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Purpose of review

The current review aims to provide an update on the recent biomedical interest in oncogenic branched-
chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of
BCAA-related enzymes in the treatment and diagnosis of cancers.

Recent findings

An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and
are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA
metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial
branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression
commonly correlates with more aggressive cancer growth and progression, and has attracted substantial
scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to
be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of
BCAT1 appears to vary between cancer types.

Summary

Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-
associated metabolic enzymes. These new discoveries need to be taken into consideration during the
development of new cancer therapies that target BCAA metabolism.
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Cancer cells have unlimited potential to divide and
sustain growth. This process is dependent on acquiring
essentialnutrients fromthetumormicroenvironment,
which are used to maintain biomass and survival, even
under conditions of poor nutrient and oxygen avail-
ability [1,2

&

,3]. The metabolic flexibility of cancer cells
is determined by their ability to reprogram anabolic
and catabolic pathways, through altering gene expres-
sion programs as well as intercellular interactions
within the tumor microenvironment [4].

The process of oncogenesis is dependent on
amino acids, the building blocks for protein synthe-
sis, and a source of energy and metabolites [3]. Many
cancer types overexpress enzymes that function to
degrade amino acids, which not only provide cellu-
lar energy and metabolites for anabolic processes
but also serve as mechanisms of immune evasion by
cancer cells [2

&

,5]. For example, tumor overexpres-
sion of indoleamine-2,3, dioxygenase and arginase
depletes the tumor microenvironment of trypto-
phan and arginine, respectively, which is beneficial
for tumor growth but also suppresses local cytotoxic
T-cell proliferation [6–8]. Thus, by using amino acid
degrading enzymes as immunosuppressive factors,
tumors increase their ability to survive.
also preferentially uptake the branched-chain
amino acids (BCAAs) leucine, isoleucine, and valine
[5]. BCAAs can be used for protein synthesis or
oxidized for energy purposes by tumors. BCAAs
are essential amino acids; tumors must rely on die-
tary BCAA intake and their release from protein
degradation [9] (Fig. 1). In recent years, it has
become evident that the enzymes catalyzing the
first step in BCAA degradation are overexpressed
in many cancers [10,11,12

&

]. These are the cytosolic
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KEY POINTS

� BCAAs are essential for cancer growth and can act as
mammalian target of rapamycin complex 1 agonists,
building blocks for protein synthesis, and/or as sources
of nitrogen (for nonessential amino acid and nucleotide
biosynthesis) and carbon (for the cycle of tricarboxylic
acids cycle and energy production).

� Several recent reports have found expression of
BCAT1, the enzyme involved in the first step of BCAA
catabolism, to be a useful diagnostic and prognostic
marker in several cancers.

� BCAA metabolism and BCAT1 activity play various
functional roles in the progression of different cancer
types, which appears to be determined by both the
tissue-of-origin and the oncogenic mutations.

� New studies have identified several cancer-specific
epigenetic and posttranscriptional mechanisms
regulating BCAT1, which help to explain its
dysregulated gene expression.

FIGURE 1. A model of branched-chain amino acid
metabolism in cancer. As essential amino acids, cancer cells
must obtain branched-chain amino acids from the tumor
microenvironment or from protein degradation. Branched-
chain amino acids are thought to play several roles in
cancer cells: activate complex 1 of the mammalian target of
rapamycin signaling, which stimulates protein translation,
growth, and survival; serve as building blocks in protein
synthesis; be metabolized into branched-chain a-keto acids
in the cytosol (by branched-chain aminotransferase 1) and/
or mitochondria (by branched-chain aminotransferase 2), a
process involving conversion of a-ketoglutarate to glutamate;
serve as indirect source of nitrogen for nucleotide (and
nonessential amino acid) biosynthesis via the glutamate–
glutamine axis; and become further catabolized to yield
acetyl-CoA and succinyl-CoA (not shown) that feed into the
cycle of tricarboxylic acids cycle and can contribute to
energy production. Note that in some cancers (such as
chronic myeloid leukemia), branched-chain aminotransferase
1 is proposed to convert branched-chain a-keto acids back
to branched-chain amino acids. BCAA, branched-chain
amino acid; BCKA, branched-chain a-keto acid; BCKDH,
branched-chain keto acid dehydrogenase; BC-acyl-CoAs,
branched-chain acyl-CoAs; a-KG, a-ketoglutarate; TCA,
cycle of tricarboxylic acids; mTORC1, complex 1 of the
mammalian target of rapamycin.
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[branched-chain aminotransferase 1 (BCAT1)] and
mitochondrial [branched-chain aminotransferase 2
(BCAT2)] branched-chain aminotransferases, which
convert BCAAs into their corresponding branched-
chain a-keto acids by transferring the amino group
onto a-ketoglutarate and thereby generating gluta-
mate [13]. Of the two enzymes, BCAT1 is the major
isoform implicated in cancer growth and has
been proposed as a prognostic cancer cell marker
[5,10,14–17,18

&&

]. The role of BCAT1 in cancer pro-
gression has become an intriguing but challenging
topic to understand, with several different functions
in tumor growth having been proposed [12

&

,18
&&

]. In
this review, we summarize the latest discoveries on
the utility of BCAT1 expression as a prognostic
cancer cell marker and the recent mechanistic
insights into how BCAT1 contributes to the meta-
bolic reprograming of cancer cells. Next, we address
the most recent understanding of the role of BCAA
metabolism in cancer growth and progression.
Lastly, we discuss current and future opportunities
to clinically target BCAA metabolism in the context
of cancer therapies.
BRANCHED-CHAIN AMINOTRANSFERASE
1 IS A PROGNOSTIC CANCER MARKER
AND AN ATTRACTIVE TARGET FOR
CANCER THERAPIES

The role of BCAT1 in cancer development was
largely overlooked until recently. It was not until
2013, when Tonjes et al. [10] reported overexpres-
sion of BCAT1 in gliomas, that the scientific
1363-1950 Copyright � 2017 The Author(s). Published by Wolters Kluwe
community became interested in this metabolic
enzyme and its potential in cancer therapy. Since
2013, scientific knowledge about BCAT1 in cancer
has been steadily accumulating with an average
of seven publications/year (per ‘PubMed’ search).
Current knowledge indicates that most cancer types
express high levels of BCAT1 [5,14,17]. By contrast,
BCAT1 expression in healthy humans is mainly
limited to the nervous system and gonadal tissues
[5], as well as activated T lymphocytes [13] and
r Health, Inc. www.co-clinicalnutrition.com 65
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macrophages [19]. The cancer-specific expression of
BCAT1 makes this gene an attractive target for thera-
peutic intervention. However, the biological func-
tionsofBCAT1 incancerare notwell understood,and
recent evidence suggests it may be dependent on the
cancer tissue-of-origin [9,12

&

].
BCAT1 expression in glioblastoma tumors is

specific to those carrying wild-type isocitrate dehy-
drogenase 1 and 2 (IDH1 and IDH2) [10]. Mutations
in either IDH1 or IDH2, commonly seen in glioblas-
tomas, contribute to downregulation of BCAT1
through DNA methylation of the BCAT1 promoter
and the corresponding epigenetic silencing of
BCAT1 [10] (Table 1). Mutations in IDH1/2 are
common in gliomas and acute myeloid leukemia
(AML), whereas solid tumors rarely harbor IDH
mutations [10,15,20,21]. Significantly, BCAT1 was
recently found to be highly expressed in AML, where
it contributed to growth in vitro [18

&&

]. On the other
hand, an inverse relationship between BCAT1 and
IDH1/2 was found in epithelial ovarian cancer
(EOC), where BCAT1 silencing suppressed the
expression of IDH1/2 genes [15]. Within the cycle
of tricarboxylic acids (TCA) cycle, wild-type IDH
enzymes convert isocitrate into a-ketoglutarate,
whereas mutant IDH enzymes convert isocitrate
into hydroxyglutarate [10]. Given a-ketoglutarate
is used by BCAT1 for BCAA transamination, this
points toward a possible metabolic link between
IDH1/2 and BCAT1. Resulting perturbations to
TCA cycle-associated metabolites and energy pro-
duction may have contributed to the accelerated
cellular proliferation, migration, and invasion
observed in EOC [15] (Table 1).

Most, but not all, reports indicate that BCAT1
overexpression correlates with enhanced cancer
growth, whereas suppression of BCAT1 limits pro-
liferation. For example, suppression of BCAT1 in U-
87MG, a human primary glioblastoma cell line,
produced smaller tumors in mice [10]. Similarly,
when Bcat1-null nonsmall lung carcinoma (NSCLC)
cells were implanted subcutaneously in mice, these
cells displayed impaired tumor-forming ability
[12

&

]. However, when mice were injected with
SKOV3 ovarian carcinoma cells with suppressed
BCAT1 expression, tumor burden was not alleviated,
although survival rates were significantly increased
as compared with control animals [15] (Table 1).
Likewise, suppression of BCAT1 in pancreatic ductal
adenocarcinoma (PDAC) did not lead to a reduction
in tumor growth, and patients with PDAC expressed
low levels of tumor BCAT1 and displayed increased
plasma BCAAs levels [12

&

]. Thus, not all cancer types
express high levels of BCAT1 and suppression of
BCAT1 does not always correspond to a decrease
in tumor size.
66 www.co-clinicalnutrition.com
In several tumor types, the epigenetic dysregu-
lation of BCAT1 expression has been elucidated.
The best described epigenetic mechanism involves
mutated IDH1/2, as discussed above [10]. However,
another epigenetic mechanism, involving the dis-
ruptor of telomeric silencing 1-like (DOT1L) histone
methyltransferase, was recently proposed [22]. In
contrast to IDH1/2 mutations, DOT1L activates
BCAT1 gene expression through histone H3K79
methylation of the coding region, but not the pro-
moter, of BCAT1 [22]. In leukemias, driven by
genetic mutation of the mixed lineage leukemia 1
(MLL1) gene, DOT1L maintains an open chromatin
state and gene transcription. DOT1L also forms part
of the elongation assisting protein complex, along
with positive transcription elongation factor b,
among others, which is recruited by oncogenic
MLL1 fusion proteins (such as MLL-AF9) to stimu-
late RNA Pol II gene transcription [23]. In addition,
DOT1L can cooperate with c-Myc and p300 to
enhance transcription [24]. BCAT1 has also been
described as a downstream target of c-Myc in many
cancers, including ovarian and liver cancer
[5,15,17]. Thus, it is intriguing to speculate that at
least one mechanism of BCAT1 upregulation in
cancer may involve cooperation between DOT1L
and c-Myc.

Most recently, a new posttranscriptional regula-
tor of BCAT1 expression was identified in chronic
myeloid leukemia (CML), the musashi RNA binding
protein 2 (MSI2) [18

&&

]. MSI2 and BCAT1 are coex-
pressed in CML blast crisis, and a physical interac-
tion between MSI2 protein and BCAT1 mRNA was
identified, suggesting that BCAT1 expression in
CML is MSI2-dependent. Moreover, the MSI2–
BCAT1 axis was proposed as an important mecha-
nism in driving cancer progression in CML [18

&&

]
(Table 1).

Taken together, these studies point toward a role
of BCAT1 as a prognostic cancer marker, although
the mechanisms of BCAT1 gene dysregulation
appear to differ between cancer types. In addition,
these data suggest inhibition of BCAT1 activity may
be a useful therapeutic strategy in the treatment of
several cancers.
REPROGRAMING OF BRANCHED-CHAIN
AMINO ACID METABOLISM TO ACTIVATE
MAMMALIAN TARGET OF RAPAMYCIN
SIGNALING IN CANCER

The BCAA leucine is a well described mammalian
target of rapamycin (mTOR) agonist [13], and Ses-
trin2 was recently identified as a direct intracellular
leucine sensor and mTOR complex 1 (mTORC1)
regulator [25

&&

,26]. Many cancers rely on constitutive
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mTOR activity to maintain cellular growth and pro-
liferation [27]. Recent reports have linked BCAT1
expression to mTOR activity in several cancers,
although different mechanisms have been proposed
[16,18

&&

]. Hattori et al. [18
&&

] demonstrated that
BCAT1 was overexpressed in CML blast crisis. In
this context, rather than deaminating BCAAs to
BCKAs, BCAT1 overexpression resulted in increased
intracellular concentrations of BCAAs through BCKA
amination. Reduced BCAT1 expression (or activity
through pharmacological inhibition) resulted in
reduced mTORC1 activity, presumably through
reduced intracellular BCAA concentrations. Impor-
tantly from a therapeutic standpoint, knockdown
of BCAT1 in a mouse model of CML improved
survival,whileuseof the BCAT1 inhibitorgabapentin
suppressed colony formation of human patient
CML [18

&&

].
Zhang and Han[16]also found BCAT1 expression

promoted mTOR activity, but in the context of breast
cancer cells. The authors found that BCAAs were
increased in patients with breast cancer (compared
with healthy controls), in both peripheral blood
serum and cancer tissue, and BCAT1 was also over-
expressed. BCAT1 expression also contributed to the
growth of breast cancer cell lines and appeared to act
through mTORC1 activity (Table 1). However, down-
stream BCAA catabolic enzymes were also overex-
pressed in breast cancer cells [16], suggesting
catabolism of BCKAs into the TCA cycle may also
play a role in this context. Significantly, recent met-
abolic analysis of BRCA1-mutant breast epithelial
cells also identified increased BCAA concentrations,
suggesting increased BCAA concentrations via
reprogramed metabolism may be an early event in
BRCA1-cancer development [28].

Further mechanistic insight into the role of
BCAT1 overexpression in breast cancer was recently
identified by Thewes et al. [29]. In ERa-negative
breast cancer, BCAT1 indirectly regulated the cell
cycle regulator retinoblastoma protein through the
cell cycle inhibitor p27Kip1. Here, BCAT1 controlled
cell cycle progression, sustaining breast cancer pro-
liferation. By contrast, Takegoshi et al. [30] suggested
that BCAAs prevented development of hepatocellu-
lar carcinoma in mice models of nonalcoholic stea-
tohepatitis. As in the studies described above, BCAAs
appeared to act via mTORC1. These data suggest
BCAAs have cancer-specific functions and that in
certain contexts, BCAAs may even suppress cancer
development.

Combined, these recent findings highlight the
importance of BCAT1 and BCAA metabolism in
reprograming cancer metabolism via mTORC1, with
profound consequences on cell cycle and cancer
progression.
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BRANCHED-CHAIN AMINO ACIDS
SUPPORT THE CANCER ENERGETIC AND
BIOSYNTHETIC DEMANDS

BCAAs play an important role in energy homeostasis
and nutrient signaling as well as nitrogen balance
[31,32]. Several recent studies have found BCAA
metabolism to be an important ‘module’ within
cancer metabolism, but appear to drive cancer pro-
gression by diverse mechanisms [9,11,12

&

]. For
example, transamination of BCAAs leads to forma-
tion of glutamate, which can be used for biosynthe-
sis of other nonessential amino acids such as
glutamine, or recycled to a-ketoglutarate via other
aminotransferases [33,34]. In NSCLC tumors, high
glutamate and glutamine concentrations correlated
with an increased expression of BCAT1 and higher
rates of BCAA uptake [12

&

]. Similarly, knockdown of
BCAT1 expression (or pharmacological BCAT1 inhi-
bition) in glioblastoma cells reduced the formation
of glutamate [10]. However, not all cancers pro-
duced high levels of glutamate in response to over-
expression of BCAT1. As described above, in CML
blast crisis, high expression of BCAT1 correlated
with lower intracellular BCKAs and glutamate con-
centrations [18

&&

].
Mayers et al. [12

&

] provided an elegant demonstra-
tion that the same oncogenic event can result in very
different BCAA metabolism and suggested that meta-
bolic activity depended on the tissue-of-origin rather
than oncogenic mutation. This study focused on
mouse models of PDAC and NSCLC, both driven by
Kras mutation combined with p53 deletion. Lung-
derived tumors actively took up and catabolized
BCAAs to BCKAs, whereas pancreas-derived tumors
did not. During oncogenic transformation, PDAC cells
even appeared to shut down catabolic flux of BCAAs
through downregulating expression of several
enzymes in the BCAA catabolic pathway, including
BCAT2. In the NSCLC, nitrogen derived from BCAA
deamination was used to support biosynthesis of non-
essential amino acids and nucleotides [12

&

] (Table 1).
However, other reports provided evidence that

the genetic mutations can also influence how BCAA
metabolism impacts cancer progression. Although
in the above example of PDAC, BCAA metabolism
was suppressed, BCAA catabolism via BCAT2 was
recently found to play an important role in PDAC,
driven by the chr18q21 chromosomal deletion [11].
Chromosomal region 18q21 is commonly deleted in
solid tumors and can impact the expression of many
housekeeping genes, including the mitochondrial
malic enzyme 2 (ME2). In this study, knockdown
of BCAT2 in ME2-deficient PDAC cell lines inhi-
bited colony formation, which could be rescued
by nucleotide supplementation, suggesting BCAAs
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to be an important nitrogen source for nucleotide
biosynthesis in this cancer type (Table 1). By con-
trast, carbon from BCAAs could not be detected in
TCA cycle metabolites by metabolic flux analysis,
suggesting BCAAs were not a major source of energy
in this cell type [11]. Combined, these data suggest
that cancer BCAA requirements are dependent on
the tissue-of-origin as well as the genetic mutation.

Thus, BCAA metabolism directly influences
cancer growth, but different metabolic states are
expected based on the cancer type, the genetic
mutation, and/or tumor microenvironment in a
complex relationship that needs to be addressed
in future studies.
TARGETING BRANCHED-CHAIN AMINO
ACID METABOLISM IN CANCER CLINICAL
TRIALS

Recent clinical studies

Likely due to the ease of administration, numerous
studies have investigated the consequences of BCAA
supplementation on disease progression in clinical
trials [35–40]. Although clinical trials investigating
BCAAs in different cancers are currently ongoing,
most recently published clinical studies involving
BCAA in cancer treatments have focused on BCAA
supplementation in liver disease and its progression
to liver carcinoma [35–38]. Nojiri et al. [35] investi-
gated the consequences of BCAA supplementation
following radiative ablation of hepatocellular carci-
noma in a study involving 51 patients. Several
statistically significant differences were observed
between the BCAA supplement patients and
control group. Importantly, event-free survival
was increased, whereas complications were reduced,
suggesting BCAA supplementation may be effica-
cious in this patent population. In a second clinical
study, involving BCAA supplementation in hepato-
cellular carcinoma, Shiozawa et al. [39] found that in
a study involving 77 patients, BCAA supplementa-
tion could also improve patient outcomes. These
findings were also corroborated with a third recent
clinical observational study, involving 307 patients,
which also found that BCAA supplementation
benefited patients with advanced liver disease [38].

In addition to clinical trials involving hepato-
cellular carcinoma, the value of BCAT1 as a diagnos-
tic marker was recently tested in patients with
colorectal cancer, alongside the ikaros family zinc
finger 1 (IKZF1) gene [41,42]. Cell-free circulating
methylated DNAs of BCAT1 and IKZF1 were moni-
tored in patient’s blood of nearly 3500 patients
scheduled for colonoscopy. The BCAT1/IKZF1 blood
test was found to be 75% positive for recurrences,
1363-1950 Copyright � 2017 The Author(s). Published by Wolters Kluwe
which points toward its utility in patients with
remission [41]. However, further clinical studies
are necessary to determine the broader diagnostic
value of BCAT1 status in different cancers.
Future prospects for therapeutic targeting of
branched-chain amino acid metabolism

As described above, several recent studies have found
BCAT1 overexpression to be associated with cancer
growth and the activity of BCAT1 to be oncogenic
[18

&&

,29]. These studies suggest the prospect of using
BCAT1 to develop targeted cancer therapies. Indeed,
the fact that Bcat1-knockout mice are viable [13,43]
suggests there may be a good therapeutic window for
targeting BCAT1-dependent cancers.

An alternative approach was recently suggested
by Taya et al. [44], based on their findings that
hematopoietic stem cells (HSCs) required the BCAA
valine. HSCs are important for homeostasis of the
adult hematopoietic system and are used clinically
in HSC transplantation, a curative treatment for a
range of hematological diseases including leuke-
mias. For donor HSCs to engraft, recipients must
normally undergo irradiation or chemotherapy.
Taya et al. [44] found that dietary depletion of valine
could be used to condition the bone marrow and
afford donor HSC engraftment. These findings open
up the prospect of metabolic condition regimens
based on BCAA modulation.
CONCLUSION

The past few years of in-depth research on BCAA
metabolism in cancer has provided strong evidence
for the essential role of BCAAs in tumor progression
and has clearly established BCAT1 as an important
prognostic cancer marker. Moreover, BCAA supple-
mentation and BCAT1 status were tested in clinical
trials for hepatocellular carcinoma and colorectal
cancer. However, the recent research also revealed
a complex addiction of cancer cells to BCAA metab-
olites, which appear dependent on both the tissue-
of-origin and the cancer genetics. This heteroge-
neous reliance of cancer cells on BCAAs needs to
be addressed with future studies so that therapeutic
approaches aiming to target BCAA metabolism in
cancer can be successfully developed.
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