Review

## The prognostic value of long noncoding RNAs in prostate cancer: a systematic review and meta-analysis

# Weijie Ma<sup>1,\*</sup>, Xi Chen<sup>1,\*</sup>, Lu Ding<sup>2,\*</sup>, Jianhong Ma<sup>3,\*</sup>, Wei Jing<sup>4</sup>, Tian Lan<sup>1</sup>, Haseeb Sattar<sup>5</sup>, Yongchang Wei<sup>6</sup>, Fuling Zhou<sup>3</sup> and Yufeng Yuan<sup>1</sup>

<sup>1</sup>Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China

<sup>2</sup>Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China

 $^{3}$ Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, China

<sup>4</sup>Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China

<sup>5</sup>Department of Clinical Pharmacy, Wuhan Union Hospital, Affiliated Hospital, Tongji Medical College, Huazhong University of Science And Technology, Wuhan, China

<sup>6</sup>Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China

<sup>\*</sup>These authors have contributed equally to this work

Correspondence to: Yufeng Yuan, email: yuanyf1971@whu.edu.cn

**Keywords:** long non-coding RNA, prognosis, survival, clinicopathology, prostate cancer

**Received:** March 06, 2017 **Accepted:** April 25, 2017 **Published:** May 07, 2017

Copyright: Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

#### ABSTRACT

The abnormally expressed LncRNAs played irreplaceable roles in the prognosis of prostate cancer (PCa). Therefore, we conducted this systematic review and metaanalysis to summarize the association between the expression of LncRNAs, prognosis and clinicopathology of PCa. 18 eligible studies were recruited into our analysis, including 18 on prognosis and 9 on clinicopathological features. Results indicated that aberrant expression of LncRNAs was significantly associated with biochemical recurrence-free survival (BCR-FS) (HR = 1.55, 95%CI: 1.01–2.37, P < 0.05), recurrence free survival (RSF) (HR = 3.07, 95%CI: 1.07-8.86, P < 0.05) and progression free survival (PFS) (HR = 2.34, 95%CI: 1.94–2.83, P < 0.001) in PCa patients. LncRNAs expression level was correlated with several vital clinical features, like tumor size (HR = 0.52, 95%CI: 0.28-0.95, P = 0.03), distance metastasis (HR = 4.55, 95%CI: 2.26-9.15, P < 0.0001) and histological grade (HR = 6.23, 95% CI: 3.29-11.82, P < 0.00001). Besides, down-regulation of PCAT14 was associated with the prognosis of PCa [over survival (HR = 0.77, 95%CI: 0.63-0.95, P = 0.01), BCR-FS (HR = 0.61, 95%CI: 0.48-0.79, P = 0.0001), prostate cancer-specific survival (HR = 0.64, 95%CI: 0.48–0.85, P = 0.002) and metastasis-free survival (HR = 0.61, 95%CI: 0.50-0.74, P < 0.00001)]. And, the increased SChLAP1 expression could imply the worse BCR-FS (HR = 2.54, 95%CI: 1.82-3.56, P < 0.00001) and correlate with Gleason score (< 7 vs  $\ge$  7) (OR = 4.11, 95% CI: 1.94-8.70, P = 0.0002). Conclusively, our present work demonstrated that LncRNAs transcription level might be potential prognostic markers in PCa.

#### **INTRODUCTION**

Prostate cancer (PCa) is the most commonly diagnosed cancer and the third leading cause of cancerrelated death in men [1]. Histopathological evaluation of biopsy has been set as the golden standard for the diagnosis of PCa, while the drawbacks like infection and bleeding restrained the clinical use [2]. The surveillance for biochemical recurrence (BCR) is one of the vital parameter throughout the treatment of PCa. The low specificity of the widespread diagnostic marker, prostatespecific antigen (PSA), makes it difficult to distinguish indolent or aggressive cancer stages [3]. Without other valuable predictive parameters for early prostate cancer screening, most diagnoses are made in the terminal stage due to the lack of specific and sensitive methods for early prostate cancer screening [4]. Since the high degree of intra-cancer and inter-patient heterogeneity at the molecular level [5], it is an effective to profile the expression of multiple genes to establish the molecular processes occurring in the prostate cancer.

Long non-coding RNAs (LncRNAs) are a class of RNA with transcripts longer than 200 nucleotides and lack functional open reading frames [6]. They can be polyadenylated and may operate in nuclear and/ or cytoplasmic fractions. The lack of opening reading frames can either be intergenic, that is located between protein-coding genes, or intragenic, located within an intron of a host protein-coding gene or on the antisense strand [7]. Owing to their biological properties and clinical value in diagnosis, prognosis, and treatment, LncRNAs have been widely investigated. LncRNAs involve in various cell biological processes, like cellular differentiation, proliferation, DNA damage responses and chromosomal imprinting. The abnormal expression of LncRNAs has been reported in various human diseases, including tumors [8]. The lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) played a vital role in metastasis formation in lung cancer and was a potential therapeutic target [9]. LncRNA-activated by TGF-β (lncRNA-ATB) was significantly up-regulated in hepatocellular carcinoma (HCC) metastases and associated with poor prognosis [10].

In prostate cancer, a well-known example of LncRNAs is the prostate cancer antigen 3 (PCA3; also known as DD3), which overexpresses and promotes invasion and migration in prostate cancer cells by miR-1261 sponging [11]. The level of PCA3 in urine has been used as a diagnostic biomarker for PCa with a sensitivity of 58-82% and a specificity of 56-76% [12-14]. The urinary PCA3 is now widely used for prostate cancer detection and has been approved by the US Food and Drug Administration (FDA) [15]. The expression pattern of lncRNAs also along with coding genes could serve as a prognostic marker. Sun et.al found that MALAT1 was dramatically elevated in human prostate cancer tissues, and its expression was highly associated with Gleason score, tumor stage, PSA level and castration resistance [16]. Besides, decreased expression level of prostate cancer associated transcript-14 (PCAT-14) was prognostic for the metastatic disease and poor survival for patients with prostate cancer [17].

The abnormal expression of lncRNAs could be of prognostic significance. The prognostic value of LncRNAs in PCa has been explored by many studies. The most commonly used methods for detecing prognostic significance include microarray, qRT-PCR, *in situ* hybridization assay (ISH) and available database. However, the inaccuracy and insufficiency caused by the small size and single experiment program might interfere with revealing the real profiles of LncRNAs in PCa. We assumed that he true prognostic value of lncRNAs in PCa could be unravelled through multiple sensitive and reliable detection methods in large scale, multicenter studies. Therefore, we performed the meta-analysis to estimate systematically to explore the potential value of LncRNAs in the prognosis and clinical outcomes in PCa among a relatively larger amount of PCa patients.

## RESULTS

### Study inclusion and characteristics

Initially, we found 502 publications through the internet search from PubMed and the Web of Science. 289 duplicated articles were excluded. After reading the study titles and abstracts, 118 records were removed. Subsequently, the 95 remaining full-text articles were assessed. As a result, a total of 18 articles met the inclusion criteria and were included in the final analysis (Figure 1). Quantitative real-time polymerase chain reaction (qRT-PCR) [18-26]or in situ hybridization assay (ISH) [27]was performed to measure the LncRNAs expression. The rest of the studies took advantage of information from several databases which include sequencing data from the cohorts of patients PCa [17, 20, 28-32]. Among these 18 articles, 7 on overall survival (OS) [17, 18, 20, 25, 26, 30, 32], 11 on biochemical recurrence free survival (BCR-FS) [19, 21, 22, 24, 27, 29, 30, 32-34], 2 on recurrence free survival (RFS) [23, 25], 4 on disease free survival (DFS) [18, 28, 29, 33], 3 on metastasis free survival (MFS) [17, 30, 34], 3 on prostate cancer specific survival (PSS) [17, 32], 2 on progression free survival (PFS) [20, 32] (Table 1). Meanwhile, of these 18 studies, 9 articles explored the correlation between LncRNAs and clinicopathological features [17-22, 27, 29, 31] (Table 2).

## **Prognostic value for PCa**

We conducted the correlation between LncRNAs expression level and survivals among 5242 patients diagnosed with PCa from 18 included studies. 17 different aberrant LncRNAs were correlated with the prognosis of PCa patients. From the frost plots, the up-regulation of RP11-347I19.8/LINC01123 [29], UCA1 [33], HCG11 [19], CCAT2 [20], ATB [21], LOC400891 [22], MX1-1 [23], SChLAP1 [27, 31, 32], NEAT1 [34] and TRPM2-AS [25] were associated with poor prognosis. While, the down-regulation of RP11-108P20.4/RP11-757G1.6 [29], lincRNA-p21 [18], PCAT14 [17, 30], DRAIC [28] and PCAT29 [24] implied the poor prognosis (Figure 2).

Subsequently, PCAT14 and SChLAP1 which were performed no less than two studies were included into meta-analysis on the relationship between the expression

| Author                  | Year | LncRNAs                                                    | Country | Method                                  | Outcome                                                                                                                      | Case number<br>(High/Low)                                                                                    | Cut-off                                                                | Follow up<br>time                                |
|-------------------------|------|------------------------------------------------------------|---------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Huang.et al. [29]       | 2017 | RP11-108P20.4/<br>RP11-757G1.6/RP11-<br>347I19.8/LINC01123 | China   | TCGA dataset                            | BCR-FS & DFS                                                                                                                 | 291(146/145)                                                                                                 | median                                                                 | 5000 days                                        |
| Ghiam.et al. [33]       | 2017 | UCA1                                                       | Canada  | CPC-GENE<br>data &<br>MSKCC<br>database | CPC-GENE:<br>BCR-FS;<br>MSKCC:DFS                                                                                            | CPC-GENE:<br>209(167/42);<br>MSKCC:<br>130(18/112)                                                           | lower 20% and<br>top 80%                                               | 10 years                                         |
| XH Wang.et al. [18]     | 2016 | lincRNA-p21                                                | China   | qRT-PCR                                 | Cohort 1 OS &<br>DFS;<br>Cohort 2 OS &<br>DFS                                                                                | Cohort 1:<br>81(34/47); Cohort<br>2:66(32/34)                                                                | mean                                                                   | 60 months                                        |
| White.et al. [17]       | 2016 | PCAT14                                                     | USA     | Microarray                              | Microarray         MFS & PSS<br>& OS         MC I:<br>545(273/272); MC<br>II: 235(118/117);<br>TJU: 130(65/65)         media |                                                                                                              | median                                                                 | 144 months                                       |
| Zhang.et al. [19]       | 2016 | HCG11                                                      | China   | qRT-PCR                                 | BCR-FS                                                                                                                       | 138(69/69)                                                                                                   | NA                                                                     | 60 months                                        |
| Shukla.et al. [30]      | 2016 | PCAT14                                                     | USA     | RNA-seq<br>dataset                      | JHU: PSS/MFS/<br>BRC-FS/OS;<br>Taylor: BRFS;<br>TCGA: MFS                                                                    | JHU:<br>355(178/177); <b>Taylor:</b><br>140(NA); <b>TCGA:</b><br>377(NA)                                     | median                                                                 | 144 months<br>& 150<br>months                    |
| Zheng.et al. [20]       | 2016 | CCAT2                                                      | China   | qRT-PCR                                 | OS & PFS                                                                                                                     | 96(59/37)                                                                                                    | median                                                                 | 60 months                                        |
| Xu.et al. [21]          | 2016 | ATB                                                        | China   | qRT-PCR                                 | BCR-FS                                                                                                                       | 57(25/32)                                                                                                    | expression < 1.30                                                      | 100 months                                       |
| J Wang.et al. [22]      | 2016 | LOC400891                                                  | China   | qRT-PCR                                 | BCR-FS                                                                                                                       | 81(50/31)                                                                                                    | two-fold cut-<br>off                                                   | 60 months                                        |
| Jiang.et al. [23]       | 2016 | MX1-1                                                      | China   | qRT-PCR                                 | RFS                                                                                                                          | 60(30/30)                                                                                                    | NA                                                                     | 60 months                                        |
| Mehra.et al. [27]       | 2016 | SChLAP1                                                    | USA     | ISH assay                               | BRC-FS                                                                                                                       | 937(89/848)                                                                                                  | score threshold<br>= 100                                               | mean<br>follow-up<br>time 12.8<br>years          |
| Sakurai.et al. [28]     | 2015 | DRAIC                                                      | USA     | RNA-seq data<br>from MSKCC              | DFS                                                                                                                          | 80(69/11)                                                                                                    | Z-score = $0.4z$                                                       | 120 months                                       |
| Na.et al. [26]          | 2015 | UCA1                                                       | China   | qRT-PCR                                 | OS                                                                                                                           | 40(20/20)                                                                                                    | median                                                                 | 5 years                                          |
| Orfanelli.et al. [25]   | 2015 | TRPM2-AS                                                   | Italy   | qRT–PCR                                 | <b>Sboner:</b> OS;<br><b>Glinksy:</b> RFS                                                                                    | <b>Sboner data set:</b><br>199(78/121);<br><b>Glinksy data</b><br><b>set:</b> 67(28/39)                      | NA                                                                     | Sboner: 250<br>months;<br>Glinksy:<br>100 months |
| Mehra.et al. [31]       | 2014 | SChLAP1                                                    | USA     | ISH assay                               | RFS                                                                                                                          | 160(33/127)                                                                                                  | ISH product<br>score = 100                                             | 4000 days                                        |
| Chakravarty.et al. [34] | 2014 | NEAT1                                                      | USA     | Affymetrix<br>HuEx<br>microarrays       | BCR-FS & MFS                                                                                                                 | BCR:<br>216(111/105);<br>MFS: 216(85/131)                                                                    | NA                                                                     | 70 months                                        |
| Malik.et al. [24]       | 2014 | PCAT29                                                     | USA     | qRT-PCR                                 | BCR-FS                                                                                                                       | 51(17/34)                                                                                                    | high (top 33%<br>of patients) or<br>low (bottom<br>66% of<br>patients) | >3000 days                                       |
| Prensner.et al. [32]    | 2013 | SChLAP1                                                    | USA     | Affymetrix<br>exon arrays &<br>qRT-PCR  | Setlur: OS;<br>Glinksy: BCR-<br>FS; MCTP:<br>BCR-FS; Mayo:<br>BCR-FS & PFS<br>& PSS                                          | Setlur et al. study:<br>357(72/285);<br>Glinksy et al.<br>study: 79(16/63);<br>MCTP : 65(12/53);<br>Mayo: NA | threshold for<br>'high' versus<br>'low' scores =<br>80%                | 10 years                                         |

## Table 1: Characteristics of studies included in this meta-analysis

BCR-FS = biochemical recurrence-free survival; DFS = disease-free survival; OS = overall survival; MFS = metastasis free survival; PFS = progression free survival; PSS = prostate cancer specific survival; RFS = recurrence free survival; TCGA = The Cancer Genome Atlas dataset; CPC-GENE = Canadian Prostate Cancer Genome Network database; MSKCC = Memorial Sloan Kettering Prostate Cancer database; ISH = in situ hybridization assay; JHU = Johns Hopkins University cohort; Taylor = Taylor.et al cohort; MCI and II = Mayo Clinic I and II cohorts; TJU = Thomas Jefferson University cohort; Sboner = Sboner data set; Glinksy = Glinksy data set; MCTP = University of Michigan cohort; Mayo = Mayo Clinic data.

level and the prognosis of patients with PCa, respectively. We found that all the heterogeneities were not significant ( $I^2 = 0.0\%$ , P > 0.05) (Figure 3). Thus, we applied the fixed effects model to conduct the analysis. We found that the down-regulated PCAT14 level was associated with a poor OS (HR = 0.77, 95% CI = 0.63 to 0.95, P = 0.01), BCR-FS (HR = 0.61, 95% CI = 0.48 to 0.79, P = 0.0001), PSS (HR = 0.64, 95% CI = 0.48 to 0.85, P = 0.002) and MFS (HR = 0.61, 95% CI = 0.50 to 0.74, P < 0.00001) (Figure 3A). While, the increased SChLAP1 expression could implied the worse BCR-FS (HR = 2.54, 95% CI = 1.82 to 3.56, P < 0.00001) (Figure 3B).

## The correlation between LncRNAs and clinicopathological features

A total of 11 LncRNAs described in 9 included articles showed the association with clinicopathological features of prostate cancer. RP11-108P20.4 /RP11-757G1.6 [29], lincRNA-p21 [18], PCAT14 [17] were reported decreased expression in PCa, while RP11-347I19.8/LINC01123 [29], HCG11 [19], CCAT2 [20], ATB [21], LOC400891 [22], SChLAP1 [27, 31] were overexpressed in PCa. Through the meta-analysis, we found that the aberrant expression of LncRNAs were significantly correlated with distance metastasis (OR = 4.55, 95% CI = 2.26 to 9.15, P < 0.0001, fixed effect), tumor diameter (OR = 0.52, 95% CI = 0.28 to 0.95, P = 0.03, fixed effect), histological grade (OR = 6.23, 95% CI = 3.29 to 11.82, P < 0.00001, fixed effect). Unfortunately, there were no statistical significance in the correlation between LncRNAs expression level and the clinical data like gender, lymph node metastasis, preoperative PSA and so on (see details in Table 2). Two studies revealed that up-regulated SChLAP1 was significantly related to the Gleason score [27, 31]. Statistical significance emerged when we performed metaanalysis among these two articles (Gleason score < 7 vs  $\geq$  7, OR = 4.11, 95% CI = 1.94 to 8.70, P = 0.0002, fixed model) (Figure 4).

### Publication bias and sensitivity analysis

We applied Begg's test to estimate the publication bias among these studies. All the Begg's tests in our analysis showed no publication bias, due to the value of P > 0.05,





| Characteristics                                           | Studios | Case   | Pooled OR          | D         | Hete | rogeneity | Madal  | Defenences                  |  |
|-----------------------------------------------------------|---------|--------|--------------------|-----------|------|-----------|--------|-----------------------------|--|
|                                                           | Studies | number | (95% CI)           | r         | I2   | Р         | Widdei | Kelerences                  |  |
| Age ( $\leq 65 \text{ vs} > 65 \text{ years old}$ )       | 3       | 468    | 1.16 [0.45, 2.96]  | 0.76      | 19%  | 0.29      | Random | [20, 22, 29]                |  |
| Lymph node metastasis                                     | 8       | 1971   | 0.83 [0.48, 1.43]  | 0.50      | 64%  | 0.005     | Random | [17-22, 29, 31]             |  |
| Margin status                                             | 5       | 1478   | 1.15 [0.66, 2.02]  | 0.62      | 71%  | 0.007     | Random | [17, 18, 21, 29, 31]        |  |
| Preoperative PSA<br>(≤ 10 vs > 10 ng/ml)                  | 3       | 1011   | 1.12 [0.23, 5.37]  | 0.89      | 89%  | 0.0001    | Random | [17, 18, 21]                |  |
| SVI                                                       | 2       | 1070   | 2.66 [0.21, 33.15] | 0.46      | 89%  | 0.003     | Random | [17, 31]                    |  |
| ECE/EPE                                                   | 2       | 1067   | 1.30 [0.49, 3.45]  | 0.60      | 81%  | 0.02      | Random | [17, 31]                    |  |
| Biochemical recurrence                                    | 3       | 491    | 2.06 [0.56, 7.57]  | 0.27      | 81%  | 0.005     | Random | [19, 21, 31]                |  |
| Distance Metastasis*                                      | 2       | 177    | 4.55 [2.26, 9.15]  | < 0.0001  | 0%   | 0.86      | Fixed  | [20, 22]                    |  |
| Capsule invasion                                          | 2       | 177    | 1.36 [0.74, 2.50]  | 0.32      | 0%   | 0.47      | Fixed  | [20, 22]                    |  |
| Multiple lesions                                          | 3       | 334    | 0.95 [0.57, 1.58]  | 0.85      | 0%   | 0.82      | Fixed  | [20, 22, 31]                |  |
| Tumor diameter $(\leq 2.5 \text{ vs} > 2.5 \text{ cm})^*$ | 2       | 177    | 0.52 [0.28, 0.95]  | 0.03      | 0%   | 0.95      | Fixed  | [20, 22]                    |  |
| Gleason Score (< 7 vs $\geq$ 7)                           | 8       | 2678   | 1.12 [0.54, 2.32]  | 0.75      | 82%  | < 0.00001 | Random | [17, 18, 20-22, 27, 29, 31] |  |
| Tumor stage (T2 vs T3-T4)                                 | 5       | 1536   | 0.88 [0.34, 2.29]  | 0.79      | 88%  | < 0.00001 | Random | [18, 20, 22, 27, 29]        |  |
| Pathological stage<br>(I + II vs III + IV)                | 3       | 1248   | 2.17 [0.88, 5.37]  | 0.09      | 85%  | 0.001     | Random | [19, 21, 27]                |  |
| Histological grade<br>(II vs III + IV)*                   | 2       | 177    | 6.23 [3.29, 11.82] | < 0.00001 | 0%   | 0.81      | Fixed  | [20, 22]                    |  |

Table 2: Association between aberrant levels of lncRNAs and characteristics of patients with PCa

SVI = seminal vesical involvement; ECE = extra capsular extension; EPE = extra prostatic extension. "\*" means P < 0.05.

respectively. The sensitivity analysis which was performed by Stata11.0 software evaluated the stability of our results. We found that no individual study significantly interfered with the overall results which demonstrated the credibility of the present meta-analysis (Supplementary Figures 1–4).

## DISCUSSION

Long non-coding RNA contained more than 200 nucleotides constitutes a great proportion of non-coding transcripts [35]. Many LncRNAs exhibited cell-type specific expression and located in specific subcellular compartments [36, 37]. LncRNAs could function as a role of molecular scaffolds for targeting gene regulatory proteins/complexes to specific genomic loci [7]. So, they could influence the expression of target proteins of neighboring protein-coding genes, regulate the distal transcriptional elements and modulate the activity of protein-binding partners [38–40]. Furthermore, LncRNAs could act as a suppressor or activator of gene expression. The increase or decrease of a number of LncRNAs contribute to oncogenesis by influencing many cellular processes [41].

The aberrant expression of LncRNAs is related to the development and progression of prostate cancer through affecting tumor cell proliferation, metastasis, selfrenewal, survival, and apoptosis by either transcriptional or post-transcriptional regulation [42]. Several PCa-specific LncRNAs have been reported, and some are associated with distinct subtypes of the disease. In prostate cancer, the up-regulated prostate cancer antigen 3 (PCA3; also known as DD3), is already available as a diagnostic test in urine [43, 44]. It has indicated that the overexpressed PCA3 could modulate prostate cancer cells survival by altering androgen receptor (AR) signaling [45]. Besides, the lately study elaborated that PCGEM1 and PRNCR1, bound successively to the androgen receptor and strongly enhanced both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells [46]. Apart from Gleason score, the increased expression of SChLAP1 was validated as a significantly prognostic biomarker for metastatic prostate cancer increased with prostate cancer progression and predicted the poor clinical outcome in patients with localized prostate cancer following radical prostatectomy and patients with lethal prostate cancer [27, 31, 47]. The upregulation of SChLAP1 in PCa patients could lead to poor outcomes, including metastasis and prostate cancer-specific mortality, by antagonizing the tumor-suppressive functions of the SWI/SNF complex [32]. While, a novel prostate cancer and lineage-specific LncRNA PCAT14, which is transcriptionally regulated by AR, is overexpressed in low grade disease and lack of PCAT14 predicts for disease aggressiveness and recurrence in PCa [30].

On the purpose of detecting the prognostic value of LncRNAs in PCa, we performed this comprehensive systematic review and meta-analysis of the current literature which is the first systematical analysis of the relationship between LncRNAs expression level with

| 4 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | log[Hazard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IV, Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Na.et al 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.08 [0.89, 4.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Orfanelli.et al (Sboner) 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.78 [1.64, 4.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prensner.et al (Setlur) 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.96 [1.25, 3.08]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shukla.et al (JHU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.62 [0.38, 1.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| White.et al (MC II) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.2107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.81 [0.65, 1.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| XH Wang.et al (cohort 1) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.9163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40 [0.20, 0.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| XH Wang.et al (cohort 2) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.47 [0.23, 0.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zheng.et al 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.29 [1.49, 3.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 42 [0 70 4 92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10tal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.13 [0.70, 1.83]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for overall effect: Z = 0.49 /P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 57.54, di = 7 (P < 0<br>2 = 0.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ); 1~ = 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 165(10) Overall effect. 2 = 0.43 (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Low Expression High Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B BCR-FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | log[Hazard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IV. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I IV. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.1.1 New Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chakravarty.et al 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37 [0.87, 2.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ghiam.et al (CPC-GENE) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.73 [0.98, 7.63]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Huang.et al 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 7.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.13 [1.45, 6.78]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| J wang.et al 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.12 [1.23, 3.64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Malik.et al 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.7985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.45 [0.28, 0.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mehre et al 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.99 [1.06, 3.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prepage et al (Oliging) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.31/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20 [1.18, 4.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prenaner.et al (Glinksy) 2013<br>Prenaner et al (Marua) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.57 [1.49, 8.54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prenener et al (MCTP) 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 7.9%<br>, ววณ/                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 25 [0 52 72 42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shukla at al (IHU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3%<br>0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20 [0.00, 70.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shukla et al (Taylor) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.4403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.4%<br>7.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04 [0.49, 0.84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Xuet al 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75 [0.20, 0.97]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zhang.et al 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,19 [0.49. 2 89]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. IOEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.55 [1.01, 2.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ◆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heterogeneity: Tau <sup>2</sup> = 0.48; Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 77.23, df = 13 (P <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ); I² = 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for overall effect: Z = 2.01 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.55 [1.01, 2.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ◆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heterogeneity: Tau <sup>2</sup> = 0.48; Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 77.23, df = 13 (P <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | );   <sup>2</sup> = 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test for overall effect: Z = 2.01 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>/</i> ··                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test for subaroup differences: Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 10 10<br>Low Expression High Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test for subaroup differences: Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 10 10<br>Low Expression High Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test for subaroup differences: Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01 0.1 1 10 10<br>Low Expression High Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test for subaroup differences: Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t applicable<br>log[Hazard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subarouo differences: Not C RFS <u>Study or Subgroup</u> Jiang.et al 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t applicable<br>log[Hazard Ratio]<br>0.6729 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>SE</u><br>0.4527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weight<br>59.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio<br><u>IV. Random, 95% CI</u><br>1.96 [0.81, 4.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subaroup differences: Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE<br>0.4527<br>0.6505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Weight</u><br>59.0%<br>41.0%                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio<br>IV. Random, 95% CI<br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subaroup differences: Not<br>C RFS<br><u>Study or Subgroup</u><br>Jiang.et al 2016<br>Orfanelli.et al (Ginksy) 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0.04)<br>t applicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>SE</u><br>0.4527<br>0.6505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>Weight</u><br>59.0%<br>41.0%                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio<br>IV. Random, 95% CI<br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subaroup differences: Not<br>C RFS<br>Study or Subgroup<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0.04)<br>t applicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE<br>0.4527<br>0.6505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight<br>59.0%<br>41.0%<br>100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hazard Ratio<br>IV. Random. 95% Cl<br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subaroup differences: Not<br>C RFS<br>Study or Subgroup<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect <sup>2</sup> Z = 2.08 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0.04)<br>t apolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>SE</b><br>0.4527<br>0.6505<br>.17); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Weight</u><br>59.0%<br>41.0%<br><b>100.0%</b><br>= 48%                                                                                                                                                                                                                                                                                                                                                                                                                     | Hazard Ratio<br>IV. Random. <u>95% CI</u><br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for subaroub differences: Not<br>C RFS<br>Study or Subgroup<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0.04)<br>t apolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>SE</u><br>0.4527<br>0.6505<br>.17); I <sup>2 -</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Weight</u><br>59.0%<br>41.0%<br><b>100.0%</b><br>= 48%                                                                                                                                                                                                                                                                                                                                                                                                                     | Hazard Ratio<br>IV. Random, <u>95% CI</u><br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.04)<br>t aoolicable<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SE<br>0.4527<br>0.6505<br>.17); I <sup>2</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hazard Ratio<br>IV. Random, <u>95% CI</u><br>1.96 [0.81, 4.76]<br>5.88 [164, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>) DFS<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0.04)<br>t aoolicable<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>⊃ = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>SE</u><br>0.4527<br>0.6505<br>.17); I <sup>2 ;</sup><br><u>SE</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hazard Ratio<br>IV, Random, 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV, Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>) DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.04)<br>t aoolicable<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br><u>log[Hazard Ratio]</u><br>1.0578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>SE</u><br>0.4527<br>0.6505<br>.17); l <sup>2</sup><br><u>SE</u><br>0.392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Weight</u><br>59.0%<br>41.0%<br><b>100.0%</b><br>= 48%<br><u>Weight</u><br>19.8%                                                                                                                                                                                                                                                                                                                                                                                           | Hazard Ratio<br><u>IV, Random, 95% CI</u><br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br><u>IV, Random, 95% C</u><br>2.88 [1.34, 6.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>I. IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test for subaroup differences: Not<br>C RFS<br>Study or Subgroup<br>Jiang et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam, et al (MSKCC) 2017<br>Huang, et al 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>SE</u><br>0.4527<br>0.6505<br>1.17); l <sup>2</sup> :<br><u>SE</u><br>0.392<br>0.3448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%                                                                                                                                                                                                                                                                                                                                                                                                       | Hazard Ratio<br>IV. Random. 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random. 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% CI<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>I V. Random, 95% CI<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br><u>Study or Subgroup</u><br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>SE</u><br>0.4527<br>0.6505<br>.17); l <sup>2</sup><br><u>SE</u><br>0.392<br>0.3448<br>0.5041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>17.8%                                                                                                                                                                                                                                                                                                                                                                                              | Hazard Ratio<br>IV. Random, 95% CI<br>1.96 [0.81, 4.76]<br>5.88 [164, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test for subaroup differences: Not<br>CRFS<br>Study or Subgroup<br>Jiang et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DDFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2015<br>XH Wang.et al (2015<br>XH Wang.et al (cohort 1) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>⊃ = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.765<br>-0.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE<br>0.4527<br>0.6505<br>.17); l <sup>2</sup><br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>17.8%<br>21.2%                                                                                                                                                                                                                                                                                                                                                                                     | Hazard Ratio<br><u>IV. Random. 95% CI</u><br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]<br><b>3.07 [1.07, 8.86]</b><br>Hazard Ratio<br><u>IV. Random. 95% C</u><br>2.88 [1.34, 621]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.47 [0.26, 0.85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>I. IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test for suboroup differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al (2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE<br>0.4527<br>0.6505<br>.17); l <sup>2</sup><br>.17); l <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight           59.0%           41.0%           100.0%           = 48%           *           Weight           19.8%           20.6%           12.2%           20.6%                                                                                                                                                                                                                                                                                                          | Hazard Ratio<br>IV, Random, 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV, Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test for suboroup differences: Not<br>C RFS<br>Jiang, et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et | = 0.04)<br>t aoolicable<br>0.6729 (<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>SE</u><br>0.4527<br>0.6505<br>.17); l <sup>2</sup><br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>17.8%<br>21.2%<br>20.6%                                                                                                                                                                                                                                                                                                                                                                            | Hazard Ratio<br>IV, Random, 95% CI<br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV, Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test for subaroup differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% Cl)<br>Heterogeneity: Tau² = 0.29; Chi²<br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakuraie tal 2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016<br>Total (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>= 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 28.26 df = 4 (D = 2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE<br>0.4527<br>0.6505<br>.17); I <sup>2</sup> :<br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.30435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>20.6%<br>20.6%<br>17.8%<br>21.2%<br>20.6%                                                                                                                                                                                                                                                                                                                                                          | Hazard Ratio<br>IV. Random. 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random. 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 (0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% CI<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>Hazard Ratio<br>IV. Random. 95% CI<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test for suboroud differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE<br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight           59.0%           41.0%           100.0%           = 48%           Weight           19.8%           20.6%           17.8%           20.6%           100.0%            2           100.0%            2                                                                                                                                                                                                                                                          | Hazard Ratio<br>IV, Random, <u>95% CI</u><br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV, Random, <u>95% C</u><br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test for suboroud differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang et al 2017<br>Sakurai.et al 2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SE<br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>SE<br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3435<br>0.3023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>17.8%<br>21.2%<br>20.6%<br>100.0%<br>  <sup>2</sup> = 85%                                                                                                                                                                                                                                                                                                                                          | Hazard Ratio<br>IV. Random, <u>95% CI</u><br>1.96 [0.81, 4.76]<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, <u>95% C</u><br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakural: et al 2017<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.04)<br>t aoolicable<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>1.0578 (0.7871<br>- 1.0498 -0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE<br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>SE<br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3435<br>0.3023<br>0.3435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>17.8%<br>21.2%<br>20.6%<br>100.0%<br>1 <sup>2</sup> = 85%                                                                                                                                                                                                                                                                                                                                          | Hazard Ratio<br>IV. Random, 95% CI<br>1.96 [0.81, 4.76]<br>5.88 [164, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurait et al 2015<br>XH Wang.et al (Cohort 1) 2016<br>XH Wang.et al (Cohort 1) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.04)<br>t aoolicable<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>= 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>- 1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>P = 0.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>SE</u><br>0.4527<br>.17); I <sup>2</sup> :<br><u>SE</u><br>0.3248<br>0.30438<br>0.30435<br>0.30435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>Weight<br>19.8%<br>20.6%<br>21.2%<br>20.6%<br>17.8%<br>21.2%<br>20.6%<br>100.0%<br>  <sup>2</sup> = 85%                                                                                                                                                                                                                                                                                                                        | Hazard Ratio<br>IV, Random, 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV, Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 (0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% CI<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>Hazard Ratio<br>IV. Random. 95% CI<br>Hazard Ratio<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test for subaroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al (2017<br>Sakurai.et al 2017<br>Sakurai.et al 2015<br>XH Wang.et al (cohort 1) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < C<br>= 0.79)<br>g[Hazard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>SE</u><br>0.4527<br>0.6505<br>.17); I <sup>2</sup> :<br><u>SE</u><br>0.3425<br>0.3023<br>0.3435<br>0.0001);<br><u>SE</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weight           59.0%           41.0%           100.0%           = 48%           Weight           19.8%           20.6%           17.8%           20.6%           100.0%                       285%           Neight                                                                                                                                                                                                                                                         | Hazard Ratio<br>IV. Random, 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio<br>IV. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>I. Random, 95% CI<br>Hazard Ratio<br>I. N. Random, 95% CI<br>Hazard Ratio<br>I. N. Random, 95% CI<br>Hazard Ratio<br>I. Low Expression High Expression<br>Hazard Ratio<br>I. Low Expression High Expression 10<br>Hazard Ratio<br>I. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroup differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>) DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang et al 2017<br>Sakurai.et al 2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P<br>Chakravarty.et al 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.04)<br>t acolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>SE</u><br>0.4527<br>(17); I <sup>2</sup> :<br><u>SE</u><br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3435<br>0.3001);<br><u>SE 1</u><br>3013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight           59.0%         41.0%           100.0%         =           48%                                                                                                                                                                                                                                                                                                                                                                                                 | Hazard Ratio<br>IV. Random, <u>95% CI</u><br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, <u>95% C</u><br>2.88 [1.34, 6.21]<br>0.35 [0.13, 0.94]<br>0.47 [0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio<br>IV. Random, <u>95% CI</u><br>1.64 [0.91, 2.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test for suboroup differences: Not         CRFS         Jiang.et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau² = 0.29; Chi²         Test for overall effect: Z = 2.08 (F         DDFS         Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang.et al 2017         Sakurai.et al 2015         XH Wang.et al 2017         Sakurai.et al 2015         XH Wang.et al 2016         Total (95% CI)         Heterogeneity: Tau² = 0.75; Chi² = 0.27 (P         MFS         Study or Subgroup       Iop         Chakravarty.et al 2014         Shukla.et al (JHU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>= 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6539 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE<br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>SE<br>0.342<br>0.3023<br>0.3043<br>0.3023<br>0.3043<br>0.3023<br>0.3023<br>0.3013<br>1936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight           59.0%           41.0%           100.0%           = 48%           Weight           19.8%           20.6%           7.8%           20.6%           100.0%           21.2%           21.2%           20.6%           100.0%           100.0%           102.2%           27.1%           20.2%           27.1%                                                                                                                                                   | Hazard Ratio<br>IV. Random. 95% CI<br>1.96 (0.81, 4.76)<br>5.88 (1.64, 21.04)<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random. 95% C<br>2.88 (1.64, 21.04)<br>0.47 (0.26, 0.85)<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio<br>IV. Random. 95% CI<br>1.64 (0.91, 2.96)<br>0.52 [0.36, 0.76]<br>0.52 [0.36]<br>0.52 [0.36, 0.76]<br>0.52 [0.36]<br>0.52 [0.56]<br>0.52 [0.56]<br>0.52 [0.56]<br>0.52 [0.56]<br>0.52 [0.56]<br>0.52 | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% CI<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% CI<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for subaroup differences: Not         2       RFS         Study or Subgroup         Jiang et al 2016         Orfanellie.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F <b>DFS</b> Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang.et al 2017         Sakurai et al 2017         Sakurai et al (cohort 1) 2016         XH Wang.et al (cohort 2) 2016         Test for overall effect: Z = 0.75; Chi <sup>2</sup> =         MEFS         Study or Subgroup       Jon         Charkavariy, et al 2014         Shukla et al (CHV) 2016         Shukla, et al (CHV) 2016         Shukla, et al (CHV) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < C<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0<br>-0.6539 0<br>-0.6339 0<br>-0.6349 0<br>-0 | SE 0.392<br>0.3448<br>0.302<br>0.3448<br>0.302<br>0.3448<br>0.3023<br>0.3013<br>1936<br>2869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weight           59.0%         41.0%           100.0%         48%           20.6%         20.6%           108.0%         20.6%           108.0%         20.6%           100.0%         21.2%           20.6%         20.6%           100.0%         21.2%           20.6%         20.6%           100.0%         21.2%           20.6%         21.2%           100.0%         21.2%           20.2%         20.2%           20.2%         27.1%           21.1%         20.2% | Hazard Ratio IV, Random, 95%, CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV, Random, 95% CI 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV, Random, 95% CI 1.64 (0.91, 2.96] 0.52 [0.36, 0.76] 0.52 [0.35 [0.30, 0.33] 0.90 [0.7 cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% CI<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% CI<br>Hazard Ratio<br>IV. Random, 95% CI<br>Hazard Ratio<br>IV. Random, 95% CI<br>Hazard Ratio<br>IV. Random, 95% CI<br>Hazard Ratio<br>IV. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for subcroup differences: Not         2       RFS         Study or Subgroup       Jiang et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F         D DFS         Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang et al 2017         Sakurai.et al (MSKCC) 2017         Huang et al (cohort 1) 2016         XH Wang et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         Test for overall effect: Z = 0.27 (P         MERS         Study or Subgroup       Ion         Chakravarty.et al 2014         Shukla.et al (I-GGA) 2016         White.et al (MC I) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7857<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.3857 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>SE</u><br>0.4527<br>0.6505<br>(.17); I <sup>2</sup> :<br><u>SE</u><br>0.3425<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3020<br>0.3023<br>0.3020<br>0.3020<br>0.3020<br>0.3020<br>0.3020<br>0.3020<br>0.3020<br>0.3020<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>20.6%<br>20.6%<br>20.6%<br>20.6%<br>100.0%<br>P = 85%<br>Neight<br>20.2%<br>27.1%<br>20.2%<br>27.1%<br>31.5%                                                                                                                                                                                                                                                                                                                   | Hazard Ratio IV. Random, 95% CI 1.96 (0.81, 4.76) 5.88 (1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random, 95% C 2.88 (1.34, 6.21) 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV. Random, 95% CI 1.64 (0.91, 2.96] 0.52 [0.36, 0.76] 1.54 [0.91, 0.93] 0.68 [0.53, 0.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl<br>Hazard Ratio<br>IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for suboroup differences: Not           CRFS           Jiang.et al 2016           Orfanelli.et al (Glinksy) 2014           Total (95% CI)           Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F           DDFS           Study or Subgroup           Ghiam.et al (MSKCC) 2017           Huang.et al 2017           Sakurait at 2015           XH Wang.et al (Cohort 1) 2016           XH Wang.et al (cohort 2) 2016           Total (95% CI)           Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> = 0.27 (P           EMFS           Study or Subgroup         [or           Chakravarty.et al 2014           Shukla.et al (JHU) 2016           Shukla.et al (JHU) 2016           Shukla.et al (MCI) 2017           Tatel (05% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>⊃ = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.3857 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE<br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>0.3428<br>0.5041<br>0.3448<br>0.5041<br>0.3023<br>0.3445<br>0.3043<br>103013<br>1936<br>2869<br>1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight           59.0%           41.0%           100.0%           48%           Weight           19.8%           20.6%           21.2%           20.0%           21.2%           20.0%           21.1%           21.1%           21.1%           21.1%           21.5%           000.0%                                                                                                                                                                                       | Hazard Ratio IV. Random. 95% CI I.96 [0.81, 4.76] 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random. 95% CI 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV. Random. 95% CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.53 [0.30, 0.33] 0.68 [0.53, 0.37] 0.67 [0.40 4.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% CI<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% CI<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for suboroub differences: Not         2 RFS         Jiang.et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F <b>DFS</b> Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang.et al 2017         Sakurai.et al 2015         XH Wang.et al (cohort 1) 2016         XH Wang.et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         DEFS         Study or Subgroup         Charavarty.et al 2014         Study or Subgroup         Ortal (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         MEFS         Study or Subgroup       Ior         Charavarty.et al 2014         Shukia.et al (TCGA) 2016         White.et al (MC I) 2017         Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0.04)<br>t acolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.3857 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE<br>0.4527<br>0.6505<br>0.3428<br>0.3428<br>0.3448<br>0.3023<br>0.3445<br>0.3043<br>0.3043<br>0.3043<br>0.3043<br>0.3043<br>0.3013<br>1936<br>2869<br>1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weight           59.0%         41.0%           100.0%         48%           20.6%         20.6%           100.0%         21.2%           20.6%         20.6%           100.0%         21.2%           20.6%         20.6%           100.0%         21.2%           21.2%         21.2%           31.5%         20.6%                                                                                                                                                          | Hazard Ratio<br>IV, Random, 95% CI<br>1.96 (0.81, 4.76)<br>5.88 [1.64, 21.04]<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random, 95% C<br>2.88 [1.34, 6.21]<br>2.20 [1.12, 4.32]<br>0.35 [0.13, 0.94]<br>0.47 (0.26, 0.85]<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio<br>IV. Random, 95% CI<br>1.64 [0.91, 2.96]<br>0.52 [0.36, 0.76]<br>0.53 [0.30, 0.33]<br>0.68 [0.53, 0.87]<br>0.72 [0.48, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test for suboroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al 2017<br>Sakurai.et al 2017<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P<br>C MFS<br>Study or Subgroup low<br>Chakravarty.et al 2014<br>Shukla.et al (TCGA) 2016<br>White.et al (MC I) 2017<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup><br>Test for overall effect Z = 1.62 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < C<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.3857 0.<br>P = 11.21, df = 3 (P = P = 0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>SE</u><br>0.4527<br>0.6505<br>.17); I <sup>2</sup> :<br><u>SE</u><br>0.392<br>0.392<br>0.392<br>0.392<br>0.392<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3013<br>;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight           59.0%           41.0%           100.0%           48%           20.6%           20.6%           20.6%           100.0%           12.2%           20.6%           20.6%           20.6%           20.6%           20.2%           20.2%           21.1%           31.5%           000.0%           I² - 3%                                                                                                                                                     | Hazard Ratio IV, Random, 95%, CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV, Random, 95%, CC 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV, Random, 95%, CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.52 [0.30, 0.93] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>IV. Random, 95%                                                                                                                     |
| Test for suboroub differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al 2017<br>Sakurai.et al 2017<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 1) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P<br>C MFS<br>Study or Subgroup for<br>Chakravarty.et al 2014<br>Shukla.et al (ITGGA) 2016<br>White.et al (MC I) 2017<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup><br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 266.36, df = 4 (P < C<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.3857 0.<br>P = 0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight         59.0%           100.0%         41.0%           100.0%         48%           20.6%         20.6%           100.0%         21.2%           20.6%         20.6%           100.0%         12.2%           20.6%         20.2%           100.0%         12.2%           100.0%         12.3%           00.0%         12.3%                                                                                                                                          | Hazard Ratio IV, Random, 95% CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV, Random, 95% C 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV, Random, 95% CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.52 [0.30, 0.83] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01 0.1 1 0 11<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>III 10 10<br>Hazard Ratio<br>IV. Random, 95% Cl<br>III 10 10<br>III 10 10<br>I |
| Test for suboroup differences: Not<br>C RFS<br>Jiang.et al 2016<br>Orfanelli et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>D DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al 2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 2) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P<br>C MIFS<br>Study or Subgroup low<br>Chakravarty.et al 2014<br>Shukla.et al (TCGA) 2016<br>White.et al (MC I) 2017<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup><br>Test for overall effect: Z = 1.62 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6539 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.3857 0.<br>= 11.21, df = 3 (P = P = 0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight<br>59.0%<br>41.0%<br>100.0%<br>= 48%<br>20.6%<br>20.6%<br>20.6%<br>20.6%<br>100.0%<br>1° = 85%<br>Meight<br>20.2%<br>27.1%<br>31.5%<br>100.0%<br>1° = 73%                                                                                                                                                                                                                                                                                                              | Hazard Ratio IV. Random. 95% CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random. 95% C 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV. Random. 95% CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.52 [0.36, 0.73] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test for suboroup differences: Not         C RFS         Jiang.et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F <b>DFS</b> Study or Subgroup         Chiam.et al (MSKCC) 2017         Huang.et al 2017         Sakurai: et al 2017         Sakurai: et al (Cohort 1) 2016         XH Wang.et al (cohort 1) 2016         XH wang.et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         Test for overall effect: Z = 0.27 (P         C MIFS         Study or Subgroup       Iou         Chakravariy.et al 2014         Shukla.et al (UHU) 2016         Shukla.et al (UCI) 2017         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (I         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 0.04)<br>t acolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.765<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>* = 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.3857 0.<br>P = 11.21, df = 3 (P =<br>P = 0.11)<br>collazard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>SE</u><br>0.4527<br>0.6505<br>1.17); I <sup>2</sup> :<br>0.342<br>0.3425<br>0.3023<br>0.3435<br>0.0001);<br><u>SE 1</u><br>3013<br>1936<br>2869<br>1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weight           59,0%           41,0%           100,0%           = 48%           *           Weight           19,8%           20,6%           21,2%           22,6%           100,0%           20,6%           21,2%           27,1%           31,5%           000,0%           I* = 73%                                                                                                                                                                                     | Hazard Ratio<br>IV. Random. 95% CI<br>1.96 (0.81, 4.76)<br>5.88 (1.64, 21.04)<br>3.07 [1.07, 8.86]<br>Hazard Ratio<br>IV. Random. 95% C<br>2.88 [1.64, 21.04]<br>0.47 (0.26, 0.85)<br>0.51 [0.26, 1.00]<br>0.89 [0.39, 2.04]<br>Hazard Ratio<br>IV. Random. 95% CI<br>0.52 [0.36, 0.76]<br>0.52 [0.36, 0.76]<br>0.53 [0.30, 0.83]<br>0.68 [0.53, 0.87]<br>0.72 [0.48, 1.07]<br>Hazard Ratio<br>IV. Random. 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random. 95% CI<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random. 95% CI<br>Hazard Ratio<br>IV. Random. 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test for suboroup differences: Not         C RFS         Jiang.et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F         DFS         Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang.et al 2017         Sakurai.et al 2015         XH Wang.et al (cohort 1) 2016         XH Wang.et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         Study or Subgroup       Ior         Chakravarty.et al 2014         Shukla.et al (CGA) 2016         White.et al (MCI) 2016         Shukla.et al (CGA) 2016         White.et al (MCI) 2017         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (C         PRSS         Study or Subgroup       Io         Prenspere et al (Marxo) 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>= 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>-0.6539 0<br>-0.6539 0<br>-0.6539 0<br>-0.6539 0<br>-0.6534 0<br>-0.3857 0.<br>= 11.21, df = 3 (P =<br>P = 0.11)<br>Dg[Hazard Ratio]<br>1.4672 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>SE</u><br>0.3427<br>0.6505<br>0.342<br>0.3448<br>0.5041<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3013<br>1303<br>1257<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.5 | Weight           59.0%           41.0%           100.0%           48%           Weight           10.0%           21.2%           21.2%           20.0%           100.0%           12.2%           27.1%           21.1%           31.5%           00.0%           12 = 73%           Weight           24 6%                                                                                                                                                                   | Hazard Ratio IV. Random. 95% CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random. 95% CI 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 0.85] 0.51 [0.26, 0.36] 0.52 [0.36, 0.76] 0.52 [0.36, 0.76] 0.53 [0.30, 0.33] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07] Hazard Ratio IV. Random. 95% CI IV. Random. 95% CI 4.34 [15 12 25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>I. Random, 95% CI<br>I. Low Expression High Expression<br>Hazard Ratio<br>I. V. Random, 95% CI<br>Hazard Ratio<br>I. Low Expression High Expression<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test for suboroup differences: Not         C RFS         Jiang.et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F <b>DFS</b> Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang et al 2017         Sakurai.et al 2015         XH Wang.et al (cohort 1) 2016         XH Wang.et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         Study or Subgroup       for         Chakravarty.et al 2014         Shukla.et al (TCGA) 2016         White.et al (MC I) 2017         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (I         Y PSS         Study or Subgroup       for         Vetory Clig       Yes (I)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (I         Y PSS         Study or Subgroup       for         Prensner.et al (MRyo) 2013         Shukla.et al (JHU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>P = 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7857<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < C<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6539 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.3857 0.<br>= 11.21, df = 3 (P =<br>P = 0.11)<br>Dg[Hazard Ratio]<br>-0.5978 0.<br>-0.5978 0.<br>-0.59788 0.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight           59.0%           41.0%           100.0%           = 48%           20.6%           21.2%           20.6%           100.0%           P = 85%           Veight           20.2%           27.1%           31.5%           000.0%           P = 73%           Weight           24.6%           Weight           24.8%                                                                                                                                              | Hazard Ratio IV. Random. 95% CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random. 95% C 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV. Random. 95% CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.52 [0.36, 0.73] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07] Hazard Ratio IV. Random. 95% CI 4.34 [1.53, 12.35] 0.51 [0.31 0.97]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test for subaroub differences: Not         C RFS         Jang,et al 2016         Orfanelli,et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau² = 0.29; Chi²         Test for overall effect: Z = 2.08 (F         D DFS         Study or Subgroup         Ghiam.et al (MSKCC) 2017         Huang, et al 2017         Sakurai.et al 2015         XH Wang, et al (cohort 1) 2016         XH Wang, et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau² = 0.75; Chi² = 0.27 (P         E MFS         Study or Subgroup         Chakravarty.et al 2014         Shuka.et al (CGA) 2016         Shuka.et al (CCA) 2016         Shuka.et al (CCA) 2016         Shuka.et al (CCA) 2016         White.et al (MC I) 2017         Total (95% CI)         Heterogeneity: Tau² = 0.12; Chi²         Test for overall effect: Z = 1.62 (I         PESS         Study or Subgroup       Ic         Prensner.et al (Mayo) 2013         Shuka.et al (JHU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.04)<br>t aoolicable<br>log[Hazard Ratio]<br>0.6729 (<br>1.7716 (<br>= 1.92, df = 1 (P = 0<br>= 0.04)<br>log[Hazard Ratio]<br>1.0578<br>0.7871<br>-1.0498<br>-0.755<br>-0.6733<br>= 26.36, df = 4 (P < 0<br>= 0.79)<br>g[Hazard Ratio]<br>0.4947 0.<br>-0.6539 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.6349 0.<br>-0.5378 0.<br>P = 0.11)<br>24 (P = 0)<br>-0.5978 0.<br>-0.5978 0.<br>-0.597                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight           59.0%           41.0%           100.0%           48%           20.6%           21.2%           20.6%           100.0%           21.2%           20.2%           27.1%           21.1%           31.5%           100.0%           P = 73%           Weight           24.6%           34.8%                                                                                                                                                                    | Hazard Ratio IV. Random. 95% CI 1.96 [0.81, 4.76] 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV. Random. 95% C 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV. Random. 95% CI 1.64 [0.91, 2.96] 0.52 [0.36, 0.76] 0.53 [0.30, 0.93] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07] Hazard Ratio IV. Random. 95% CI 4.34 [1.53, 12.35] 0.56 [0.3, 0.97] 0.80 [0.3, 0.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>I. Come Expression High Expression High Expression<br>Hazard Ratio<br>I. Come Expression High Expression High Expression High Expression                                                                                                                                                                      |
| Test for suboroup differences: Not<br>CRFS<br>Jiang.et al 2016<br>Orfanelli.et al (Glinksy) 2014<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup><br>Test for overall effect: Z = 2.08 (F<br>DFS<br>Study or Subgroup<br>Ghiam.et al (MSKCC) 2017<br>Huang.et al 2017<br>Sakurai.et al 2017<br>Sakurai.et al 2015<br>XH Wang.et al (cohort 1) 2016<br>XH Wang.et al (cohort 1) 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =<br>Test for overall effect: Z = 0.27 (P<br>Chafravarty.et al 2014<br>Shukla.et al (TICGA) 2016<br>White.et al (MC I) 2017<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup><br>Test for overall effect: Z = 1.62 (C<br>PSS<br>Study or Subgroup Io<br>Prensner.et al (MAU) 2016<br>Shukla.et al (UGU) 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 0.04)$ t aoolicable $log[Hazard Ratio] \\ 0.6729 ( 1.7716 ( -1.7716 ( -1.0781 -1.0498 -0.755 -0.6733 = 26.36, df = 4 (P < C -0.6739 ( -1.04947 00.6539 00.6349 00.6349 00.6349 00.6345 00.6345 00.6345 00.6345 00.5378 00.5578 00.5578 00.3857 00.5578 00.3857 00.5578 00.3857 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.5578 00.3857 00.5578 00.3857 00.5578 00.3857 00.5578 00.3857 00.5578 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.3857 00.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>SE</u><br>0.3527<br>0.6505<br>0.392<br>0.3448<br>0.5041<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.3023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.2023<br>0.202                                                                                                          | Weight<br>59.0%<br>41.0%<br>100.0%<br>48%<br>108.%<br>20.6%<br>20.6%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.2%<br>20.3%<br>100.0%<br>I <sup>2</sup> = 85%<br>00.0%<br>I <sup>2</sup> = 73%<br>Weight<br>24.8%<br>34.8%<br>40.5%                                                                                                                                                                                               | Hazard Ratio IV, Random, 95%, CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV, Random, 95% CI 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV, Random, 95% CI 1.64 (0.91, 2.96] 0.52 [0.36, 0.76] 0.53 [0.30, 0.33] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07] Hazard Ratio IV, Random, 95% CI 4.34 [1.53, 12.35] 0.55 [0.31, 0.97] 0.68 [0.53, 0.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test for suboroub differences: Not         2       RFS         Jiang, et al 2016         Orfanelli.et al (Glinksy) 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.29; Chi <sup>2</sup> Test for overall effect: Z = 2.08 (F <b>DFS</b> Study or Subgroup         Chiam.et al (MSKCC) 2017         Huang, et al 2015         XH Wang, et al (cohort 1) 2016         XH Wang, et al (cohort 2) 2016         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> =         Test for overall effect: Z = 0.27 (P         Study or Subgroup       for         Chakravarty.et al 2014         Shukla, et al (TCGA) 2016         White.et al (MC I) 2017         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (I         PRSS         Study or Subgroup       for         Prensner.et al (Mayo) 2013         Shukla, et al (JHU) 2016         White.et al (UAU) 2016         White.et al (TU) 2017         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> Test for overall effect: Z = 1.62 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 0.04)$ t aoolicable $log[Hazard Ratio] \\ 0.6729 ( 1.7716 ( 0.6729 ( 1.7716 ( 0.6729 ( 1.7716 ( 0.6729 ( 1.7716 ( 0.6739 ( 1.0578 ( 0.7871 - 1.0498 - 0.755 - 0.6733 - 266.36, df = 4 (P < C ( 0.4947 0 0.6539 0 0.6539 0 0.6539 0 0.3857 0 0.4679 ( 0.0578 0 - 0.3857 0 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 - 0.3857 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight           59.0%           41.0%           100.0%           = 48%           20.6%           21.2%           20.6%           100.0%           P = 85%           20.2%           27.1%           31.5%           100.0%           P = 73%           Weight           24.6%           40.5%           100.0%                                                                                                                                                               | Hazard Ratio IV, Random, 95% CI 1.96 (0.81, 4.76) 5.88 [1.64, 21.04] 3.07 [1.07, 8.86] Hazard Ratio IV, Random, 95% C 2.88 [1.34, 6.21] 2.20 [1.12, 4.32] 0.35 [0.13, 0.94] 0.47 [0.26, 0.85] 0.51 [0.26, 1.00] 0.89 [0.39, 2.04] Hazard Ratio IV, Random, 95% CI 1.64 [0.91, 2.96] 0.52 [0.30, 0.33] 0.68 [0.53, 0.87] 0.72 [0.48, 1.07] Hazard Ratio IV, Random, 95% CI 4.34 [1.53, 12.35] 0.55 [0.31, 0.97] 0.68 [0.53, 0.87] 1.00 [0.45, 2.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 0.1 1 0 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>0.01 0.1 1 10 10<br>Low Expression High Expression<br>Hazard Ratio<br>IV. Random, 95% Cl<br>Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| G | PFS                               |                                     |        |        |                   |                                |
|---|-----------------------------------|-------------------------------------|--------|--------|-------------------|--------------------------------|
| ~ |                                   |                                     |        |        | Hazard Ratio      | Hazard Ratio                   |
|   | Study or Subgroup                 | log[Hazard Ratio]                   | SE     | Weight | IV, Fixed, 95% CI | IV, Fixed, 95% CI              |
|   | Prensner.et al (Mayo) 2013        | 1.2698                              | 0.3869 | 6.3%   | 3.56 [1.67, 7.60] |                                |
|   | Zheng.et al 2016                  | 0.8224                              | 0.0999 | 93.7%  | 2.28 [1.87, 2.77] |                                |
|   | Total (95% CI)                    |                                     |        | 100.0% | 2.34 [1.94, 2.83] | •                              |
|   | Heterogeneity: Chi2 = 1.25, df    | = 1 (P = 0.26); I <sup>2</sup> = 20 | 0%     |        |                   |                                |
|   | Test for overall effect: Z = 8.79 | ) (P < 0.00001)                     |        |        |                   | Low Expression High Expression |

Figure 2: Forest plot of studies evaluating hazard ratios of LncRNAs expression and prognosis in PCa. The point estimate is bounded by a 95% confidence interval, and the perpendicular line represents no increased risk for the outcome. OS: overall survival; BCR-FS: biochemical recurrence-free survival; RFS: recurrence free survival; DFS: disease-free survival; MFS: metastasis free survival; PSS: prostate cancer specific survival; PFS: progression free survival.

0.1 1 10 Low Expression High Expression

| A | PCAT14                                    |                                           |           |                          |                   |                                |
|---|-------------------------------------------|-------------------------------------------|-----------|--------------------------|-------------------|--------------------------------|
|   |                                           |                                           |           |                          | Hazard Ratio      | Hazard Ratio                   |
|   | Study or Subgroup                         | log[Hazard Ratio]                         | SE        | Weight                   | IV, Fixed, 95% CI | IV, Fixed, 95% Cl              |
|   | 8.1.1 US                                  | 0.470                                     | 0.0400    | 5.00/                    | 0.00.00.00.00.00  |                                |
|   | Shukla.et al (JHU) 2016                   | -0.478                                    | 0.2498    | 5.2%                     | 0.62 [0.38, 1.01] | -                              |
|   | Subtotal (95% CI)                         | -0.2107                                   | 0.1123    | 25.8%<br>31.0%           |                   | •                              |
|   | Heterogeneity: $Chi^2 = 0.95$             | $f = 1 (P = 0.33) \cdot l^2 =$            | 0%        | 51.070                   | 0.77 [0.00, 0.00] | •                              |
|   | Test for overall effect: $Z = 2$ .        | 50 (P = 0.01)                             | 0 70      |                          |                   |                                |
|   |                                           | , ,                                       |           |                          |                   |                                |
|   | 8.1.2 BCR-FS                              |                                           |           |                          |                   | _                              |
|   | Shukla.et al (JHU) 2016                   | -0.4463                                   | 0.1363    | 17.5%                    | 0.64 [0.49, 0.84] |                                |
|   | Shukla.et al (Taylor) 2016                | -0.7133                                   | 0.3233    | 3.1%                     | 0.49 [0.26, 0.92] | •                              |
|   | Hotorogonoity: $Chi^2 = 0.58$             | Hf − 1 (D − 0 45)· I2 −                   | 0%        | 20.0 %                   | 0.01 [0.46, 0.79] | •                              |
|   | Test for overall effect: $7 = 3$          | $a_1 = 1 (P = 0.43), P = 87 (P = 0.0001)$ | 0 70      |                          |                   |                                |
|   |                                           | or (i 0.000 r)                            |           |                          |                   |                                |
|   | 8.1.3 PSS                                 |                                           |           |                          |                   |                                |
|   | Shukla.et al (JHU) 2016                   | -0.5978                                   | 0.2925    | 3.8%                     | 0.55 [0.31, 0.98] |                                |
|   | White.et al 2017                          | -0.4005                                   | 0.1702    | 11.2%                    | 0.67 [0.48, 0.94] |                                |
|   | Subtotal (95% CI)                         |                                           |           | 15.1%                    | 0.64 [0.48, 0.85] | •                              |
|   | Heterogeneity: $Chi^2 = 0.34$ , o         | df = 1 (P = 0.56); $I^2$ =                | 0%        |                          |                   |                                |
|   | Test for overall effect: $Z = 3$ .        | 06 (P = 0.002)                            |           |                          |                   |                                |
|   | 8.1.4 MFS                                 |                                           |           |                          |                   |                                |
|   | Shukla.et al (JHU) 2016                   | -0.6539                                   | 0.1876    | 9.3%                     | 0.52 [0.36, 0.75] |                                |
|   | Shukla.et al (TCGA) 2016                  | -0.6349                                   | 0.2904    | 3.9%                     | 0.53 [0.30, 0.94] | _ <b>-</b> _                   |
|   | White.et al 2017                          | -0.3857                                   | 0.1272    | 20.1%                    | 0.68 [0.53, 0.87] |                                |
|   | Subtotal (95% CI)                         |                                           |           | 33.2%                    | 0.61 [0.50, 0.74] | •                              |
|   | Heterogeneity: Chi <sup>2</sup> = 1.68, o | $df = 2 (P = 0.43); I^2 =$                | 0%        |                          |                   |                                |
|   | Test for overall effect: $Z = 4$ .        | 94 (P < 0.00001)                          |           |                          |                   |                                |
|   | Total (95% CI)                            |                                           |           | 100.0%                   | 0.66 [0.59, 0.74] | •                              |
|   | Heterogeneity: Chi <sup>2</sup> = 6.92, o | df = 8 (P = 0.55); l <sup>2</sup> =       | 0%        |                          |                   |                                |
|   | Test for overall effect: Z = 7.           | 19 (P < 0.00001)                          |           |                          |                   | Low expression High expression |
|   | Test for subaroup difference              | s: Chi² = 3.36. df = 3                    | (P = 0.34 | 4). I <sup>2</sup> = 10. | 7%                |                                |
| в | SChLAP1                                   |                                           |           |                          |                   |                                |
| D | South I                                   |                                           |           |                          | Hazard Ratio      | Hazard Ratio                   |
| _ | Study or Subgroup                         | log[Hazard Ratio                          | SE        | Weight                   | IV, Fixed, 95% CI | IV, Fixed, 95% Cl              |

|              |                                                                   |                                       |        |        | Indear a reacto    |                                                     |
|--------------|-------------------------------------------------------------------|---------------------------------------|--------|--------|--------------------|-----------------------------------------------------|
| Stu          | dy or Subgroup                                                    | log[Hazard Ratio]                     | SE     | Weight | IV, Fixed, 95% Cl  | IV, Fixed, 95% CI                                   |
| Meh          | nra.et al 2014                                                    | 0.6881                                | 0.3206 | 28.7%  | 1.99 [1.06, 3.73]  |                                                     |
| Meh          | nra.et al 2016                                                    | 0.7885                                | 0.3176 | 29.3%  | 2.20 [1.18, 4.10]  |                                                     |
| Prer         | nsner.et al (Glinksy) 2013                                        | 1.2726                                | 0.445  | 14.9%  | 3.57 [1.49, 8.54]  |                                                     |
| Prer         | nsner.et al (Mayo) 2013                                           | 1.1119                                | 0.3418 | 25.3%  | 3.04 [1.56, 5.94]  |                                                     |
| Prer         | nsner.et al (MCTP) 2013                                           | 1.8326                                | 1.257  | 1.9%   | 6.25 [0.53, 73.43] |                                                     |
| Tota         | al (95% CI)                                                       |                                       |        | 100.0% | 2.54 [1.82, 3.56]  | •                                                   |
| Hete<br>Test | erogeneity: Chi² = 2.16, df =<br>t for overall effect: Z = 5.43 ( | 4 (P = 0.71); I² = 0%<br>P < 0.00001) |        |        |                    | 0.01 0.1 1 10 100<br>Low Expression High Expression |

**Figure 3:** Forest plots of studies evaluating hazard ratios of PCAT14 and SChLAP1 with the prognosis of PCa. (A) PCAT14; (B) SChLAP1, biochemical recurrence-free survival (BCR-FS).

|                                                                   | < 7    | ′ ≥7  |        | ≥7    |             | Odds Ratio         | Odds Ratio |    |               |    |  |
|-------------------------------------------------------------------|--------|-------|--------|-------|-------------|--------------------|------------|----|---------------|----|--|
| Study or Subgroup                                                 | Events | Total | Events | Total | Weight      | M-H, Fixed, 95% CI |            | M· | H. Fixed, 95% | CI |  |
| Mehra.et al 2014                                                  | 37     | 41    | 90     | 119   | 43.4%       | 2.98 [0.98, 9.07]  |            |    |               |    |  |
| Mehra.et al 2016                                                  | 161    | 165   | 687    | 772   | 56.6%       | 4.98 [1.80, 13.77] |            |    |               |    |  |
| Total (95% CI)                                                    |        | 206   |        | 891   | 100.0%      | 4.11 [1.94, 8.70]  |            |    |               |    |  |
| Total events                                                      | 198    |       | 777    |       |             |                    |            |    |               |    |  |
| Heterogeneity: Chi <sup>2</sup> = (<br>Test for overall effect: 2 |        |       | 0.01   | 0.1   | 1<br><7 ≥ 7 | 10                 | 100        |    |               |    |  |

Figure 4: Forest plots of studies evaluating odds ratios (ORs) of up-regulated SChLAP1 expression and Gleason Score( $< 7 \text{ vs} \ge 7$ ) of PCa patients.

prognosis and clinical features of PCa. Our results demonstrated that the high expression of 11 LncRNAs was related with poor prognosis, so was the low expression of 6 LncRNAs. PCAT14 and SChLAP1 were reported by no less than two studies, thus, subsequently, we conducted meta-analysis for prognostic value of these two LncRNAs in PCa, respectively. We found that the decreased PCAT14 expression could predict poor OS, BCR-FS, PSS and MFS in PCa patients. While the overexpressed SChLAP1 among PCa patients had worse BCR-FS. Regarding the relationship with clinicopathological features, the increased expression level of CCAT2 and LOC400891 could be the identifiers of an existence of distance metastasis, tumor diameter ( $\leq 2.5 \text{ vs} > 2.5 \text{ cm}$ ) and histological grade (II vs III + IV) for PCa. The level of SChLAP1 existed a significant difference between the group with Gleason score < 7 and  $\ge 7$ . The non-significant correlation between LncRNAs and other characters might be caused by the insufficient studies for each LncRNA.

However, several limitations existed in our analysis should be considered. The included studies in our metaanalysis weren't sufficient with limited sample size and all were English researches. No study with negative results was included in our analysis which could amplify the relation between LncRNAs and clinical values of PCa. Studies contained diverse LncRNAs used different followup endpoints. Besides, the cut-off value distinguished high or low levels of LncRNAs differed among these studies.

In conclusion, our study was the first meta-analysis to evaluate the clinical value of expression level of LncRNAs in prostate cancer. Despite the limitation, we demonstrated that transcription level was correlated with prognosis of PCa and several vital clinical characters. However, further comprehensive and large-scale research should be performed to confirm our findings.

## **MATERIALS AND METHODS**

## Literature search strategy and study eligibility criteria

We searched databases like PubMed and Web of Science for studies published in English up to February 17, 2017. The following keywords were used "Long noncoding RNA" or "Long intergenic non-coding RNA" or "IncRNA" or "LincRNA" and "prostate cancer" or "PCa" with the limit to human.

## Criteria of eligibility

The inclusion criteria for our meta-analysis were: (1) articles published as a full paper in English; (2) all patients were diagnosed with PCa; (3) LncRNAs expression levels were measured in PCa tissues; (4) the association of LncRNAs with survivals (OS/ BCR-FS/ RFS/ DFS/ MFS/ PSS/ PFS) was detected; (5) correlation between LncRNAs and clinicopathological features was performed at least two parameters; (6) studies provided sufficient information to estimate hazard ratios (HR) and 95% confidence interval (95% CI). Studies which failed to provide enough data were excluded from this metaanalysis. Only the latest or most complete data were chosen when we dealt with duplicated publications.

### **Data extraction**

The usable data were extracted independently by two reviewers (Ma WJ and Jing W). Any disagreements between the three reviewers were resolved by consensus involving other two reviewers (Chen X, Ding L and Ma JH). The reviewers screened the name of first author, year of publication, country, the type of LncRNAs, a method for detection of LncRNAs, cut-off value and the follow-up time, clinicopathological parameters and the HRs with 95% CIs for survival analysis.

### Statistical analysis

The HRs and 95% CI were used to evaluate the association between lncRNAs and prognosis. A provided HR > 1 implied a poor survival for the high expressed lncRNAs group. On the contrary, HR < 1 meant a worse survival for the group with decreased lncRNAs expression level. We extracted HR according to the following two methods: (1) The HRs and 95% CI were obtained directly from the publication; (2) We calculated the HRs and 95%CI by extracting several survival rates from the Kaplan–Meier survival curves using Engauge Digitizer version 4.1. The second method may generate errors by variation. Meanwhile, Aiming to investigate the relationship between the expression of lncRNAs and clinicopathologic characteristics, the ORs and 95% CI were used.

All analyses were performed using the STATA software version 11.0 and Cochrane Collaboration Review Manager Version 5.2. To investigate the heterogeneity among studies, I<sup>2</sup> statistics and chi-square Q test were used. When I<sup>2</sup> value more than 50% or a *P*-value less than 0.05 for Q test, the heterogeneity was regarded as significant. Fixed-effects model was used when there was no significant heterogeneity between studies. Otherwise, the random-effects model was used. We also performed sensitivity analyses to test the effect of each study on pooled results. Begg's test was applied for assessing publication bias. Statistical significance was defined when a P < 0.05.

## **ACKNOWLEDGMENTS AND FUNDING**

This work was financially supported by the Hubei Province health and family planning scientific research project (WJ2017Z007).

## **CONFLICTS OF INTEREST**

All authors declare no conflicts of interest.

### REFERENCES

- 1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017; 67:7–30. doi: 10.3322/caac.21387.
- Loeb S, Vellekoop A, Ahmed HU, Catto J, Emberton M, Nam R, Rosario DJ, Scattoni V, Lotan Y. Systematic review of complications of prostate biopsy. Eur Urol. 2013; 64:876–92. doi: 10.1016/j.eururo.2013.05.049.
- Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012; 4:127rv3. doi: 10.1126/ scitranslmed.3003180.
- Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, Gingrich JR, Wei JT, Gilhooly P, Grob BM, Nsouli I, Iyer P, Cartagena R, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012; 367:203–13. doi: 10.1056/NEJMoa1113162.
- Fraser M, Berlin A, Bristow RG, van der Kwast T. Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol. 2015; 33:85–94. doi: 10.1016/j.urolonc.2013.10.020.
- Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482:339–46. doi: 10.1038/ nature10887.
- Walsh AL, Tuzova AV, Bolton EM, Lynch TH, Perry AS. Long noncoding RNAs and prostate carcinogenesis: the missing 'linc'? Trends Mol Med. 2014; 20:428–36. doi: 10.1016/j.molmed.2014.03.005.
- Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX, Li R, Montgomery K, Varma S, Gilks T, Guo X, Foley JW, Witten DM, Giacomini CP, et al. Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol. 2012; 13: R75. doi: 10.1186/gb-2012-13-8-r75.
- Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zornig M, MacLeod AR, Spector DL, Diederichs S. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013; 73:1180–9. doi: 10.1158/0008-5472.CAN-12-2850.
- Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, Wang SB, Wang YZ, Yang Y, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014; 25:666–81. doi: 10.1016/j. ccr.2014.03.010.
- He JH, Li BX, Han ZP, Zou MX, Wang L, Lv YB, Zhou JB, Cao MR, Li YG, Zhang JZ. Snail-activated long non-coding RNA PCA3 up-regulates PRKD3 expression by miR-1261 sponging, thereby promotes invasion and migration of prostate cancer cells. Tumour Biol. 2016. doi: 10.1007/ s13277-016-5450-y.

- Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol. 2004; 46:182–6. discussion 7. doi: 10.1016/j.eururo.2004.06.004.
- van Gils MP, Hessels D, van Hooij O, Jannink SA, Peelen WP, Hanssen SL, Witjes JA, Cornel EB, Karthaus HF, Smits GA, Dijkman GA, Mulders PF, Schalken JA. The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res. 2007; 13:939–43. doi: 10.1158/1078-0432.CCR-06-2679.
- Marks LS, Fradet Y, Deras IL, Blase A, Mathis J, Aubin SM, Cancio AT, Desaulniers M, Ellis WJ, Rittenhouse H, Groskopf J. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007; 69:532–5. doi: 10.1016/j.urology.2006.12.014.
- 15. Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, Brentano S, Mathis J, Pham J, Meyer T, Cass M, Hodge P, Macairan ML, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006; 52:1089–95. doi: 10.1373/clinchem.2005.063289.
- Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F, Wei M, Shen J, Hou J, Gao X, Xu C, Huang J, Zhao Y, Sun Y. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol. 2013; 190:2278–87. doi: 10.1016/j.juro.2013.07.001.
- White NM, Zhao SG, Zhang J, Rozycki EB, Dang HX, McFadden SD, Eteleeb AM, Alshalalfa M, Vergara IA, Erho N, Arbeit JM, Karnes RJ, Den RB, et al. Multiinstitutional Analysis Shows that Low PCAT-14 Expression Associates with Poor Outcomes in Prostate Cancer. Eur Urol. 2017; 71:257–66. doi: 10.1016/j.eururo.2016.07.012.
- Wang X, Ruan Y, Wang X, Zhao W, Jiang Q, Jiang C, Zhao Y, Xu Y, Sun F, Zhu Y, Xia S, Xu D. Long intragenic noncoding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif. 2017; 50. doi: 10.1111/ cpr.12318.
- Zhang Y, Zhang P, Wan X, Su X, Kong Z, Zhai Q, Xiang X, Li L, Li Y. Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer. Biomed Pharmacother. 2016; 83:936–41. doi: 10.1016/j. biopha.2016.08.013.
- 20. Zheng J, Zhao S, He X, Zheng Z, Bai W, Duan Y, Cheng S, Wang J, Liu X, Zhang G. The up-regulation of long noncoding RNA CCAT2 indicates a poor prognosis for prostate cancer and promotes metastasis by affecting epithelialmesenchymal transition. Biochem Biophys Res Commun. 2016; 480:508–14. doi: 10.1016/j.bbrc.2016.08.120.
- Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY, Zhou WQ. Long non-coding RNA ATB promotes growth and epithelialmesenchymal transition and predicts poor prognosis in human prostate carcinoma. Oncol Rep. 2016; 36:10–22. doi: 10.3892/or.2016.4791.

- 22. Wang J, Cheng G, Li X, Pan Y, Qin C, Yang H, Hua L, Wang Z. Overexpression of long non-coding RNA LOC400891 promotes tumor progression and poor prognosis in prostate cancer. Tumour Biol. 2016; 37:9603– 13. doi: 10.1007/s13277-016-4847-y.
- 23. Jiang CY, Gao Y, Wang XJ, Ruan Y, Bei XY, Wang XH, Jing YF, Zhao W, Jiang Q, Li J, Han BM, Xia SJ, Zhao FJ. Long non-coding RNA lnc-MX1-1 is associated with poor clinical features and promotes cellular proliferation and invasiveness in prostate cancer. Biochem Biophys Res Commun. 2016; 470:721–7. doi: 10.1016/j.bbrc.2016.01.056.
- 24. Malik R, Patel L, Prensner JR, Shi Y, Iyer MK, Subramaniyan S, Carley A, Niknafs YS, Sahu A, Han S, Ma T, Liu M, Asangani IA, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol Cancer Res. 2014; 12:1081–7. doi: 10.1158/1541-7786. MCR-14-0257.
- Orfanelli U, Jachetti E, Chiacchiera F, Grioni M, Brambilla P, Briganti A, Freschi M, Martinelli-Boneschi F, Doglioni C, Montorsi F, Bellone M, Casari G, Pasini D, Lavorgna G. Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene. 2015; 34:2094–102. doi: 10.1038/onc.2014.144.
- 26. Na XY, Liu ZY, Ren PP, Yu R, Shang XS. Long non-coding RNA UCA1 contributes to the progression of prostate cancer and regulates proliferation through KLF4-KRT6/13 signaling pathway. Int J Clin Exp Med. 2015; 8:12609–16. doi:
- 27. Mehra R, Udager AM, Ahearn TU, Cao X, Feng FY, Loda M, Petimar JS, Kantoff P, Mucci LA, Chinnaiyan AM. Overexpression of the Long Non-coding RNA SChLAP1 Independently Predicts Lethal Prostate Cancer. Eur Urol. 2016; 70:549–52. doi: 10.1016/j.eururo.2015.12.003.
- Sakurai K, Reon BJ, Anaya J, Dutta A. The lncRNA DRAIC/ PCAT29 Locus Constitutes a Tumor-Suppressive Nexus. Mol Cancer Res. 2015; 13:828–38. doi: 10.1158/1541-7786. MCR-15-0016-T.
- 29. Huang TB, Dong CP, Zhou GC, Lu SM, Luan Y, Gu X, Liu L, Ding XF. A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int Urol Nephrol. 2017. doi: 10.1007/s11255-017-1536-8.
- Shukla S, Zhang X, Niknafs YS, Xiao L, Mehra R, Cieslik M, Ross A, Schaeffer E, Malik B, Guo S, Freier SM, Bui HH, Siddiqui J, et al. Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia. 2016; 18:489–99. doi: 10.1016/j.neo.2016.07.001.
- 31. Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, Siddiqui J, Cao X, Wei J, Jiang H, Feng FY, Chinnaiyan AM. A novel RNA *in situ* hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia. 2014; 16:1121–7. doi: 10.1016/j.neo.2014.11.006.
- Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M,

Jenkins RB, Triche TJ, Malik R, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013; 45:1392–8. doi: 10.1038/ng.2771.

- 33. Fotouhi Ghiam A, Taeb S, Huang X, Huang V, Ray J, Scarcello S, Hoey C, Jahangiri S, Fokas E, Loblaw A, Bristow RG, Vesprini D, Boutros P, Liu SK. Long noncoding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer. Oncotarget. 2017; 8:4668–89. doi: 10.18632/oncotarget.13576.
- 34. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, MacDonald TY, Fontugne J, Erho N, et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun. 2014; 5: 5383. doi: 10.1038/ncomms6383.
- 35. St Laurent G, Shtokalo D, Tackett MR, Yang Z, Eremina T, Wahlestedt C, Urcuqui-Inchima S, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics. 2012; 13: 504. doi: 10.1186/1471-2164-13-504.
- Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011; 147:358–69. doi: 10.1016/j.cell.2011.09.028.
- 37. Lee B, Mazar J, Aftab MN, Qi F, Shelley J, Li JL, Govindarajan S, Valerio F, Rivera I, Thurn T, Tran TA, Kameh D, Patel V, Perera RJ. Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn. 2014; 16:615–26. doi: 10.1016/j.jmoldx.2014.06.009.
- Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long noncoding RNAs. Nucleic Acids Res. 2012; 40:6391–400. doi: 10.1093/nar/gks296.
- Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012; 338:1435–9. doi: 10.1126/science.1231776.
- Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell. 2008; 29:499–509. doi: 10.1016/j.molcel.2007.12.013.
- Ma L, Bajic VB, Zhang Z. On the classification of long noncoding RNAs. RNA Biol. 2013; 10:925–33. doi: 10.4161/ rna.24604.
- Su YJ, Yu J, Huang YQ, Yang J. Circulating Long Noncoding RNA as a Potential Target for Prostate Cancer. Int J Mol Sci. 2015; 16:13322–38. doi: 10.3390/ ijms160613322.
- Ploussard G, de la Taille A. Urine biomarkers in prostate cancer. Nat Rev Urol. 2010; 7:101–9. doi: 10.1038/ nrurol.2009.261.
- 44. Ploussard G, Haese A, Van Poppel H, Marberger M, Stenzl A, Mulders PF, Huland H, Bastien L, Abbou CC,

Remzi M, Tinzl M, Feyerabend S, Stillebroer AB, et al. The prostate cancer gene 3 (PCA3) urine test in men with previous negative biopsies: does free-to-total prostatespecific antigen ratio influence the performance of the PCA3 score in predicting positive biopsies? BJU Int. 2010; 106:1143–7. doi: 10.1111/j.1464-410X.2010.09286.x.

- 45. Ferreira LB, Palumbo A, de Mello KD, Sternberg C, Caetano MS, de Oliveira FL, Neves AF, Nasciutti LE, Goulart LR, Gimba ER. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012; 12: 507. doi: 10.1186/1471-2407-12-507.
- 46. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013; 500:598–602. doi: 10.1038/nature12451.
- 47. Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM, Magi-Galluzzi C, Mehra R, Sahu A, Siddiqui J, Davicioni E, Den RB, Dicker AP, et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 2014; 15:1469–80. doi: 10.1016/S1470-2045(14)71113-1.