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Abstract
Understanding biological complexity demands a combination of high-throughput data and interdisciplinary skills.
One way to bring to bear the necessary combination of data types and expertise is by encapsulating domain know-
ledge in software and composing that software to create a customized data analysis environment. To this end,
simple flexible strategies are needed for interconnecting heterogeneous software tools and enabling data exchange
between them. Drawing on our own work and that of others, we present several strategies for interoperability
and their consequences, in particular, a set of simple data structuresçlist, matrix, network, table and tupleçthat
have proven sufficient to achieve a high degree of interoperability.We provide a few guidelines for the development
of future software that will function as part of an interoperable community of software tools for biological data ana-
lysis and visualization.
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INTRODUCTION
Developers of computational biology software in-

creasingly find their programs functioning as parts

of data analysis workflows encompassing a number

of heterogeneous tools and different data types.

Interoperability between these tools is an important

and difficult problem, closely intertwined with the

well-known and persistent problem of biological

data integration [1, 2]. Building the computing in-

frastructure to seamlessly navigate and recombine

biological data remains a work in progress. But

some valuable lessons and perhaps a few general

principles can be extracted from progress thus far.

The complexity of biological data arises from the

diversity of data types (e.g. genotypes, mRNA/pro-

tein levels, protein interactions, epigenetic changes

and phenotypes), different platforms for measuring/

analyzing the same property (e.g. protein inter-

actions), varying quality of measurements and in-

compatible systems of identifiers (e.g. gene names).

Another complicating factor is the need to capture

the relevant metadata describing the context of a

sample or an experiment, which is needed to make

the transition from a mass of individual experiments

to a coherent body of data that can be mined for

knowledge. All of these data-associated challenges

propagate to software engineering where one-off

software is essential to support ad hoc exploratory

data analysis; the challenge in integration arises

from the diversity of such software tools that even-

tually need to be packaged into scripted and repeat-

able form.

A data-driven approach to biological science de-

pends on collaboration spanning the disciplines of

biology, mathematics and statistics, computer science

and software engineering [3]. One way to bring

about this combination of expertise is to encapsulate

domain knowledge in software components, which

can be dynamically composed into integrated sys-

tems. Such components may be heterogeneous

in their choices of languages and components, span

all levels of engineering maturity and evolve at
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different rates. The cutting edge of research will

always outpace standardization, generating new

data and analysis that may not fit into any existing

schema. Federating distributed data sources [4] and

independently developed software into an interoper-

able suite of tools is a challenge that must be ad-

dressed in order to build computing systems equal

to the task of turning high-throughput data into an

understanding of biology in all its complexity.

Our perspective arises through development of

software for analysis and visualization of systems biol-

ogy data [5–7], including early versions of the network

visualization tool, Cytoscape [8]. Superimposing gene

expression data over Cytoscape networks motivated

the development of Gaggle [9], a message passing

framework for integration of bioinformatics software.

Similar goals motivated several other systems: Galaxy

[10], Taverna [11, 12], GenePattern [13], Systems

Biology Workbench (SBW) [14] and BioMoby [15].

A common theme that figures prominently into these

systems is that of composing separately developed soft-

ware into suites of tools for the analysis of biological

data. Architecting these tools to be interconnected

thus becomes a critical step.

We first consider an example data analysis work-

flow involving several software tools, then present a

set of strategies for achieving interoperability. Using

these strategies as a means to systematically analyze

the interoperability aspects of software architecture

provides a few guideposts for the development of

future systems.

DATA ANALYSISWORKFLOWS
Analysis of gene expression (Figure 1) is a common

use case that serves as an example for the techniques

discussed later. The analysis is divided into steps,

having potential for numerous variations and imple-

mented in software that transforms data then passes

results onward.

High-throughput measurement of gene expres-

sion can be performed by microarray or, increasingly,

by sequencing. The shift from arrays to sequencing is

an example of technological change that challenges

the ability of research software to adapt. In either

case, data undergo specialized processing to derive

a gene expression matrix, a 2D grid of numeric

data in which each row represents a gene’s expres-

sion profile over changing conditions.

Clustering the resulting matrix is a likely next step,

identifying sets of genes with similar expression pro-

files over the course of the experiment, possibly per-

formed using tools like R [16] or Multi-experiment

Viewer (MeV) [17]. Products of co-clustered genes

Figure 1: A biological data analysis workflow to cluster and characterize gene expression data. A gene expression
matrix derived by microarrays or sequencing experiments is clustered (here we use the data exploration tool
MeV) producing lists of co-expressed genes, which are then passed to two web resources for further analysis.
KEGG takes gene lists and finds relevant metabolic pathways. DAVID computes functional enrichment.
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may have related functions or participate in the same

metabolic pathways. The functional annotation tool

DAVID [18] accepts lists of genes and computes

functional enrichment, returned in tabular form

with links to supporting evidence. Through KEGG

[19], a list of genes can be submitted as a query re-

turning metabolic pathways represented as a net-

work. Ultimately, the analysis is guided by the

design of the experiment, which may seek to con-

nect a disease or environmental stimulus to regula-

tion of specific biological processes. Even this

simplified example relies on an impressive array of

biological, statistical and algorithmic expertise

embedded in interacting software tools.

Similar analyses might run in any of several work-

flow management systems [20, 21] or be coded into

scripting languages. When these tools incorporate

mechanisms for packaging and publishing the steps

of an analysis, this aids in reproducibility. Like design

patterns [22], basic templates for data analysis are

independent of particular tools or languages tending

to be adapted to fit new situations and reused.

Regardless of implementation details, the need for

different pieces of software to interact and exchange

data underscores the importance of interoperability

as a primary concern in the architecture of bioinfor-

matics applications.

STRATEGIES FOR
INTEROPERABILITY
A variety of methods have been successfully applied

to the problem of building interoperable software

systems. APIs, plug-ins, messaging and web services

can be seen as variations on the general theme of

sharing data and functionality between programs.

These strategies overlap and can even, at times, be

implemented in terms of one another. Most large

software systems employ several of them. They

differ in the trade-offs they impose and the degree

of separation or sharing between communicating

programs and should be selected carefully to yield

desired properties.

More complete treatments of these software

design strategies are available in the literature on soft-

ware connectors [23, 24], design patterns [22, 25]

and software architecture [26]. We will briefly give

enough terminology (Table 1) to discuss a few

advantages and consequences in further detail.

Shared representation
Any mutually understandable data format can serve

as a shared representation. If two programs can read

and write the same file format, access the same data-

base or send intelligible messages to one another,

they can communicate. A common format shared

by n otherwise unrelated programs means that each

program must translate between its internal structures

and the shared representation, an n-way translation.

This greatly improves on the worst-case scenario

where each pair of communicating programs

requires its own connector, requiring n(n� 1)/2

translators to fully connect all programs.

Relational databases are often used as a point of

integration. Programs communicating this way will

share a dependency on the database schema, but no

dependency on each other. In this case, the shared

representation is persistent, as are shared files.

Messages, as well as objects passed as arguments to

Table 1: Strategies for interoperability

Adapter A component that translates between incompatible interfaces, protocols or content.
API Application programming interface; functionality exposed for use by external components.
Broker (mediator or

arbitrator)
An intermediary that coordinates interaction between components, serving as the hub in a hub-and-spokes
architecture.

Message passing Sending data from one process to one or more independent processes.
Plug-in architecture Run-time integration of separately developed task-specific functionality into a general-purpose host program.
RPC Remote procedure call; a style of interaction characterized by synchronous invocation of specific functionality

running in another process.
Shared

representation
A commonly understood data format accessed bymultiple programs; for example, a shared DB, a common file format
(FASTA,GFF, SAM & BAM, RDF and ontologies). A message payload or arguments to an API call can also serve as a
shared representation.

Streaming Processing partial data as it arrives without waiting for a complete transmission.
Web services An API made available over web protocols (HTTP). SOAP and RESTare two common styles.
Workflow A repeatable pattern of data processing and transformation designed by arranging separate software components to

carry out distinct steps.
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an API call, are transient but still must be understood

by both sides of the communication.

Shared representations might be arranged on a

continuum of increasing structure with events and

flat text files at one end and relational databases

and ontologies on the other, trading off simplicity

and generality for precision. Complex schemas and

semantically defined vocabularies work well where

basic concepts have reached some degree of stability,

but this is not always a given in research. The degree

to which interoperability can be reduced to a syn-

tactic issue rather than a semantic one deserves con-

sideration, as semantically rich formats come at

substantial costs in terms of engineering effort, con-

sensus building and learning curves.

Toward the more structured end of this spectrum

are Semantic Web formats including Gene Ontology

[27] and BioPAX [28]. The goal of the Semantic

Web is to construct universal shared representations,

enabling linked structured data to be reused and

recombined automatically across application and

organizational boundaries [29]. For now at least,

Semantic Web technologies must coexist and inter-

operate with structured data in databases, semi-

structured data in various flavors and with unstruc-

tured data. Ideally, bioinformatics software will

accommodate varying degrees of structure, exploiting

semantically rich data where available without exclud-

ing lower levels of the structure hierarchy.

Plug-in architecture
Plug-ins are a way to augment a general-purpose

tool with specialized functionality without cluttering

up the core with functionality pertinent only to a

few users. Dependency is one way, with the host

having no dependency on its plug-ins. Plug-ins can

be distributed separately and are often contributed by

third parties. Preserving consistent behavior of an

API while core functionality is undergoing rapid de-

velopment can be challenging. But the host is free to

change its internals, as long as the contract of the API

is maintained.

The network visualization software Cytoscape has

a vibrant community of plug-in developers [30].

Plug-ins can access and manipulate the central data

structure, the network, which is maintained by the

host program. An upcoming version of Cytoscape is

based on the OSGi (http://osgi.org) framework, as is

the integrated development environment, Eclipse.

OSGi takes plug-in architecture a step further by

constructing whole software systems from assemblies

of plug-ins. Such exceptionally customizable and

reconfigurable tools are well matched to the rapidly

evolving complexity of scientific data [31].

Like a plug-in API, an embedded scripting envir-

onment is an extension mechanism enabling pro-

grams to be augmented with new functionality

[32]. For example the editor, Emacs has a Lisp inter-

preter at its core. The majority of its text editing

functionality is written in this language, as are nu-

merous extensions. Mozilla Firefox also follows this

pattern with an embedded JavaScript interpreter for

executing third-party code and custom extensions,

such as Firegoose.

Messaging
Message passing loosely couples independent appli-

cations running in different processes by exchanging

packages of data in a mutually intelligible format.

One common messaging pattern is the remote pro-

cedure call (RPC) where a request invoking a spe-

cific function is answered by a response, but there are

many alternatives [25]. The asynchronous publish-

and-subscribe pattern, for example, is often used to

propagate events indicating state change or user

interaction.

Message-oriented middleware offers a number of

attractive features, but at a cost of increasing com-

plexity. Transactional message queues provide asyn-

chrony and buffering and can be configured to

guarantee delivery and message order. Message bro-

kers add sophisticated routing and transformations.

While powerful, managing this complicated software

infrastructure can quickly become prohibitive to all

but experts.

Messaging is not well suited to very large data

objects. Serialization, copying and deserialization all

become expensive in terms of both performance and

memory as data size grows, perhaps beyond a limit of

a few tens of megabytes with present technologies.

Streaming can eliminate the need for whole docu-

ments to be in memory, but sacrifices a degree of

simplicity. Alternatively, messages may carry a refer-

ence to data rather than the full data itself. The

pointer can take the form of a URL or a reference

to a shared database. This is efficient, but raises again

the problem of shared representation, particularly

with the introduction of a dependency on a database

schema.

Both Gaggle and SBW are message passing systems

with binary protocols. The choice of binary versus
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textual protocols is a trade-off of efficiency against

simplicity.

Pipes and filters
Pipes-and-filters is an archetypal technique for inter-

operability. The pipes-and-filters model [26], often

described as ‘small pieces, loosely joined’, enables

workflows to be built up from small programs

chained together by streaming. The programs are

usually invoked from the command line within a

Unix shell and have a single purpose whose behavior

is modified by command line switches. Branching is

possible, but the tendency is toward linear pipelines.

The shared representation is typically text files pro-

cessed line-by-line.

Web services
Web services and workflows built on them are

widely deployed in biology. Building on web proto-

cols brings many advantages from an interoperability

perspective. The uniform interface of Hypertext

Transport Protocol (HTTP) connects heterogeneous

clients and servers. Text representations such as XML

or JSON provide platform neutrality.

Web services are often built alongside browser-

based web interfaces and, in modern applications,

rich web or desktop clients are built on top of

well-defined web service APIs. This layered style

of architecture supports both interactive and auto-

mated access, serving developers, point-and-click

users and scripting-enabled power-users.

A request across the network is a relatively slow

operation. The granularity of requests should be

selected to keep data sizes reasonable and the

number of requests small. A pattern is emerging of

hosting shared data resources and running analysis on

scalable cloud computing infrastructure accessible

through web service APIs.

RESTful JSON-based APIs are becoming stand-

ard practice and the value of scripting and intercon-

necting such services is well known. Facebook’s

OpenGraph, for example, is a platform that supports

a vibrant ecosystem of third-party apps. OpenGraph

is a web service API with many aspects of a plug-in

architecture having the social graph as its central data

structure. Similar techniques may cross over easily

into the biology domain where the interactions of

genes, proteins and species also form densely inter-

connected networks. Repositories of biological data

could similarly act as platforms for integration [33],

able to plug in customized modules encapsulating

analysis algorithms, visualizations and connectors to

multiple data sources.

REST, or representational state transfer [34], is the

set of architectural principles underlying HTTP,

which incorporates several interoperability strategies.

HTTP is an RPC client-server messaging protocol.

The client makes requests containing one of a small

set of methods, (GET, PUT, POST and DELETE)

which are answered by responses from the server.

This uniform interface is understood by all web ser-

vers. The body of an HTTP message may contain

HTML or any of dozens of standard media (MIME)

types, including specific formats for images, audio

and video. Registration of new media types is an im-

portant extension point. Since clients cannot reason-

ably be expected to support an open-ended variety

of media types, browsers offer plug-in mechanisms

through which specialized or proprietary media for-

mats can be supported.

One tenet of REST is that information be repre-

sented in transit as self-describing messages. The

syntax for these documents is typically XML or

JSON. Their semantic content and structure may

conform to a standard (e.g. HTML) or be application

specific. In the next section, we propose a highly

general representation of scientific data based on a

handful of simple data structures annotated with

descriptive metadata.

INTEROPERABLEDATA
Data representation is essential to any method of

interoperability, serving as an intermediary between

communicating programs with different internal

representations. Like the type system for a program-

ming language, an intermediate representation seeks

to balance several qualities, among them simplicity,

expressivity, universality and efficiency. Our experi-

ence with Gaggle suggests a system of interlocking

data structures, free of domain specific semantics and

general enough to cover a broad range of

applications.

These shapes of data—lists, matrices, networks,

tables and tuples (nested key/value pairs)—are uni-

versal and a capable of representing a variety of bio-

logical data types (Figure 2). They are redundant in

the sense that it is possible to represent the same data

in a number of ways, but a given biological data type

usually fits naturally into one of these structures

and will be represented by similar structures in the

internals of many software tools. Of course, there
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are data types that do not fit well into these data

structures. Images and sequence, for example, are

well served by existing formats and these can be

used by reference, as is done in HTTP. As a shared

representation, this handful of fundamental data

types is sufficient to achieve a surprisingly high

degree of interoperability.

Rather than matching complex biological data

with equally complex and therefore cumbersome,

data standards, we instead control complexity with

flexible, generic and composable data types that are

purposefully underspecified, letting context fill the

gap. In our experience, this strategy works remark-

ably well at representing biological data, containing

the costs in software complexity, remaining

amenable to formality where necessary without

enforcing it where it is not.

The shapes of data
A handful of data structures sufficient to represent a

variety of biological data are:

� Lists. A list of identifiers is a basic and universal

data structure, which might hold gene or protein

names, accession numbers, ontology terms or re-

source URLs.

� Matrices. Libraries for manipulating matrices are

fundamental to numerical computation and com-

prise decades of work, underpinning software like

R, MATLAB, and NumPy. In Gaggle, a matrix is

Figure 2: The shapes of scientific data. A wide variety of scientific data can be represented by a handful of funda-
mental data structures. A list might hold protein or gene identifiers. Networks represent regulatory influence,
metabolic pathways or protein interactions. Numeric data resides in matrices, for example a gene expression
matrix or promoter motif PSSM. The combination of tabular data and matrices could enable ChIP-chip data, tiling
array data and genome features to be plotted by location in the genome. A bicluster, a set of genes co-expressed
under specific conditions, might be represented by the combination of a list of genes, a list of conditions and
a gene expression matrix, tied together in a tuple (hierarchically nested key-value pairs). Tuples may also represent
experiment design (metadata about media, environmental variables or patient data).
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a 2-dimensional array of floating point values with

labeled rows and columns, although it might be

argued that an n-dimensional array would be a

better choice. Gene expression, protein abundance

and motifs PSSMs can be expressed as matrices.

� Networks. A network, or graph, has nodes con-

nected by edges. Both nodes and edges can have

key/value properties attached to them. Protein–

protein interaction, gene regulation and metabolic

pathways are commonly represented as networks.

� Tables. The basic unit of relational databases is the

table, a set of rows conforming to a schema. Tables

differ from matrices in that each column in a table

may be a distinct type of data, for example numeric,

string, or boolean. Often, the first column is an

identifier and other columns hold categorical or

numerical data pertaining to the identified entity.

For example, a gene feature table might have col-

umns for gene name, strand, start and end position,

and function.

� Tuples. Sets of key/value pairs are tuples. The keys

are strings that label the values. Simple values can be

numeric, string or boolean. Values can also be com-

pound objects: lists, matrices, networks, tables, or

other tuples. This nesting enables composition and

can be used to build up complex data structures,

something that should be done with restraint

because it creates a dependency on the precise

structure. Like XML and JSON, tuples can repre-

sent hierarchical data and can also accommodate

RDF triples.

These data structures avoid specifying biological

semantics and are to be interpreted in the context

of the receiving application, a concept called seman-

tic flexibility. Semantic concerns are left pragmatic-

ally in the hands of the user. These go hand-in-hand

with the design of the data analysis workflow and of

the experiment itself, activities that are likely to

remain largely in human hands for some time to

come.

Joining data
Joining together corroborating lines of evidence en-

ables robust conclusions. An important aspect of this

system of data structures is that they can be readily

joined together. For example, a list of genes might be

used to select rows in a gene expression matrix or

nodes in a protein interaction network. Properties

pertaining to those genes might be stored in a table

or tuple, also keyed by gene name.

Heterogeneous data sets can be related to each

other by joining or merging based on common keys.

These common keys, or touch points [35], take many

forms in biological data including gene or protein

identifiers, ontology terms and loci. Genome brow-

sers, for example, render visualizations by joining data

on the basis of location on the genome.

Inconsistent identifiers impede join operations. In

spite of several tools [18, 36, 37] for mapping between

different naming systems, translating identifiers

remains a common source of frustration for bio-

informatics researchers. Semantic web technologies,

including Life Science Identifiers [38], seek to create

a systematic and universal naming system through the

use of Uniform Resource Identifiers (URIs). URIs

provide a distributed hierarchical namespace thus

avoiding naming conflicts, but do not entirely resolve

the issues of multiple names for equivalent entities or

semantic mapping across related concepts.

The general idea of joining on a common key

might be expanded to include more sophisticated

mappings. Sequence similarity links together genes

across species enabling propagation of information

over the phylogenetic tree. A newly sequenced

genome can be essentially joined to the body of

existing biological knowledge through BLAST.

Likewise, functional enrichment connects sets of

genes up the hierarchy to biological processes and

metabolic pathways.

Interoperability example
Returning to our example gene expression analysis,

consider the shapes of data crossing the junctions be-

tween the software tools. Aligned sequence reads in

tabular format or probe intensities are processed into a

gene expression matrix. The matrix is transferred to a

statistical tool for clustering. Co-clustered genes, as

lists of identifiers, may then be intersected with net-

works denoting protein–protein interactions, meta-

bolic pathways or regulatory networks returning

subnetworks. Gene lists may serve as queries to func-

tional databases returning key-value pairs associating a

gene with its function. In this light, composing soft-

ware to perform successive levels of analysis is largely a

matter of sharing these fundamental data structures.

GAGGLE: EXPERIENCE AND
LESSONS
Much of our experience putting into practice these

strategies for interoperability comes from the
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development and application of Gaggle, a frame-

work designed for interactive exploratory analysis

of biological data. Gaggle integrates several in-house

and third-party software tools and has been applied

in numerous studies, for example [5–7].

In terms of interoperability strategies, Gaggle is a

message passing system. Shared representation takes

the form of the set of data structures discussed earlier,

with the omission of tables. Messages are propagated

through the Boss, a simple message broker that tracks

connected applications and routes messages from

one to another. Connections are implemented over

Java RMI, implying synchronous RPC with binary

serialization of data objects. In client applications,

Gaggle connectivity is often implemented through

plug-in APIs, as it is in Cytoscape. In order to

incorporate web applications into the system, an

adapter was needed that could translate from the

Java RMI protocol to web protocols, HTTP and

XML-based web services. This is the basic function

of Firegoose.

The Gaggle framework creates a fluid environ-

ment for interactive exploratory analysis of systems

biology data, integrating an extensible suite of soft-

ware tools: MeV [17], a graphical tool for clustering,

classification and visualization; R and Bioconductor

[39]; Cytoscape. Several more tools were developed

specifically for use within the Gaggle framework,

including a data repository incorporating machine-

readable descriptions of experiment design; a trans-

lator for mapping across identifier systems and a

genome browser [40]. Firegoose [41] connects web

applications to the Gaggle framework, exchanging

data in either direction between desktop tools and

popular web sites such as KEGG [19], STRING [42,

43] and DAVID [18].

As we gained experience with Gaggle, we dis-

covered aspects which worked well and those

where greater flexibility and extensibility were

needed. Reviewing some of these design decisions

may provide guidance for future work.

Tables
Originally, we felt that tables could be adequately

represented as matrices or tuples and did not include

them in the Gaggle. Of particular concern was the

need for communicating programs to agree on the

specific contents of the table (the schema). On the

other hand, the ubiquity of tables in both

spreadsheet-like programs and databases argued for

their inclusion. More importantly, significant utility

can be had from tables without limiting applications

to a prescribed schema. For example, the first

column often holds an identifier field. That alone is

sufficient for making selections and joining to other

data structures. Applications with specific needs

might have to look for expected column headers;

for example, sequence, strand, start and end indicat-

ing a locus on a genome. A program encountering a

table with an unfamiliar schema can ignore it, harm-

lessly. This demonstrates the surprising extent of

what can be done without limiting flexibility.

Thus convinced in favor of tables, we faced an-

other problem. Due to the statically typed nature of

RMI, Java’s binary protocol for remote method in-

vocation, adding this new data type meant recompil-

ing clients, many of which were developed by third

parties. Searching for ways to support both older

and newer clients, we prototyped a JSON protocol.

Easily enabling additive changes, our experimental

protocol showed benefits in generality, extensibil-

ity and platform independence at some cost of

efficiency.

Composition
The original Gaggle included a data type for

bicluster—a set of genes co-expressed under a set

of experimental conditions. The need for this less

general data type demonstrated a fundamental omis-

sion. A bicluster is just a pair of lists, a list of genes

coupled with a list of conditions. This type of com-

position was made possible by allowing data objects

to be nested inside tuples. A bicluster is now repre-

sented as a tuple with two keys, ‘genes’ and ‘condi-

tions’, each associated with a list of identifiers. As an

added benefit, data objects can now be annotated

with metadata. Specifying identifier types or units

are among many potential uses.

Microformats
The original Gaggle worked well for desktop appli-

cations; however, many useful and popular bioinfor-

matics resources are available as web applications.

This motivated the creation of Firegoose, a browser

extension that integrates web resources into the

Gaggle framework. To make this easier, small

amounts of structured data can be embedded directly

into web pages, a technique called microformats or

microdata in the HTML5 standard. Search engines

and browser plug-ins like Firegoose can parse and act

on this embedded information enabling data-aware

features. One compelling use is to link together web
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interfaces and web services, which are often different

representations of the same underlying data. Web

resources can then participate in a seamless data ana-

lysis environment along with desktop tools.

Scripting
Gaggle is an environment for exploratory analysis,

emphasizing the ability to easily move data from

one interactive graphical application to another. In

this way, Gaggle differs from workflow tools in that

the steps of an analysis are determined interactively

by the user, rather than being scripted or designed

graphically. Gaggle integrates many programs which

were not made with scripting in mind, making it

difficult to capture and save analysis workflows.

Hooks for scripting graphical applications, perhaps

even a shared vocabulary of commands, would

help ease the transition from interactive exploratory

analysis to automated reproducible workflows.

CONCLUSION
‘A ‘‘cyberinfrastructure’’ is a combination of databases,

network protocols and computational services that

brings people, information and computational tools

together to perform science in this information-

driven world.’—Lincoln Stein [44]

In his landmark dissertation [34], Roy Fielding

systematically described the architectural principles

that enabled the success and ubiquity of the web.

Can we formulate similar principles that do the

same for bioinformatics? Rather than enforcing

restrictive and limiting mandates on data and pro-

gramming models, the necessary flexibility and inter-

operability might be achieved through a set of

general principles and standard practices, much like

it has on the web itself.

Requirements
The requirements are relatively clear. The structure

of biological research dictates that bioinformatics

software be created through a process of distributed

independent development with little central coord-

ination. Projects at varying levels of maturity must

interoperate while evolving independently at varying

rates. Unpredictable new requirements are to be ex-

pected. Care should be taken to avoid constraining

biological semantics or imposing data models, which

may become outdated with advancing biological

knowledge.

Bioinformatics software development should

remain accessible to scientists and domain experts

who are not primarily software engineers. In that

spirit, preferred architectures would not restrict

choice of programming environment nor require

sophisticated development tools or techniques, keep-

ing the barrier to entry as low as possible. Ad hoc
scripts should be supported and allowed to evolve

toward greater engineering rigor as warranted. The

goal should be tools and practices that enable both

exploratory and repeatable data analysis, cultivate

collaborative development and produce open easily

exchanged data. These are ideals, but taken as guid-

ing principles, they point to engineering decisions

that value flexibility and simplicity.

Principles
‘Rule of Composition: Design programs to be con-

nected to other programs.’—Eric S. Raymond [45]

These requirements and values serve to guide

the tradeoffs inherent in building complex scientific

software. The basic engineering tools for dealing

with complexity are abstraction and modularity.

Encapsulating specialized functionality behind well-

defined interfaces leads to self-contained compo-

nents. Composition of autonomous components

provides the flexibility needed to adapt to unantici-

pated situations.

Loosely coupled systems are created by carefully

limiting dependencies between components.

Exchanging data in self-describing documents

lowers dependency between components, compared

with explicitly invoking another program’s function-

ality. For example, HTTP constrains the set of ac-

tions to a handful of operations (GET, PUT, POST

and DELETE), pushing almost all variation into the

message payload, which can be any of dozens of

defined media types, including text, html, xml,

images, audio and video or customized application-

specific types. The result is that heterogeneous clients

and servers can exchange an unlimited variety of data

types. Effective extension points are difficult to craft,

but once found, enable existing software to adapt

gracefully to new demands.

Generality is a key feature of interoperable data

structures. Expressing biological concepts in the

data rather than in its structure enables new concepts

to be incorporated and existing concepts to change.

Likewise, plug-in architecture isolates application-

specific semantics, which may be in flux, from uni-

versal concepts that apply broadly and consistently.
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In a rapidly developing field of research, semantics

are a vector of change and designing to isolate that

change pays off.

The principles of abstraction, modularity, com-

position, loose coupling, simplicity and generality

are simply good software engineering. Applied in

context, these principles suggest a set of practices

that allow interoperability to proceed naturally.

Several existing systems and frameworks exemplify

some of the necessary ingredients: composing custo-

mized workflows of loosely coupled independently

developed software components; protecting against

change through generality; promoting extensible or

optional standards and keeping software compo-

nents, protocols and data representations as simple

as possible, bearing in mind that specifications that

burden developers and data providers with up-front

costs are less likely to be adopted. Software tools

should be designed for interoperability, anticipating

their role as parts of an integrated platform collect-

ively supporting the emergence of yet higher levels

as new biology is discovered.

Key Points

� Interoperability is a key feature for scientific software.
� Flexible and powerful software environments for scientific data

analysis depend on composition of independently developed soft-
ware tools each encapsulating domain expertise fromparticular
areas of specialty.

� Ahandful of simple generic data structuresçlists, matrices, net-
works, tables and tuples (nested key/value pairs)çare capable
of representing a variety of biological data types. These repre-
sent the shapes of scientific data and provide a basis for simple
and flexible interoperability.
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