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Glomerular cell cross talk in diabetic kidney diseases
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Abstract

Diabetic kidney disease (DKD) is a severe microvascular complication of

diabetes mellitus. It is the leading inducement of end-stage renal disease

(ESRD), and its global incidence has been increasing at an alarming rate. The

strict control of blood pressure and blood glucose can delay the progression of

DKD, but intensive treatment is challenging to maintain. Studies to date have

failed to find a complete cure. The glomerulus's alterations and injuries play a

pivotal role in the initiation and development of DKD. A wealth of data

indicates that the interdependent relationship between resident cells in the

glomerulus will provide clues to the mechanism of DKD and new ways for

therapeutic intervention. This review summarizes the significant findings of

glomerular cell cross talk in DKD, focusing on cellular signaling pathways,

regulators, and potential novel avenues for treating progressive DKD.
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Highlights

• Glomerular cell cross talk is essential for maintaining the glomerular filtra-

tion barrier.

• In-depth exploration of intraglomerular signaling pathway changes during

diabetic kidney disease may help discover new therapeutic targets.

1 | INTRODUCTION

The function of the mammalian kidney is to filter blood
and concentrate metabolic waste into the urine. This is
critical for fluid homeostasis and osmotic pressure regula-
tion, which occurs primarily in complex structures called
the renal glomerulus.1 The glomerulus can retain the
valuable macromolecular components in the plasma so
that the excreted urine contains only traces of proteins.2

Diabetic kidney disease (DKD) is a highly prevalent com-
plication of diabetes mellitus, influenced by both genetic
and environmental factors.3 The clinical manifestation of

DKD is persistent proteinuria, which is a manifestation
of a compromised glomerular filtration barrier (GFB).4

As the disease progresses, kidney function declines and
eventually develops into end-stage renal disease (ESRD)
and even premature mortality.5

According to the International Diabetes Federation
(IDF), in 2021, about 536.6 million people worldwide had
diabetes, a figure likely to increase to 783.2 million by 2024.6

In the past, the clinical treatment of DKD was limited to
blood glucose control and renin-angiotensin system (RAS)
blockade. Morbidity and mortality remain unchanged high.7

Encouragingly, sodium glucose cotransporter 2 (SGLT2)
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inhibitors are a new class of glucose-lowering agents
recently approved in type 2 diabetes mellitus (T2DM).8

The mechanism of action of these drugs is to enhance
urinary glucose excretion by early inhibition of glucose
reabsorption in the proximal renal tubules.9 In addition, a
new generation of nonsteroidal selective mineralocorticoid
receptor (MR) antagonists has also appeared in indications
for DKD, of which finerenone significantly reduced pro-
teinuria in a short-term trial of both chronic kidney disease
(CKD) and T2DM patients.10 Although the emergence of
these two drugs brings new possibilities for treating DKD,
there are still many challenges to fully applying them in
clinical practice, such as relatively high prices and unclear
long-term side effects. Hence, a better understanding of
the mechanism of the development of DKD is funda-
mental to finding better treatments. Recent research has
shown that to maintain the filtration function, cross-
communication between cells in the glomerulus must
occur,11 and the glomerulus is the target of injury and
ultimate scarring in a wide variety of kidneys diseases.12

This suggests that a thorough understanding of the
molecular signaling mechanisms between intraglomeru-
lar cells could help identify potential therapeutic
options for DKD. Here, we will highlight recent findings
of cell cross talk, which regulates glomerular barrier
function in DKD conditions.

1.1 | Structure and function of the
glomerular

The glomerular capillary barrier is one of the most com-
plex biofilms to date， with a highly specialized struc-
ture that restricts the passage of large molecules and
serum albumin into Bowman's space, but it is still
highly permeable to small molecules and water.13,14 The
mature glomerulus consists mainly of mesangial cells,
podocytes, parietal epithelial cells (PECs), and glomeru-
lar endothelial cells (GEnCs).2 These four types of cells
interact and are closely intertwined through complex
cell–cell biological processes and harmoniously differ-
entiate to achieve glomerular structure and function
integrity.15 Mesangial cells, also known as mesenchy-
mal cells, are located between the glomerular capillary
loops and together with the extracellular matrix (ECM)
form the mesangium. The primary function of mesan-
gial cells is to maintain the structural stability of the
glomerular vasculature and modulate capillary blood
flow.16 Under pathological conditions, mesangial cells
proliferate excessively, and ECM deposition increases.17

Podocytes are terminally differentiated epithelial cells
with detailed projections called foot processes (FPs),

and there are slit diaphragm (SD) proteins between FPs,
which allow for podocyte-to-podocyte contact and form
a size selectivity barrier for the passage of molecules
and blood filtration.18,19 In DKD patients with protein-
uria and glomerulosclerosis, podocyte FP disappear-
ance, hypertrophy, properties decrease, and even
detachment from glomerular basement membrane
(GBM) or death can occur.20 PECs are located on the
internal surface of the Bowman's capsule and can self-
renew and be induced to transdifferentiate to other
cells. Under specific pathological conditions, PECs can
differentiate toward podocytes to complement the
reduced number of podocytes and play a potential role
in glomerular repair.21 GEnCs are highly specialized
cells covered with the glycocalyx layer. The high charge
of the glycocalyx can selectively restrict the passage of
negatively charged molecules, such as albumin, and
limit the adhesion of leukocytes and platelets to endo-
thelial cells, thereby alleviating inflammation and
thrombosis; glycocalyx is reduced in DKD.22,23 Because
of direct contact with the blood, lesions in GEnCs can
be detected before the onset of proteinuria.24,25 GEnCs
sit on the GBM and opposite the podocytes, forming an
interconnected GFB.26 GBM is a crucial component of
the glomerular capillary wall and a significant factor in
determining the size of selectivity of the glomerular fil-
ter.27 It is mainly a fibrous network composed of type
IV collagen, laminin, and nitrogen. GBM thickening is
an early morphological feature of DKD and can be used
as a pathological hallmark for diagnosing DKD.28 Due
to the positional relationship between podocytes and
GEnCs, their abnormal cross talk is crucial in the patho-
genesis of DKD (Figure 1). In summary, GEnCs, podo-
cytes, PECs, and mesangial cells are interdependent in
the glomerulus and jointly maintain the structure and
function of the glomerulus.29

2 | CROSS TALK BETWEEN
GLOMERULUS CELLS

Advances in the development of modern biotechnology
have significantly increased our understanding of the
communication between GEnCs, podocytes, and mesan-
gial cells. These specific intercellular signaling pathways
allow for the formation and maintenance of the GFB. In
the progress of DKD, alterations in intraglomerular sig-
naling may facilitate or aggravate the lesion. Figure 2
provides an illustration of the cross talk between GEnCs
and podocyte pathways. While some of these interactions
have been demonstrated, most remain unknown and
deserve further investigation.
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2.1 | Cross talk between podocytes and
GEnCs

2.1.1 | Vascular endothelial growth factor A
signaling

The most well-studied cross-talk mechanism in the
glomeruli is VEGF-A/VEGFR (vascular endothelial growth
factor A/vascular endothelial growth factor receptor) sys-
tem.30 VEGF-A is a significant regulator of blood vessel
biology. The significant functions facilitate endothelium-

dependent vasodilatation and increased vascular perme-
ability.31 VEGF-A induces intracellular signaling by
binding to one of two receptors: VEGFR-1 (or Flt-1) and
VEGFR-2 (or Flk-1/KDR), and VEGFR-2 mediates most of
the biological effects of VEGF-A under usual conditions.32

Existing studies have confirmed that the VEGF-A/VEGFR
signaling pathway is critical for glomerular development
and renal homeostasis.33,34

VEGF-A is expressed predominantly by podocytes
during glomerular development, while GEnCs and corti-
cal and reno medullary interstitial fibroblasts express the

FIGURE 1 Characteristic

glomerular changes of DKD. DKD:

diabetic kidney disease. FP: foot

processes. GBM: glomerular

basement membrane. GEnCs:

glomerular endothelial cells. SD: slit

diaphragm.

FIGURE 2 Summary of GEnCs-podocytes cross-talk signaling pathways in DKD. Activation and inhibition are indicated by arrows and

dotted lines, respectively. Ang-1: Angiopoietin-1. aPC: Activated protein C. eNOS: Endothelial nitric oxide synthase. EndMT: mesenchymal

transformation. ET-1: Endothelin-1. ETRA: ET receptor A. GBM: glomerular basement membrane. GEnCs: glomerular endothelial cells.

IL-6R: Interleukin-6 Receptor. NO: nitric oxide. PAR-3: Protease-activated receptor-3. Pod: podocyte. Tie-2: Tyrosine-protein kinase receptor

2. TGF-β: Transforming growth factor β. TNF-α: Tumor necrosis factor. VEGF-A: Vascular Endothelial Growth Factor A. VEGF-R: Vascular

Endothelial Growth Factor Receptor.
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VEGF receptors.35 In the glomerulus, the canonical
VEGF signaling is the secretion of VEGF-A by podocytes
which then crosses the filtration barrier in opposition to
urinary and acts by binding to VEGFR-2 on the surface
of GEnCs,36 forming the VEGF-A/VEGFR axis. With the
development of genetic models, we appreciate the impor-
tance of VEGF-A imbalance in the diabetic setting. Using
the Cre-loxP technology, Vera Eremina et al. found that loss
of both alleles of VEGF-A in podocytes results in a marked
reduction in endothelial cell migration into the developing
glomeruli, which in turn leads to glomerular filtration over-
barrier failure.37 Conversely, excessive levels of VEGF-A in
endothelial cells can lead to cell swelling, loss of fenestra-
tions, and even thrombotic microangiopathy.38 These
results can demonstrate that podocytes and GEnCs interact
with each other through the VEGF-A/VEGFR signaling
pathway. Numerous experimental studies have demon-
strated that the expression of VEGF-A and VEGFR-2
increases in kidneys and urine in diabetic rats.39 However,
when anti-VEGF drugs are used in clinical tumor therapy,
blocking VEGF signaling may lead to many common
adverse vascular reactions, including hypertension and
renal vascular injuries, such as proteinuria and thrombotic
microangiopathy.30,40,41 Hence, the VEGF-A/VEGF-R sig-
naling pathways play several critical roles in DKD and
highlight the intricacies of an intraglomerular cross-talk
system. There are still many unanswered questions about
this pathway, and it will be interesting to delineate how to
regulate this signaling pathway beneficially in DKD.

2.1.2 | Endothelial nitric oxide synthase
signaling

Endothelial nitric oxide synthase (eNOS) is expressed in
endothelial cells and platelets, is one of the three NOS
isoforms,42 and is involved in the production of nitric
oxide (NO) in the vascular endothelium.43 NO has a vari-
ety of biological functions and affects a variety of actions
in the vasculature, including dilating blood vessels, anti-
inflammatory, and antithrombotic.44 Clinical evidence
suggests that impaired eNOS expression is related to the
development of DKD45; glomerular eNOS expression was
lower in patients with macroalbuminuria than in patients
with microalbuminuria.46 NO produced by eNOS in the
endothelial cells is an essential mediator for maintaining
renal blood flow, glomerular filtration rate, and fluid
homeostasis.47,48 Several studies have shown that eNOS-
deficient diabetic mice are a successful model to simulate
human DKD, enabling us to study the pathogenesis of
progressive DKD;49; so studies on the role of eNOS in dia-
betic nephropathy have become more and more extensive
in recent years. The intersection between VEGF-A and
NO pathways plays an essential role in the pathogenesis

of DKD. Under normal conditions, VEGF-A in podocytes
induces the activation of eNOS in GEnCs, leading to NO
production, which negatively regulates the amount of
VEGF-A. Appropriate VEGF-A levels can be maintained
in the glomerulus.50,51 Interestingly, studies have shown
that VEGF-A and eNOS can be two independent events
affecting the progression of diabetic nephropathy. Delma
Veron found that induced VEGF-A-induced overexpres-
sion in eNOS-deficient mice leads to significant protein-
uria and glomerulosclerosis52; this confirms that eNOS
can function independently. However, NO production is
naturally reduced due to eNOS deficiency. NO increases
glomerular albumin permeability, so it is unlikely that
hyperalbuminuria in diabetic eNOS-deficient mice is due
to reduced NO production.53

Why diabetic eNOS-deficient mice produce large amounts
of proteinuria remains worthy of further investigation.

2.1.3 | Angiopoietin signaling

Angiopoietins (Ang) are a group of vascular growth factors
that regulate vascular stability by controlling endothelial
sprouting during angiogenesis.54,55 Among the four angio-
poietins (Ang 1-4), Ang-1 and Ang-2 are two main sub-
types.56,57 In the glomerulus, Ang-1 is mainly expressed in
podocytes, and its primary function is through binding to
tyrosine-protein kinase receptor 2 (Tie-2), which is
expressed on the endothelial cell surface, promoting GEnC
survival by limiting endothelial permeability.58 In recent
years, many investigators have studied the role of Ang in
DKD in genetically modified mice. They have demon-
strated that the decrease in the Ang-1/Ang-2 ratio acceler-
ated the development of DKD.59 Compared with
nondiabetic animals, at the early stage of DKD, the expres-
sion level of Ang-1 messenger RNA (mRNA) decreased,
while the expression level of Ang-2 mRNA did not change
significantly.59 A study by Gnudi's team reported that
podocyte-specific induction of Ang-1 overexpression leads
to a significant reduction in proteinuria and prevents
diabetes-induced GEnC proliferation by increasing the
Tie-2 phosphorylation in adult diabetic mice.60 Conversely,
mice induced with podocyte-specific Ang-2 overexpression
showed markedly increased albuminuria and glomerular
endothelial apoptosis, providing additional evidence for
GEnC-podocyte cross talk in the glomerulus.61

2.1.4 | Endothelin-1 signaling

Endothelin-1 (ET-1), a significant member of the endothe-
lin peptide family, functions in the kidney mainly through
two isoforms of ET receptors highly expressed in the kid-
ney, ETRA and ETRB.62 In the context of diabetes, ET-1 is
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involved in vasoconstriction, mesangial proliferation, glo-
merulosclerosis, and fibrosis by activating ETRA.63 Animal
experiments have documented that selective blockade of
the ETRA reduces urinary albumin excretion, inflamma-
tory marker production, and podocyte loss. However, in
clinical trials, fluid retention and hepatotoxicity are com-
mon adverse reactions using ET receptor antagonists.64

GEnCs are coated with an endothelial surface layer (ESL),
which consists of a membrane-bound glycocalyx and a
more loosely attached cell coat.13 In DKD experimental
models, the loss of ESL is associated with albuminuria and
precedes the effacement of podocyte FPs.65 Kerstin Ebefors
et al. found that in the mouse models of primary podocyto-
pathy or Adriamycin (AD) nephropathy, podocyte-derived
ET-1 interacted with increased GEnCs ETRA expression
resulting in the loss of ESL. This study also confirmed that
increased heparanase (Hpse) (a degrading enzyme of the
ESL) expression in GEnCs was in response to podocyte-
releasing factors and ET-1.66 The content of ETRA is also
closely related to NO. When the expression level of ETRA
is low, the increase of NO can be induced, while when the
content of ETRA is high, the production of NO is inhib-
ited.67 These provide another compelling evidence for the
podocyte pathologic cross talk with endothelial cells.

2.1.5 | Transforming growth factor β
signaling

Transforming growth factor β (TGF-β) is a pleiotropic
cytokine that controls diverse cell types’ growth, devel-
opment, inflammation, and function.68,69 Massive evi-
dence indicates that dysfunction of TGF-β signaling is a
key factor in DKD pathogenesis associated with podo-
cyte loss, accumulation of ECM, and interstitial
fibrosis.70–73 TGF-β mediates apoptosis and dedifferenti-
ation of podocytes, even leading to podocyte abscis-
sion.74,75 In a mouse model of glomerulosclerosis, Ilse
Daehn's group determined that podocyte-specific acti-
vation of TGF-β signaling correlates with ET-1 released
by podocytes, which activate mitochondrial oxidative
stress in adjacent GEnCs via paracrine ETRA and dys-
function.76 Studies have shown that TGF-β induces
mesenchymal transformation (EndMT) in GEnCs, lead-
ing to diabetic renal fibrosis.51,77 Transcriptome analy-
sis of GEnCs obtained from early diabetic mice
revealed increased gene expression of leucine-rich
a-2-glycoprotein 1 (LRG1).78 Quan Hong demonst-
rated that ablation of LRG1 significantly reduced
TGF-β-induced glomerular angiogenesis, podocyte loss,
proteinuria, and glomerular lesions through decreased
activation of activin receptor-like kinase 1 (ALK1)-
Smad1/5/8.79 These results exemplify that the TGF-β

signaling pathway mediates podocyte damage and
GEnC gene expression alterations in DKD.

2.1.6 | Interleukin-6 signaling

Interleukin-6 (IL-6) is a well-described multifunctional
cytokine that regulates the immune and inflammatory
response and affects insulin resistance, hematopoiesis,
lipid metabolism, and organ development.80,81 In the
glomerulus, podocytes are the only cells that express the
IL-6 receptor.82 Sahithi J. Kuravi et al. co-cultured podo-
cytes and GEnCs and then stimulated them with tumor
necrosis factor-α (TNF-α). Experimental results revealed
that podocytes play a role in modulating neutrophil
recruitment to GEnCs by releasing IL-6. This result indi-
cated that IL-6 paracrine by podocytes has anti-
inflammatory effects.83 However, as the disease changes,
so does the role of the IL-6 pathway, which may lead to
inflammation and even worsen glomerular disease.

2.1.7 | Activated protein C signaling

Activated protein C (aPC) is a plasma serine protease
derived from its inactive precursor protein C (PC); the pro-
duction of aPC requires the precise assembly of PC, endo-
thelial PC receptor (EPCR) thrombin, and thrombomodulin
on the surface of endothelial cells.84 Isermann et al. found
that impaired aPC formation is associated with DKD, and
the cytoprotective effect of aPC is mediated by preventing
apoptosis in endothelial cells and podocytes.85 Thati
Madhusudhan et al. further used genetic ablation of the
protease-activated receptor-3 (PAR-3) to demonstrate
that aPC prevents lipopolysaccharides-induced podo-
cyte injury depending on protease-activated receptors
conveying the signal in podocytes.86 These suggest that
aPC regulates DKD through the cross talk between vas-
cular areas, endothelial cells, and podocytes.

2.1.8 | Krüppel-like factor 2 signaling

Krüppel-like factor 2 (KLF2) is a shear stress-inducible
transcription factor whose primary role is to protect endo-
thelial cells and maintain vascular integrity.87 Studies have
shown that KLF2 expression is downregulated in GEnCs of
patients with DKD, and its lack accelerates disease progres-
sion. An interesting study showed that podocyte loss was
also increased in diabetic KLF2EC/+ mice compared to dia-
betic wild-type mice, suggesting that KLF2 is involved in
GEnCs-podocytes cross talk and that targeting KLF2 may
be a novel strategy to prevent DKD progression.88
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2.2 | Cross talk between GEnCs and
mesangial cells

2.2.1 | Integrin αvβ8

Integrins function as cell membrane receptors for ECM
components to maintain tissue integrity and mediate cell
adhesion, migration, and proliferation with neighboring
matrix.89 The changes in glomerular integrin expression
have been demonstrated in both patient and animal
models of DKD.90 Integrins are noncovalently bound het-
erodimers consisting of α and β subunits. In inverte-
brates, the 18α and 8β subunits can be combined into
24 different receptors, each with different binding proper-
ties and tissue distribution.28 Among mesangial cells,
αvβ8 is the most abundantly expressed in the integrin
family, and its primary ligand is TGF-β.91 Henrik Dimke
et al. have constructed integrin αVβ8-deficient mouse
models with two different genetic backgrounds, resulting
in glomerular dysfunction, endothelial apoptosis, and
albuminuria in mice, and these effects were ascribed to
regulating the bioavailability of TGF-β.92 This result dem-
onstrated that reciprocal communication involving
mesangial cell-derived molecules could affect GEnCs.

2.2.2 | PDGF-B/PDGF-Rβ signaling

Platelet-derived growth factor-B (PDGF-B) is a high-
affinity ligand for the tyrosine kinase receptors PDGF-Rα
and PDGF-Rβ.93 In the glomerulus, GEnCs express
PDGF-B, and its receptor PDGF-Rβ resides on mesangial
cells.94

Using in situ hybridization, Lindahl et al. demon-
strated that PDGF-B acted paracrine during kidney
development.95 Mice deficient in GEnC PDGF-B showed
significantly reduced mesangial cells. Recent findings
have highlighted that tissue hypoxia is one of the central
pathways of DKD.96,97 According to a study, hypoxia
can increase PDGF-B expression in GEnCs, and elimi-
nating the exaggerated response of hypoxic mesangial
cells to the PDGF-B pathway may be a strategy for
treating DKD.98

2.3 | Cross talk between podocytes and
mesangial cells

Unlike extensive studies on other cells, the direct evi-
dence for communication between mesangial cells and
podocytes has been scarce. Through single-nucleus RNA
sequencing, differentially expressed ligand receptor inter-
cellular signaling pathways and all possible ligand

receptor signaling pathways have been identified in
podocytes and mesangial cells.99 Researchers have found
that podocyte injury often leads to mesangial cell prolifer-
ation, while mesangial cell damage results in FP fusion,
but the specific mechanism remains unclear.100

2.4 | New mediators of glomerulus cell
cross talk

2.4.1 | Role of microRNAs in glomerulus
cells cross talk

MicroRNAs (miRNAs) are a class of small noncoding
RNAs with 21–25 nucleotides, which correspond to com-
plementary sequences in the 3'-untranslated regions
(3'UTR) of target mRNAs or open reading frames within
the target gene.101 In the past decades, they have become
the focus of DKD research, emerging as biomarkers, reg-
ulators, and potential targets of future therapies.102,103

Recently, a paracrine role of miRNAs in the communica-
tion between glomerulus cells has been reported. Janina
Müller-Deile and colleagues demonstrated that after
stimulation with TGF-β, the expression of miRNA-143 in
podocytes is increased and resulted in the down-
regulation of glycocalyx proteins in podocytes and GEnCs
and structural impairments of the GFB. These results
may illustrate that miRNA-143 is a mediator for glomeru-
lar cross talk by affecting the glomerular glycocalyx.104

There are still relatively few studies on miRNAs in glo-
merulus cell cross talk, and it is of great value to further
explore the role of miRNAs in DKD.

2.4.2 | Extracellular vesicles as new
mediators of cell-cell cross talk in DKD

Extracellular vesicles (EVs) are endogenously produced
membrane-bound vesicles. All cells release EVs as part of
their normal physiology and during acquired abnormali-
ties.105 Depending on their size and biogenesis and release
mechanisms, EVs can be broadly classified into two major
subgroups, plasma membrane-derived ectosomes (micro-
vesicles [MVs] and microparticles) and endosome-origin
exosomes.106 MVs are 50 nm to 1 mm in diameter,
whereas exosomes are small vesicles in the 50–150-nm
range.107 Initially, exosomes were thought to be exocytic
vesicles only to be used to shed some intracellular and
membrane components out of the cells.108 In recent years,
exosomes have been proven to be a novel biomarker that
plays a crucial role in maintaining cellular homeostasis by
delivering proteins, mRNAs, and microRNAs as nanocar-
riers to communicate with neighboring or distant cells.109
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With the development of second-generation sequenc-
ing technology, the research on DKD exosomes has pro-
gressed rapidly and is expected to become a new target
for the clinical treatment of DKD.110 Through cell–cell
cross talk, EVs secreted by damaged kidney cells can be
transferred to other normal kidney cells. For instance,
compared with normal glucose (NG)-treated GEnCs, high
glucose (HG)-treated GEnCs secreted increased levels of
TGF-β1 in exosomes and promoted mesangial cell prolif-
eration, α-smooth muscle actin expression, and ECM pro-
tein excess.111 Xiaoming Wu et al. showed that the TGF-
β1 mRNA in exosomes from HG-treated GEnCs can also
mediate the epithelial-mesenchymal transition and dys-
function of podocytes.4 In addition to transmitting dam-
age signals, exosomes also have protective effects. Olivier
G et al. showed that exosomes produced from hypoxic
endothelial cells promoted endothelial cell repair by
upregulating lysine oxidase-like 2 and increasing collagen
cross-linking activity.112 Recent finding demonstrated
that miRNAs can be packaged into exosomes and
secreted from cells.113 A study by N. Hill et al. showed
that by stimulating GEnCs with glucose or puromycin
aminonucleoside, exosomes secreted by GEnCs increased
the content of miRNA-200c-3p in podocytes and reduced
VEGF production, which may lead to kidney disease.114

Hong Su et al. found that under high-glucose conditions,
microRNA-221 in exosomes secreted by podocytes leads
to dedifferentiation of proximal tubule cells through the
Wnt/β-catenin pathway.115 These findings suggest that
EVs can be potential mediators for glomerulus cell cross
talk in DKD and may be further explored as diagnostic
markers and therapeutic targets for DKD.

3 | CONCLUSIONS AND
PERSPECTIVES

Besides the significant mediators, such as VEGF-A,
Ang, and eNOS, researchers have also discovered miR-
NAs, exosomes, and other new mediators that partici-
pate in glomerular cell-cell cross talk. Under normal
physiological conditions, this communication system is
adaptive for glomerular function, but during DKD, it
becomes maladaptive and accelerates the onset of DKD.
Despite the research base and potential, the study of
cross talk in the glomerulus is in its infancy, and there
are still many questions to be asked and answered. The
pathogenesis of diabetic nephropathy is complex, and
the cells in the glomerulus are in different environments
and dimensions, so cell-specific transmission remains a
great challenge, requiring multidisciplinary cooperation.
For example, the study by Tan et al. used three-
dimensional (3D) multiscale model simulation of

podocyte injury and repair under various cytokine dis-
turbances in healthy and diabetic conditions.116 In addi-
tion to 3D technology, the continuous development of
new technologies such as RNA sequencing and renal
organoid will provide more possibilities to discover the
interactions between glomerular cells and lead to new
directions for the future treatment of DKD.
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