148. Lip GY. Artificial intelligence applications to improve AF management. Cardiovasc
Res 2021.

149. Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP, Narayan SM, Turakhia
MP. Atrial fibrillation burden signature and near-term prediction of stroke: a ma-
chine learning analysis. Circ Cardiovasc Qual Outcomes 2019;12:e005595.

150. Inohara T, Shrader P, Pieper K, Blanco RG, Thomas L, Singer DE, Freeman JV, Allen
LA, Fonarow GC, Gersh B, Ezekowitz MD, Kowey PR, Reiffel JA, Naccarelli GV,
Chan PS, Steinberg BA, Peterson ED, Piccini JP. Association of atrial fibrillation clini-
cal phenotypes with treatment patterns and outcomes: a multicenter registry study.
JAMA Cardiol 2018;3:54–63.

151. Varela M, Bisbal F, Zacur E, Berruezo A, Aslanidi OV, Mont L, Lamata P. Novel
computational analysis of left atrial anatomy improves prediction of atrial fibrillation
recurrence after ablation. Front Physiol 2017;8:68.

152. Clerx M, Heijman J, Collins P, Volders PGA. Predicting changes to INa from mis-
sense mutations in human SCN5A. Sci Rep 2018;8:12797.

153. Ramasubramanian S, Rudy Y. The structural basis of IKs ion-channel activation:
mechanistic insights from molecular simulations. Biophys J 2018;114:2584–2594.

154. Quer G, Freedman B, Steinhubl SR. Screening for atrial fibrillation: predicted sensi-
tivity of short, intermittent electrocardiogram recordings in an asymptomatic at-risk
population. Europace 2020;22(12):1781–1787.

155. Chang ET, Lin YT, Galla T, Clayton RH, Eatock J. A stochastic individual-based
model of the progression of atrial fibrillation in individuals and populations. PLoS
One 2016;11:e0152349.

156. Goyal SK, Wang L, Upender R, Darbar D, Monahan K. Severity of obstructive sleep
apnea influences the effect of genotype on response to anti-arrhythmic drug ther-
apy for atrial fibrillation. J Clin Sleep Med 2014;10:503–507.

157. Nattel S, Sager P, Huser J, Heijman J, Dobrev D. Why translation from basic discov-
eries to clinical applications is so difficult for atrial fibrillation and possible
approaches to improving it. Cardiovasc Res 2021;117:1609–1611.

158. Ballouz S, Mangala MM, Perry MD, Heitmann S, Gillis JA, Hill AP, Vandenberg JI. Co-
expression of calcium and hERG potassium channels reduces the incidence of
proarrhythmic events. Cardiovasc Res 2020; doi:10.1093/cvr/cvaa280.

159. Colman MA. Arrhythmia mechanisms and spontaneous calcium release: Bi-direc-
tional coupling between re-entrant and focal excitation. PLoS Comput Biol 2019;15:
e1007260.

160. Nattel S. Computational models of the atrial fibrillation substrate: can they explain
post-ablation recurrences and help to prevent them. Cardiovasc Res 2019;115:
1681–1683.

161. Watson DS, Krutzinna J, Bruce IN, Griffiths CE, McInnes IB, Barnes MR, Floridi L.
Clinical applications of machine learning algorithms: beyond the black box. BMJ
2019;364:l886.

162. Obergrussberger A, Friis S, Bruggemann A, Fertig N. Automated patch clamp in
drug discovery: major breakthroughs and innovation in the last decade. Expert Opin
Drug Discov 2021;16:1–5.

163. Hansen BJ, Zhao J, Fedorov VV. Fibrosis and atrial fibrillation: computerized and op-
tical mapping; a view into the human atria at submillimeter resolution. JACC Clin
Electrophysiol 2017;3:531–546.

164. Zihni E, Madai VI, Livne M, Galinovic I, Khalil AA, Fiebach JB, Frey D. Opening the
black box of artificial intelligence for clinical decision support: a study predicting
stroke outcome. PLoS One 2020;15:e0231166.

165. Rudin C. Stop explaining black box machine learning models for high stakes deci-
sions and use interpretable models instead. Nat Mach Intell 2019;1:206–215.

Computational models of AF 1699


