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Abstract
Many emotional functions are relatively preserved in aging despite declines in several cog-

nitive domains and physical health. High levels of happiness exist even among centenari-

ans. To address the hypothesis of whether preservation of emotional function in healthy

aging may relate to different rates of age-related volume loss across brain structures, we

performed two volumetric analyses on structural magnetic resonance neuroimaging of a

group of healthy aging research participants using Freesurfer version 5.1. Volumes

selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral

parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion

included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and

nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans

from 258 subjects. We found no difference in proportional change between groups. A longi-

tudinal mixed effects model was used to compare regional changes over time in a subset of

84 subjects. Again, there was no difference in proportional change over time. While our

results suggest that aging does not collectively target cognitive brain regions more than

emotional regions, subgroup analysis suggests relative preservation of the anterior cingu-

late cortex, with greater volume loss in the nucleus accumbens. Implications of these rela-

tive rates of age-related volume loss in healthy aging are discussed and merit further

research.

Introduction
The detrimental effects of aging on cognition are widely recognized [1]. While these changes
sometimes reflect cerebrovascular disease or early stages of a neurodegenerative process such
as Alzheimer’s disease, normal, healthy aging is also associated with declines in processing
speed, attention and memory, even in the absence of any known vascular disease, obvious cor-
tical insult, or proteinopathy such as misfolding of amyloid or tau [2–4].
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In contrast to cognitive decline in older adults, many aspects of emotional functioning are
maintained or even improved as part of healthy aging [5–8]. Despite shrinking social networks,
decreasing cognitive agility, and declining physical health, older adults demonstrate an emo-
tional well-being that is equal to or better than their younger counterparts. High levels of hap-
piness exist even among centenarians [9], and older adults maintain the ability to generate and
experience emotions and empathic responses to others [10, 11].

The retention and in some cases improvement of emotional functioning in the face of well-
described decline in general health, social networks and cognitive function has been dubbed
the emotion paradox of aging [6–8]. There have been several proposed explanations for this
preservation of emotional function. Emotional preservation likely results from a combination
of adaptation and circumstance. Older adults may adapt to the ravages of time with a learned
ability to make use of attentional strategies. Laboratory-based studies have found that while
older adults are more reactive to emotional stimuli and may recover more slowly from both
positive and negative emotional events [10, 12], older adults are better able to regulate their
emotions through situation selection and reappraisal tactics that enable them to view even neg-
ative situations in a positive light [5, 13].

More circumstantial explanations propose that the emotion paradox of aging is a biological
consequence of the aging process. Within the brain, relative emotional preservation could be
an incidental result of different cerebral regional rates of atrophy over time. For example, some
studies have suggested that the anterior cingulate cortex is relatively preserved [14, 15], though
such preservation is not universally described [16]. If true, the ACC could contribute to emo-
tional health due to its involvement with selective attention and reappraisal [17]. Another cir-
cumstantial explanation for preserved emotional positivity in aging is that positive material
may be less cognitively demanding than negative information [18]. As a result, systemic effi-
ciency demands that energy be spent on less exhausting positive information, driving an active
regulation of sensory input based on recognized cognitive resources. Such a theory suggests
that structures involved with appraisal of information as positive or negative, such as the amyg-
dala [19], or structures involved with emotion-related information processing and learning,
such as the nucleus accumbens [20], could be especially important in maintaining a positive
outlook during healthy aging. While some have suggested different rates of volume loss within
these structures as a potential cause of emotional preservation with aging [6], referencing exist-
ing longitudinal volumetric analysis of healthy aging brains [14, 15], direct comparisons of vol-
ume loss in brain regions associated with cognition versus those of emotion have not been
made.

To further investigate the neuroanatomical foundations of emotional preservation in aging,
we compared brain regions historically associated with cognition to those associated with emo-
tion. We applied a cross-sectional analysis to compare volumes of cognitive regions and emo-
tional regions as a function of age, and also performed a longitudinal analysis of regional
volumes as a function of time. We hypothesized that in healthy aging, the collective group of
regions associated with emotional processing would lose volume more slowly than brain areas
associated with cognitive functioning. A slower rate of volume loss in brain structures associ-
ated with emotion could potentially explain retained emotional acumen despite cognitive dete-
rioration over time.

Materials and Methods

Participants
Research participants were enrolled from the Larry L. Hillblom Aging Study of the Memory
and Aging Center of the University of California, San Francisco. All participants provided
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written and informed consent. The institutional review board of the University of California,
San Francisco approved the study, and all investigations were conducted according to princi-
ples expressed in the Declaration of Helsinkini. Participants underwent a multidisciplinary
assessment that included a neurological exam, neuropsychological testing, and structural MRI.
Participants ranged from 60 to 100 years of age, with no significant subjective memory com-
plaints, no functional impairment, a Clinical Dementia Rating (CDR) of 0, no diagnosis of
mild cognitive impairment, and a Mini-Mental State Exam (MMSE) score of� 26. Neuroim-
aging was collected on subjects from 2008 until 2013.

Cross-sectional Study
258 individuals were included in the cross-sectional portion of our study. A neurological exam-
ination, cognitive testing, and interview with a reliable study partner who knew the participant
well was performed at each visit in order to confirm the participants ongoing eligibility for
inclusion. Each of these 258 individuals had a single MRI scan included in the cross-sectional
analysis.

Longitudinal Study
To follow-up on the cross-sectional study, we evaluated a subset of 84 subjects who received
two to three scans (mean = 2.2, SD = 0.4). As scans were originally performed for various sub-
projects of the Larry L. Hillblom Foundation study, follow-up time varied between individuals.
The average amount of time between scans was 1.9 years (SD = 0.8 years, min 0.8 years, max
4.4 years). At the time of each MRI, these participants were assessed as previously described in
order to determine that they were still cognitively healthy and eligible for inclusion. Of those
who enrolled, one went on to develop mild cognitive impairment, and one developed another
health problem that excluded them from the study. Two people elected not to return after
receiving two scans each.

Magnetic Resonance Imaging
Structural neuroimaging was performed at every visit on a Siemens TIM Trio 3 Tesla MRI
scanner located at the Neuroimaging Center of the University California, San Francisco. For
anatomical analysis a T1-weighted 3DMP-RAGE sequence was used with 1 mm slice thick-
ness, field of view 256 x 256 mm, matrix– 230 x 256, repetition time 2300 ms, echotime 2.98
ms, and a flip angle of 9°.

Image Processing
For all research scans in this study, volumetric analysis was performed by trained research
assistants using Freesurfer version 5.1 (http://surfer.nmr.mgh.harvard.edu/). Freesurfer is a
semi-automated parcellation program in which cortical and subcortical volumes can be com-
puted. Skull stripping, Tailarach transforms, atlas registration, spherical surface maps and par-
cellations were initialized with common information from the within–subject template [21].
The cortex was segmented using the Fischl and Desikan-Killiany atlases into 10 separate
regional volumes of interest [21, 22]. Manual data quality checks were performed by trained
researchers for each MR image to confirm proper segmentation, with manual corrections as
deemed necessary by the technician.
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Regional Selection
While recognizing evidence that the right hemisphere is more involved with emotional pro-
cessing generally, the functionality between the left and right hemispheres remains complex
and poorly understood [23, 24]. Consequently, regions associated with cognition or emotion
were selected bilaterally. The following were included as regions predominantly influencing
cognition: the middle frontal and lateral frontal gyri, the parietal cortex, and the medial and lat-
eral gyri of the temporal lobes [25–29]. The following were included as regions predominantly
influencing emotion: amygdala, rostral anterior cingulate cortex, insula, orbitofrontal cortex
(medial and lateral orbitofrontal cortex) and nucleus accumbens [30–35]. When we could not
reasonably decide whether a region should be considered cognitive or emotional in nature, we
excluded that region from the analysis. For example, the inferior temporal gyrus was not
included due to its prominent involvement in semantic dementia, which has pronounced cog-
nitive and emotional changes [36].

In cases where these regions were not predefined from the atlas, regions were combined as
needed. The orbitofrontal cortex measurement was obtained by summing the medial and lat-
eral orbitofrontal cortex volumes. The middle frontal measurement summed the caudal middle
frontal and rostral middle frontal volumes. The lateral frontal measurement summed the pars
opercularis, pars orbitalis, and pars triangularis volumes. The parietal cortex summed the infe-
rior parietal, superior parietal, precuneus, and supramarginal volumes. The lateral temporal
region summed the superior and middle temporal gyrus volumes. The medial temporal region
summed the hippocampal, entorhinal and parahippocampal volumes. (Fig 1, Table 1)

Statistical Analysis
Because of the potential laterality of emotional processing, we compared changes in volume
across hemispheres in both the cross-sectional and longitudinal studies. No significant differ-
ence was found, further supporting our decision to perform the following studies bilaterally.
Age, gender, and education were considered as covariates. In addition, because vascular risk
factors can impact rates of decline and may impact regions differently [37–39], we also assessed
the presence of diabetes, hypertension and hyperlipidemia as potential covariates, as well as
body mass index (BMI) and extent of white matter hyperintensities on imaging, with a thresh-
old of model inclusion if p< 0.15.

Cross-Sectional Study
We used Stata v13.0 for all statistical analyses [40]. Significance was set at p< 0.05. Data are
available in S1 File. Because of the significant volume difference in collective regions of emotion
versus those of cognition, all volumes were converted to Z scores. A nonlinear locally weighted
regression function was also performed and the results visually compared to confirm that a lin-
ear regression was a reasonable model for the cross-sectional and longitudinal datasets. For the
cross-sectional analysis, linear regression was performed separately on the summed emotional
brain volumes and the summed cognitive brain volumes as a function of age, with total intra-
cranial volume (ICV) and gender as covariates. An age�subregion interaction term was intro-
duced in order to statistically test for the difference between regional group coefficients. In
addition to the combined analysis, volumes of contributing regions (the addends) were subse-
quently regressed against age as a secondary analysis. Again, an age�subregion interaction term
was used to compare the regression coefficient of each subregion against the others, with a
Bonferroni-adjusted significance threshold of p� 0.001.

Volume Loss in Regions of Emotion and Cognition in Healthy Aging

PLOS ONE | DOI:10.1371/journal.pone.0158187 August 23, 2016 4 / 14



Longitudinal Study
At least 6 months between scans was required. Otherwise, time between scans was assumed to
be mixed and completely at random. To guard against the possibility of selective attrition, time
spent between scans was regressed against regional volume at time 1, with a plan to include
this time 1 volume as a covariate if significant relationships were found.

Mixed effects models were used to compare regional changes within individuals over time.
These allowed random intercept and age slope, with cortical volume as the outcome. The
model included main effects of time (time between the first and subsequent scan, in years) and
region, with a time by region interaction. Gender, age and intracranial volume were included
as covariates. The time by region interaction was used to investigate whether there was a signif-
icant difference in coefficients between emotional and cognitive groups.

As with the cross-sectional analysis, secondary analyses investigated changes in contributing
subregions and between hemispheres. These consisted of mixed effects models for each subre-
gion. The total volumes of the left and right hemisphere were compared in the same fashion.

Fig 1. Regions included in cognitive and emotional collectives. For a listing of how these regions were developed, see
Table 1.

doi:10.1371/journal.pone.0158187.g001
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All longitudinal subregional analyses were considered exploratory and independent questions,
and multiple comparisons were not performed.

Results
Subject characteristics for cross-sectional and longitudinal analyses are outlined in Table 2.

Cross-sectional Analysis

Age was associated with decreased brain volume both in regions of cognition (b̂ = -0.05, R2 =

0.61, p< 0.001, CI [-0.06, -0.04]) and in regions of emotion (b̂ = -0.04, R2 = 0.64, p< 0.001,
CI [-0.05, -0.03]) (Fig 2).

Cross-sectional analysis showed no significant interaction between age and region type

(b̂ = 0.01, R2 = 0.62, p = 0.096, CI [-.002, 0.03]) after adjusting for intracranial volume and gen-
der. While a p value< 0.1 might be considered a trend, any effect size for the interaction is
very small (eta2 = 0.005). Education, vascular risk factors and white matter hyperintensities did
not contribute significantly to the model (all p> 0.20).

On subgroup analysis, the rostral ACC had the smallest association between volume and age,
with the most significant interaction coefficient found in the medial temporal lobe (Table 3).
Comparisons between groups in the interaction between age and volume suggest the ACC has a
significantly smaller association between age and volume when compared with the amygdala

(b̂ = 0.04, p<0.001, CI[0.02, 0.06]), nucleus accumbens (b̂ = 0.06, p<0.001, CI [-0.08, -0.04]),

Table 1. List of regions used and source atlases.

Classification Region of Interest Contributing Regions Source Atlas

emotion Amygdala . Fischl

emotion rostral anterior cingulate cortex . Desikan

emotion Insula . Desikan

emotion orbitofrontal cortex medial orbitofrontal Desikan

emotion . lateral orbitofrontal Desikan

emotion nucleus accumbens . Fischl

cognitive middle frontal caudal middle frontal Desikan

cognitive . rostral middle frontal Desikan

cognitive lateral frontal pars opercularis Desikan

cognitive . pars orbitalis Desikan

cognitive . pars triangularis Desikan

cognitive Parietal inferior parietal Desikan

cognitive . superior parietal Desikan

cognitive . precuneus Desikan

cognitive . supramarginal Desikan

cognitive lateral temporal superior temporal Desikan

cognitive . middle temporal Desikan

cognitive medial temporal hippocampal Fischl

cognitive . entorhinal Desikan

cognitive . parahippocampal Desikan

Fischl refers to Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron

2002;33:341–355. Desikan refers to Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on

MRI scans into gyral based regions of interest. NeuroImage 2006;31:968–980.

doi:10.1371/journal.pone.0158187.t001
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Table 2. Baseline Demographic Data of Healthy Participants by Analysis Type.

Cross-Sectional (n = 258) Longitudinal (n = 84)

Mean Std. Dev. Range Mean Std. Dev. Range

Age (in years) 72.0 6.8 55.1–99.6 70.1 6.4 55.1–87.2

Education (in years) 17.5 ** 2.1 12–22 17.6 2.2 12–22

MMSE score 29.4 0.7 28–30 29.4 †† 4.71 28–30

Women (%) 55.8 61.9

Handedness (%) 85.6 88.1

Race (% Caucasian) 95.0* 97.6 †

Demographic characteristics of healthy research participants. Those participants from the cross-sectional study who received more than one scan were

included in both the cross-sectional and longitudinal studies.

*238 responders.

**176 responders.
† 83 responders.
†† 62 responders.

doi:10.1371/journal.pone.0158187.t002

Fig 2. Cross-Sectional Analysis of Regions of Emotion and Cognition. Absolute brain volume in collective regions
associated with cognition compared to those associated with emotion as a function of healthy aging research
participants’ age in years. There was an estimated 0.51% per year absolute volume loss in regions of emotion and 0.60%
per year absolute volume loss in regions of cognition. Note that while absolute volumes are shown here for clear
visualization of the two groups, for statistical comparison of the association between age and volume between regions of
emotion and cognition, volumes were converted to Z-scores in order to normalize the baseline difference in absolute
volume between groups. No significant proportional difference was found between the cognitive or emotional regions in
volume loss as a function of age.

doi:10.1371/journal.pone.0158187.g002
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parietal lobes (b̂ = 0.03, p = 0.001, CI {-0.05, 0.01]), medial temporal lobes (b̂ = = -0.04,

p<0.001, CI[-0.07, -0.03]), and lateral temporal lobes (b̂ = = -0.04, p<0.001, CI[-0.06, -0.02),
after adjusting for multiple comparisons. In contrast to the relative preservation of the ACC, the
nucleus accumbens had a stronger relationship between age and decreasing volume when com-

pared to the insula (b̂ = = 0.05, p<0.001, CI [0.03, 0.07]), the orbitofrontal cortex (b̂ = = 0.04,

p<0.001, CI[0.02, 0.06]), the middle frontal cortex (b̂ = = 0.04, p<0.001, CI[0.02, 0.06]), as

well as the ACC. The medial temporal lobe differed significantly from the insula (b̂ = = -0.04,

p<0.001, CI[-0.06, -0.02]) and middle frontal cortex (b̂ = = -0.04, p<0.001, CI[-0.06, -0.02]).

Longitudinal Analysis
Preliminary data inspection showed that a longer period of time between scans was positively

correlated with volume in the amygdala (b̂ = 1.12, p = 0.002, CI [0.42, 1.82]) as well as the

nucleus accumbens (b̂ = 1.35, p< 0.001, CI [0.65, 2.1]) at time 1. Baseline volume was there-
fore included as a covariate in further longitudinal analyses. Again, education, vascular risk
factors and white matter hyperintensities did not contribute significantly to the model (all
p> 0.20). Mixed effects modeling confirmed the non-independence of longitudinal volumetric

data between individuals (b̂ = 0.95, p< 0.001, CI [0.8, 1.1]).

Significant volume loss was found over time in regions of emotion (b̂ = -0.05, p = 0.003,

CI [-0.08, -0.03]) as well as cognition (b̂ = -0.07, p< 0.001, CI [-0.09, -0.02]) (Fig 3).
When comparing regression slopes, no significant difference in the time/volume interaction

term was found between cognitive and emotional collectives (b̂ = 0.01, p = 0.70, CI [-0.04,
0.06]). As with the cross-sectional studies, sub-regions were investigated as well to assess their
potential contribution to the observed trend. In this analysis, two regions of emotion, the
nucleus accumbens and the amygdala, demonstrated statistically significant positive volume
changes with time. Including baseline volumes as a covariate did not alter this trend. Among
regions of cognition, the medial temporal lobe did not show significant age-related volume
loss.

Table 3. Regression Coefficients for Sub-Regions by Analysis Type.

Cross-Sectional (by age) Longitudinal (by time)

β Std. Err. 95% Conf. Interval β Std. Err. 95% Conf. Interval

Amygdala -0.05 0.01 -0.07–-0.03 0.23 0.03 0.16–0.29

Rostral ACC -0.02 0.01 -0.04–-0.001 -0.10 0.02 -0.13–-0.06

Insula -0.03 0.01 -0.04–-0.01 -0.14 0.02 -0.19–-0.09

Nucleus Accumbens -0.06 0.01 -0.08–-0.04 0.11 0.01 0.02–0.19

OFC -0.04 0.01 -0.05–-0.02 -0.09 0.02 -0.13–-0.05

Lateral Frontal -0.04 0.01 -0.06–-0.02 -0.10 0.02 -0.14–-0.06

Middle Frontal -0.03 0.01 -0.05–-0.02 -0.10 0.02 -0.13–-0.07

Parietal -0.05 0.01 -0.07–-0.03 -0.13 0.02 -0.17–-0.10

Lateral Temporal -0.05 0.01 -0.07–-0.03 -0.08 0.01 -0.10–-0.05

Medial Temporal -0.07 0.01 -0.09–-0.05 0.01 0.02 -0.02–0.04

Subgroup analysis of cross-sectional and longitudinal studies for regions of emotion (top), and regions of cognition (bottom). Units are in millimeters cubed

per year of age for cross-sectional data, or by year since the original MRI scan for longitudinal data. The cross-sectional analysis is adjusted for ICV and

gender. The longitudinal analysis adjusted for ICV, baseline regional volume, gender and age.

doi:10.1371/journal.pone.0158187.t003
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Discussion
The purpose of this study was to examine whether differing rates of volume loss between brain
regions commonly associated with emotion as opposed to cognition might contribute to pre-
served emotional health with aging. We used two different study designs (cross-sectional and
longitudinal) to approach the question of how cognitive and emotional brain regions change
with time. Our primary analyses found no difference between emotional and cognitive brain
volumes as a function of age or time’s passage.

One of the strengths of this study was our use of both cross-sectional and longitudinal
approaches. The cross-sectional design included a larger sample size. The longitudinal
approach examines fewer individuals, but has the benefit of allowing better causal inference
between volume and time, rather than relying on age as a proxy for the passage of time.

Subgroup analyses within both the longitudinal and cross-sectional studies support previous
reports of relative preservation of the rostral anterior cingulate cortex, with smaller rates of
decline compared to many other cortical regions (Table 3). Relative preservation of the ACC
has been previously connected with the emotion preservation of aging [6], and with the positiv-
ity effect in particular [17]. The term “positivity effect” describes the tendency of elders to pref-
erentially attend to positive over negative stimuli in a variety of contexts, including facial
expressions, word lists [41], and emotional images [42–44]. Elders tend to recall more positive
than negative stimuli in working, short-term, and autobiographical memories [43, 45, 46]. The

Fig 3. Longitudinal Analysis of Brain Regions of Emotion and Cognition. Absolute volume of collective cognitive
and emotional regions in healthy aging participants who were scanned over time. While volumes were converted to Z-
scores for rate comparisons analysis in order to adjust for baseline differences in absolute volume between regions of
cognition and emotion, absolute brain volumes are here depicted for visualization of individual slopes. In absolute
volume, regions of cognition lost approximately 0.65% per year, and regions of emotion lost approximately 0.46% per
year. No statistically significant proportional difference was found between brain regions of cognition and emotion in
rates of volume loss over time.

doi:10.1371/journal.pone.0158187.g003
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use of such selective attention to avoid of negative stimuli another common emotional regula-
tory strategy used by elderly adults, which may relate to this positivity effect [6, 15, 17, 47].
Brassen and colleagues have correlated the anterior cingulate with such selective attention
using functional connectivity. While the region identified by Brassen and colleagues is at the
dorsal-most part of the ACC included in our partitioning, in an area many would associate
with cognitive processes, the entire cingulate, both ventral and dorsal, has been shown to be rel-
atively preserved in previous imaging studies [14, 15]. Furthermore, a more ventral portion has
been associated with the positivity effect by Ritchey et al during a task demanding concentrated
focus, akin to positive reappraisal [48].

The cross-sectional analysis also showed a significantly greater negative association between
age and volume in the nucleus accumbens compared to other brain regions such as the rostral
ACC, insula, orbitofrontal cortex, and the middle frontal lobe. Previous studies have also dem-
onstrated age-related volume loss in the nucleus accumbens [49]. Unlike the ACC, little has
been written on the accumbens and preservation of emotional functioning in aging, with an
emphasis instead placed on decision-making [50, 51]. While tempted to speculate on how loss
of this structure might place a greater processing burden on cortex, thereby driving a prefer-
ence for positive emotion [18], the nucleus accumbens is a complex structure, and conse-
quences of its loss are also likely to be complex. For example, while the nucleus accumbens has
been traditionally tied with reward systems, it also mediates aversive reactions [52]. Further
research will be needed to correlate degeneration of the nucleus accumbens with cognitive and
emotional changes in healthy aging.

Volume in brain regions of cognition and emotion declined as a function of age in the
cross-sectional study, and as a function of time in the longitudinal study, to a degree similar to
overall cortical volume loss demonstrated in prior studies [53]. While the collective trajectories
of cognitive versus emotional brain volumes are consistent between our cross-sectional and
longitudinal studies, some sub-regions appear discordant on sub-regional analysis. Chiefly, the
medial temporal lobe, amygdala and nucleus accumbens appear to gain volume over time. Pre-
vious studies have shown conflicting evidence of volume changes in these regions over time
[14, 54]. On the other hand, Freesurfer has been previously noted to have questionable scan-
rescan reliability in the parcellation of small, subcortical structures [55]. The apparent sub-
regional volume gain may reflect a greater amount of variability in volumetric analysis of rela-
tively small or medial structures using our techniques, which may be especially important with
the smaller sample size found in the longitudinal group. In the comparison between cognitive
and emotional regions collectively, any consequent bias present in the emotion regions would
likely contribute to apparent emotional preservation. Failure to reject the null hypothesis in
spite of such potential bias bolsters the negative finding between cognitive and emotional vol-
ume changes collectively. We consider the cross-sectional data to be more reliable within our
study, and therefore limited between-subgroup analysis to the cross-sectional portion.

Other potential weaknesses to this study design include the subjective nature of regions
selected as “emotional” or “cognitive.” As we know of no widely accepted battery of emotional
functioning, this study instead relies on established correlations found in scientific literature.
Because cognitive and emotional changes with age, as well as their neuroanatomical underpin-
nings, are complex and interwoven [56], selection of regions that could be congregated reliably
into either emotional or cognitive group was a particular challenge of this research. While we
recognize the imperfection of our regional groupings, absolute parcellation of cognitive and
emotional functions is impossible, necessitating reliance on best judgment. Another potential
limitation is the possibility that some of our healthy population in fact has histopathological
changes associated with neurodegenerative disease. Our definition of this population as healthy
agers must be recognized as strictly clinical.
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In addition to our collective approach and the use of two different study designs, strengths
of this research include a large sample size and relative consistency of magnetic resonance
imaging and analysis techniques within a healthy aging population. Future studies could exam-
ine differential rates of volume loss within neuroanatomical regions over more visits to allow
for imputation, as well as correlate active measures of emotion and cognition to confirm corre-
sponding neuropsychological performance. Functional connectivity or other techniques could
also be explored.

Conclusions
In summary, our results suggest that during healthy aging, brain regions commonly associated
with emotional processing collectively undergo a rate of decline proportional to those of cogni-
tive regions. Clustering all regions of emotion versus those of cognition does not provide suffi-
cient specificity to provide a biological explanation for emotional preservation with aging.
More detailed cross-sectional comparisons between subregions suggests that some regions of
emotion such as the anterior cingulate cortex may be truly spared, whereas others such as the
nucleus accumbens may be particularly susceptible to age-dependent volume loss. Further
studies may further explore how these patterns of volume loss contribute to emotional func-
tioning by correlation with dedicated cognitive and emotional tests.
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