
the potential involvement of Ca
v
1.4 in 

non-excitable cells as mast cells (McRory 
et al., 2004) and more recently in mouse 
T-lymphocytes (Omilusik et al., 2011).

CalCium in T-lymphoCyTes: 
prominenT role of The sTim-orai 
paThway
In T-lymphocytes, Ca2+ ions are important 
for the activation of many enzymes includ-
ing phospholipase C gamma (PLCγ), clas-
sical protein kinases C, for proper protein 
folding, for the accessibility of key enzymes 
in T-cell transduction, and as a second mes-
senger (Vig and Kinet, 2009). Variations in 
the intracellular calcium concentration 
([Ca]

i
) are responsible for modulating the 

transcription of more than 75% of genes 
induced or down-regulated by T-cell recep-
tor engagement in T-lymphocytes (Feske 
et al., 2001). The intracellular [Ca]

i
 that 

decides the cellular fate is tightly regulated 
in both resting and activated conditions. 
The calcium concentration in the external 
medium is about 1–2 mM, whereas the [Ca]

i
 

is about 50–100 nM and depends on the cal-
cium channels expressed at both the cell and 
endoplasmic reticulum (ER) membranes, 
on exchangers, pumps, … Activation of 
potassium channels that extrude the potas-
sium from the cell is needed for supporting 
the electrochemical driving force allowing 
the calcium influx. In T-lymphocytes, TCR 
engagement results in a cascade of tyros-
ine kinase activation, the constitution of a 
platform transducing the signal with the 
recruitment of adapters and enzymes such 
as PLCγ that generates inositol trisphos-
phate (IP3) and diacylglycerol. IP3 binds 
to its receptors on the ER membrane lead-
ing to the release of ER Ca2+ stores, which 
induces a conformational change of STIM1, 
an ER Ca2+ sensor. STIM1 then localizes near 
the cell membrane, and activates the SOCC 
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The role of voltage-dependent calcium 
(Ca

v
1) channels is prominent in excitable 

cells while store-operated calcium chan-
nels (SOCC) were considered as character-
istic of non-excitable cells. Ca

v
1 channels 

are implicated in excitation transcription. 
Store-operated calcium channels (SOCC) 
activity is increased during cardiac stress 
and would contribute to Ca2+ influx and 
expression of genes responsible for car-
diac hypertrophy and heart failure (Luo 
et al., 2012). Several lines of evidence now 
show the importance of Ca

v
1 channels in 

non-excitable cells including lymphocytes 
(reviewed in Robert et al., 2011, 2013). 
Ca

v
1 channels are defined by their voltage 

sensitivity and their sensitivity to drugs as 
dihydropyridines, phenylalkylamines, ben-
zothiazepines, known to alter T-cell func-
tions. However the drug concentrations 
needed were higher compared to excitable 
cells. The absence of cell membrane depo-
larization upon activation and possible 
non-specific effects of the drugs questioned 
the putative role of Ca

v
1 channels in T-cells.

Ca
v
1 channels are formed by the ion 

forming pore α1 subunit encoded by 
four genes conferring some tissue-specific 
expression pattern in excitable cells. Ca

v
1.1 

is characteristic of skeletal muscle cells. 
Ca

v
1.2 is found in neurons, heart, and 

smooth muscle cells while Ca
v
1.3 is detected 

in neuroendocrine cells. Ca
v
1.2 and Ca

v
1.3 

can be found in the same tissues even if their 
role is not redundant as shown by the dif-
ferential phenotypes of Ca

v
1.2 and Ca

v
1.3 

null mice. Ca
v
1.4 is the retinal form. Ca

v
1 

channel isoforms differ by their sensitivity 
to depolarization and to antagonizing drugs 
such as dihydropyridines (DHP) as well as 
by their inactivation properties (Lipscombe 
et al., 2004). For example, Ca

v
1.4 chan-

nels activate at more negative potentials 
than Ca

v
1.3 and Ca

v
1.2, which highlights 

ORAI1 at the cell membrane (Barr et al., 
2009; Oh-hora, 2009; Vig and Kinet, 2009; 
Zhou et al., 2010). The sustained entry of 
Ca2+ into the cell through ORAI channels is 
responsible for the activation of calcineu-
rin, resulting in the nuclear translocation of 
the transcription factor NFAT as well as the 
activation of calmodulin kinase-dependent 
pathways. The severe immunodeficiency 
observed in mice or Humans with defec-
tive STIM1 (Picard et al., 2009) and ORAI1 
testifies the importance of these molecules 
in T-cell biology (Partiseti et al., 1994; Feske 
et al., 2006, 2012).

However, this scheme accounts neither 
for the heterogeneity of calcium responses 
induced by TCR stimulation depending 
upon the state of activation and differentia-
tion of T-lymphocytes nor for the possible 
implication of other calcium channels at the 
T-cell membrane.

Cav1 Channels in T-Cells
An increasing line of evidence pleads 
for the involvement of Ca

v
1 channels in 

T-lymphocyte biology (Kotturi et al., 
2003, 2006; Stokes et al., 2004; Kotturi and 
Jefferies, 2005; Badou et al., 2006; Matza 
et al., 2008, 2009; Jha et al., 2009). Thus, the 
analysis of mice with ablation of the aux-
iliary subunits Ca

v
β3 (Jha et al., 2009) and 

Ca
v
β4 (Badou et al., 2006) and more recently 

of mice deleted for Ca
v
1.4 (Omilusik et al., 

2011) reveals the role of Ca
v
1 channels in 

T-lymphocyte  survival and activation. 
Ca

v
1.4 was recently described as interact-

ing with Vav and lck src kinase (Jha et al., 
2009), which could result in Ca2+ entry 
required for maintaining [Ca]

i
 and the ER 

Ca2+ stores (Figure 1A). As a consequence, 
Ca

v
1.4 defective T-cells are more prone to 

apoptosis and have a reduced  homeostatic 
proliferation capacity. Naïve Ca

v
1.4 null 

T-cells also harbor defective calcium 
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and/or Ca
v
1.3 α1 subunits by transfection 

with specific antisense oligodeoxynucleo-
tides (Ca

v
1AS) did not affect the prolif-

erative response of Th2-cells but strongly 
impaired the TCR-dependent increase in 
[Ca]

i
 and Th2 cytokine production with-

out any effect on Th1-cells. We have then 
injected OVA-specific DO11.10 transgenic 
Th2-cells transfected or not with Ca

v
1.2 plus 

Ca
v
1.3 AS into BALB/c mice that were given 

intranasal OVA. Th2 Ca
v
1AS localized into 

the lungs and proliferated as well as control 
Th2-cells. However they were unable to sup-
port a sustained inflammation characteris-
tic of asthma. On the contrary, Th1 Ca

v
1AS 

were as effective as control Th1-cells in the 
induction of inflammation. Antisense oli-
godeoxynucleotides were shown to remain 
localized into the airways when given by 
inhalation (Tanaka and Nyce, 2001). A mix-
ture of Ca

v
1.2 and Ca

v
1.3 AS given by this 

route protected mice against the develop-
ment of asthma (Djata Cabral et al., 2010), 
suggesting that these channels may repre-
sent an interesting new approach in the 
treatment of allergic diseases. Interestingly 
TCR stimulation is associated with polar-
ized signaling as shown by an enrichment 
of Ca2+ (Lioudyno et al., 2008) and other 
ionic channels near the immune synapse, 
an area where the T-cell membrane con-
tacts the antigen-presenting cell (Cahalan 

pathogens as fungi. These subsets may also 
be pathogenic. Th1 and Th17 can promote 
autoimmune diseases, whereas Th2-cells 
can cause allergic diseases. Especially, Th2-
cells can induce all the cardinal features of 
allergic asthma through all the cytokines 
they produce.

The calcium signature differs between 
Th1, Th2, and Th17-cells suggesting that 
components regulating calcium entry may 
differ between each T-cell subsets. The rest-
ing [Ca]i is the lowest in Th1, the highest in 
Th2, and intermediate in Th17. Conversely 
the TCR-dependent increase in [Ca]i is the 
highest in Th1, intermediate in Th17, and 
less important and sustained in Th2-cells, 
which could be related to the differential 
dependence of calcium-regulated transcrip-
tion factors as NFAT, NFkB, and CREB 
(Dolmetsch et al., 1997) in the different 
T-cell subsets. It was suggested that these dif-
ferences could result from lower equipment 
in pumps or in potassium channels required 
for maintaining the electrochemical driving 
force that supports calcium entry in Th2-
cells, compared with the other T-cell subsets 
(Fanger et al., 2000). Our group identified 
voltage-dependent calcium Ca

v
1.2 and 

Ca
v
1.3 channels as selectively overexpressed 

in Th2-cells (Badou et al., 1997; Savignac 
et al., 2001, 2004; Gomes et al., 2006; Djata 
Cabral et al., 2010). Knocking down Ca

v
1.2 

influx upon TCR  stimulation suggesting 
the involvement of these channels in TCR-
dependent Ca2+ signaling (Omilusik et al., 
2011). Interestingly, the human Timothy 
syndrome which is associated to mutation 
in gene encoding for Ca

v
1.2 resulting in 

excessive Ca2+ entry is associated in most 
patients with an immunosuppression 
suggesting a role for Ca

v
1.2 channels in 

immune functions (Liao and Soong, 2010). 
It will be interesting to determine if and 
how the Ca

v
1.2 mutation affects immune 

cell functions.

Cav1 Channels in Th2-Cells
Depending upon the strength of TCR 
stimulation, the chronicity of antigenic 
exposure, the route of antigen adminis-
tration, and the cytokines present during 
T-cell differentiation, CD4+ T-cells can dif-
ferentiate into Th1, Th2, and Th17-cells 
that produce distinct sets of cytokines and 
exert different functions. In addition, these 
subpopulations express lineage specific 
and common transcription factors. Th1-
cells produce gamma interferon (IFN-γ) 
and are implicated in the eradication of 
intracellular pathogens, viruses; Th2-cells 
produce interleukin (IL)-4, IL-5, and IL-13, 
contribute to the elimination of parasites 
and Th17, producing IL-17 and IL-22, par-
ticipate in the elimination of extracellular 

Figure 1 | role of Cav1 channels in T-cell Ca2+ responses and functions. (A) 
Cav1.4 is found localized in preformed complexes containing src kinase and Vav. 
Self peptide-MHC interactions with the TCR, independently of the antigen 
specificity would induce a survival signal in naïve T-cells. This signal requires 
some calcium entry depending upon the Cav1.4 containing complex. Cav1.4 
would be also important for maintaining correct endoplasmic reticulum (ER) Ca2+ 
stores. Cav1.4 null T-cells exhibit defective calcium homeostasis associated with 
defective survival. (B) The scheme depicts how we assume Cav1.2 channel 

regulation in Th2-cells. TCR activation would lead to src and PKC enzyme 
activation. Possible PKC-Cav1.2 interactions would induce Cav1.2 channel 
opening. Cav1.2 channels can interact with Ryanodine receptors (RyR) at the 
membrane of the endoplasmic reticulum (ER). These channels release Ca2+ from 
the ER into the cytosol. The depletion of ER Ca2+ stores would allow 
conformational changes of the Ca2+ sensor STIM and the subsequent activation 
of ORAI channels. IP3R, IP3 receptors; MHC, major histocompatibility complex; 
SERCA, sarco/endoplasmic reticulum Ca2+ ATPase; TCR, T-cell receptor.
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degradation induced by TCR stimulation. 
We demonstrate that the sequence of Ca

v
1 

channels in Th2-lymphocytes is similar to 
neuronal forms of the channel. However, 
Ca

v
1 channels do not seem to be voltage-

operated in Th2-lymphocytes. We have 
already demonstrated that TCR-induced 
L-type dependent calcium influx is at least 
sensitive to Src kinases and the PKC in an 
IL-4 producing T-cell hybridoma (Savignac 
et al., 2001). In fact, the application of PP2, 
an inhibitor of Src kinases or an inhibitor of 
PKCα on Th2-cells suppresses the Ca

v
1 chan-

nel-dependent Ca2+ influx. In addition, we 
showed that PKC activator induced an entry 
of Ca2+, suppressed by an antagonist of Ca

v
1 

channels (Savignac et al., 2001). These data 
mean that kinase activation is implicated in 
Ca

v
1 dependent currents (Figure 1B). PKCα 

is a good candidate since Ca
v
1.2 channels 

can be constitutively activated at the resting 
potential of smooth arteriolar cells due to 
their interaction with PKCα (Navedo et al., 
2005; Santana and Navedo, 2010). Ryanodine 
receptors (RyR) are channels releasing Ca2+ 
from the ER into the cytosol. They are acti-
vated directly or not by Ca

v
1 channels. It is 

not known if Ca
v
1 channels interact with 

RyR in T-lymphocytes, inducing ER Ca2+ 
depletion and the activation of the STIM-
ORAI pathway (Figure 1B).

The pending questions deal with how 
Ca

v
1 channels work in lymphocytes and their 

integration with other channels to generate a 
specific calcium signature. The relationships 
between STIM, ORAI, and Ca

v
1 are puzzling. 

STIM was shown as a negative regulator of 
Ca

v
1 signaling (Park et al., 2010). The pos-

sibility of a checkpoint controlling ORAI 
versus Ca

v
1 channel-dependent calcium 

responses merits to be explored.
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