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Methamphetamine (METH) is a popular new-type psychostimulant drug with
complicated neurotoxicity. In spite of mounting evidence on METH-induced damage
of neural cell, the accurate mechanism of toxic effect of the drug on central nervous
system (CNS) has not yet been completely deciphered. Besides, effective treatment
strategies toward METH neurotoxicity remain scarce and more efficacious drugs are
to be developed. In this review, we summarize cellular and molecular bases that
might contribute to METH-elicited neurotoxicity, which mainly include oxidative stress,
excitotoxicity, and neuroinflammation. We also discuss some drugs that protect neural
cells suffering from METH-induced neurotoxic consequences. We hope more in-depth
investigations of exact details that how METH produces toxicity in CNS could be
carried out in future and the development of new drugs as natural compounds and
immunotherapies, including clinic trials, are expected.
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INTRODUCTION

Methamphetamine (METH), also known as “ice” or “crystal,” is an addictive pharmacologic
psychostimulant with strong neurotoxic effects on the central nervous system (CNS). It has been
abused by >33 million people worldwide and seen a steady increase in use over the last few decades.
Such use is associated with deleterious effects on families, loss of productivity, major public-health
concerns, and a consumption of substantial resources for medical intervention (Courtney and Ray,
2014; Moratalla et al., 2017). A recent editorial in the Lancet stated that the shift in public-health
priorities to opioids in the last few years in the United States has enabled the METH market to
flourish; as a result, this market is primed for resurgence. Accordingly, drug control may be more
challenging than anticipated as a second “METH wave” begins (Lancet, 2018).

Methamphetamine belongs to a class of synthetic drugs known as amphetamine-type
stimulants, which includes amphetamine, METH, methylenedioxy-methamphetamine, and other
designer drugs (Chomchai and Chomchai, 2015). METH is similar to amphetamine with regard
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to pharmacodynamic effects; however, users are more likely to
become addicted to METH because of its better penetration
into the CNS and longer duration of action (Won et al.,
2013). Long-term abuse of METH causes serious physical and
mental damage. Overall, METH abuse is associated with an
increased risk of infection by the human immunodeficiency virus,
hepatitis viruses, as well as dangerously high body temperature,
periodontal disease, pulmonary hypertension, adrenergic storm,
cerebrovascular events, stroke, circulatory collapse, and kidney
failure (Ho et al., 2009; Schep et al., 2010; Moratalla et al., 2017).
METH abusers are more likely to develop Parkinson’s disease,
depression, schizophrenia, psychosis, and other neuropsychiatric
and cognitive sequelae (Rawson and Condon, 2007; Forray and
Sofuoglu, 2014; Hsieh et al., 2014); these are mostly attributed to
METH-induced neurotoxicity. The neurotoxic effects of METH
are of strong concern, and exploration of the mechanisms
underlying this neurotoxicity has become a research hotspot in
recent years (Xiong et al., 2016; Ashok et al., 2017; Xie et al., 2018).

In general, neurotoxicity is defined as physical damage
to neurons. In a broader sense, neurotoxicity may refer to
a permanent or reversible adverse effect of a substance on
neuronal structure/function that induces disruption of neuronal
components, collapse of entire neurons, histologic signs of
neuronal injury, and/or behavioral abnormalities (Moszczynska
and Callan, 2017). METH-induced neurotoxic effects include
damage to dopaminergic and serotonergic terminals, neuronal
apoptosis, as well as activated astroglia and microglia that lead
to a neuroinflammatory response within the brain (Cadet and
Krasnova, 2009; Panenka et al., 2013; Moratalla et al., 2017).

In clinical trials, psychological therapies have been shown to
generate small-to-moderate reductions in METH use; however,
these have not yet been translated into clinical practice (Colfax
et al., 2010; Carroll, 2014). Poor outcomes of psychosocial
interventions may be related to METH-produced neurotoxicity.
Further, psychosocial treatments must be utilized clinically
in conjunction with other strategies as pharmacotherapies
(Aharonovich et al., 2006).

In this review, we discuss briefly some of the principal
mechanisms underlying the neurotoxicity induced by METH and
summarize targeted pharmacologic treatments. We anticipate
that more efficacious intervention strategies that protect neural
cells against METH-induced neurotoxic consequences may be
implemented in the future.

MECHANISMS UNDERLYING
METH-INDUCED NEUROTOXICITY

Oxidative Stress
The neurotoxic mechanism of METH is complex and involves
multiple pathways. Oxidative stress has been demonstrated to
be a significant factor contributing to cellular toxicity. METH
induces the considerable production of reactive oxygen species
(ROS), such as hydroxyl radicals (OH−), hydrogen peroxide
(H2O2), and the superoxide anion (O2

−), by increasing the
oxidation of dopamine (DA) (Hansen, 2002). METH passes
through the blood–brain barrier and penetrates the brain

readily due to its high lipid solubility (Nordahl et al., 2003).
Then, it enters dopaminergic terminals via the dopamine
transporter (DAT) because of its similarity to DA (Shin
et al., 2017), as well as by passive diffusion (Moszczynska
and Callan, 2017). METH enhances DA concentration in the
cytosol and synaptic cleft significantly by impairing vesicle
monoamine transporter 2 (VMAT2) function and promoting
DA release; this process may represent the main mechanism
underlying the neurotoxic effect of METH in the brain
(Baumann et al., 2002). Within dopaminergic terminals and
in synaptic clefts, excess DA is autoxidized to quinone or
semi-quinone (LaVoie and Hastings, 1999) to generate large
amounts of H2O2, OH−, and O2

− (Baumann et al., 2002).
Further, a small proportion of DA metabolism mediated by
monoamine oxidase (MAO) or catechol-O-methyltransferase
(COMT) produces H2O2 as a byproduct (Cadet and Brannock,
1998; Olanow and Tatton, 1999). H2O2 reacts with transition-
metal ions to produce highly toxic OH−. Eventually, abundant
ROS promote a series of oxidative stress reactions, such as
lipid peroxidation and activation of proteases, which trigger
the cell-death cascade. Furthermore, highly toxic peroxynitrite
ions (ONOO−) produced via O2

− react with nitric oxide (NO)
to damage proteins, nucleic acids, and phospholipids in cells
by circumventing antioxidative enzymes (Cadet and Brannock,
1998; Figure 1).

Mitochondria represent a major site of METH-induced ROS
production within neural cells (Dawson and Dawson, 2017).
Mitochondria, which are intracellular organelles composed of
two bilayers, act as the energy generators of cells through
oxidative phosphorylation and adenosine triphosphate (ATP)
production. Defects in mitochondrial respiration have been
implicated in neuronal death and several neurodegenerative
diseases (Dawson and Dawson, 2017). Several studies have
suggested that dysfunction of mitochondrial metabolism plays
a critical role in METH-induced dopaminergic neurotoxicity
through inhibition of the Krebs cycle and electron transport
chain (ETC) as well as by promotion of oxidative stress; these
effects result in imbalance between oxidation and antioxidation
in neural cells (Annepu and Ravindranath, 2000; Beer et al.,
2004; Shin et al., 2017). ROS and reactive nitrogen species (RNS)
generated by DA oxidation inhibit several key enzymes directly
as complexes I, II, III, and IV of the ETC, causing mitochondrial
dysfunction and damage to DNA structure as well as loss of
genetic information (Burrows et al., 2000; Brown et al., 2005;
Bachmann et al., 2009; Moratalla et al., 2017; Moszczynska and
Callan, 2017). In turn, inhibition of ETC components by METH
enhances O2

− production due to electron leakage. This positive-
feedback loop aggravates disturbance of mitochondrial energy
metabolism and neurotoxicity.

The changes in mitochondrial enzymes in response to METH
remain controversial. Klongpanichapak et al. (2006) found
significant inhibition of expression of striatal complex I following
repeated METH treatment in mice. In accordance with this
finding, Thrash et al. (2010) and Thrash-Williams et al. (2013)
showed that intraperitoneal administration of METH decreased
the activity of striatal complex I significantly but had no
significant effect on the activity of complex IV in vivo or in vitro.
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FIGURE 1 | The illustration summarizes the main mechanisms of Methamphetamine (METH)-elicited neurotoxic effects, which include DA oxidation, excessive
glutamate production, generating a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and subsequently leading to mitochondrial
dysfunction and ER stress. The neuroinflammation mediated by microglial cells also contribute to the neuronal damage by attacking it with inflammatory cytokines.
As a result of the suffering from METH, the neuronal cells may undergo terminal degeneration or apoptosis. In particular, due to the neurotoxicity of the drug, long
time abuse of METH often cause the decrease of dopaminergic markers such as dopamine (DA), tyrosine hydroxylase (TH), and dopamine transporter (DAT).

Several researchers have found that acute exposure to METH
induces a decrease in glutathione (GSH) levels and an increase
in levels of oxidized glutathione (GSSG) in the striatum; this
leads to a reduction in the GSH/GSSG ratio, which is essential
for the inhibition of striatal complex I activity (Annepu and
Ravindranath, 2000; Beer et al., 2004). In contrast, a regimen of
rapid (<1 h) binge administration of METH decreased complex
II activity in the striatal brain regions, but did not decrease
the activity of complex I in vivo (Brown et al., 2005). Killinger
et al. (2014) also found that a binge regimen of METH every
2 h, via four successive intraperitoneal injections, did not alter
the levels of mitochondrial complex I in striatal synaptosomes
in vivo. An in vitro study showed no significant alterations
in the protein content of mitochondrial respiratory complex I;
however, METH treatment caused time-dependent reductions in
the protein contents of complex IV (Wu et al., 2007). Although
the reactions of the mitochondrial ETC differ according to the
route of drug delivery and modes of METH administration,
these studies suggest that METH inhibits the activity of the

mitochondrial respiratory chain complex; this effect is considered
to play a crucial role in the pathogenesis of several psychiatric
disorders such as depression, bipolar disorder and schizophrenia
(Manji et al., 2012).

In recent years, dynamic disorders of mitochondria have been
reported to result from mitochondrial dysfunction triggered
by METH (Lenzi et al., 2012; Lin et al., 2012). In general,
mitochondrial biogenesis coupled with dynamic fusion and
fission maintain healthy mitochondria, whereas damaged
mitochondria are degraded by mitophagy (Michel et al., 2012).
The key molecules of mitochondrial biogenesis are peroxisome
proliferator-activated receptor gamma coactivator-1α (PGC-
1α), nuclear respiratory factors (NRFs), and mitochondrial
transcription factor A (TFAM) (Lee and Wei, 2005). PGC-1α

regulates and coordinates the activity of NRF and TFAM to
serve as a nutrient-sensing system that increases mitochondrial
biogenesis (Nervina et al., 2006). Using a repeated escalating
METH regimen in rats, Valian et al. (2017) detected an increase
in expression of PGC1α and TFAM in the substantia nigra,
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but not the striatum. However, Beirami et al. (2018) revealed a
significant decrease in expression of PGC-1α, NRF, and TFAM
in the hippocampus of rats with a different repeated METH
administration regimen. These inconsistent results suggest that
the indicators of mitochondrial biogenesis appear to be expressed
aberrantly in various brain regions or according to the route of
drug administration.

The regulation of mitochondrial fusion is primarily through
mitofusin-1, mitofusin-2, and optic atrophy protein 1 (Opa1),
whereas mitochondrial fission is regulated by mitochondrial
fission 1 protein (Fis1) and dynamin-related protein 1 (Drp1)
(Ding et al., 2012). In in vitro studies, Parameyong et al.
(2013, 2015) revealed that METH decreased cell viability
significantly and increased the levels of Fis1 and Drp1 in
isolated mitochondria, whereas Drp1 expression in the cytosol of
METH-treated cells showed no significant differences compared
with the control group. Interestingly, Borgmann and Ghorpade
(2018) reported a larger and more rod-shaped morphology and
dysfunction of mitochondria in astrocytes during prolonged
exposure to low levels of METH. This may have been mediated
by inhibition of phosphorylation of Drp1 and an increase in
mitofusin levels, implying an overall increase in the number of
mitochondria in astrocytes (Borgmann and Ghorpade, 2018).
Considering the difference of dose and time points of METH
used in these studies, the regimen of drug administration may
be the main cause of the alteration in mitochondrial dynamics.
Nonetheless, the mechanisms of mitochondrial impairment
induced by METH have not been elucidated to date.

Oxidative stress occurs primarily in mitochondria and leads to
mitochondrial dysfunction by attacking mitochondria in the CNS
(Thrash-Williams et al., 2016). Accordingly, METH-induced
mitochondrial damage may contribute to dopaminergic toxicity
by enhancing susceptibility to oxidative stress and promoting
the apoptosis of neural cells. This phenomenon is of clinical
relevance as it eventually results in devastating neuropathological
effects in the brain due to mitochondrial impairment, subsequent
caspase activation, and apoptotic neuronal death following
METH administration (Nguyen et al., 2015; Chamorro et al.,
2016; Xiong et al., 2017). For instance, METH exposure has
been shown to increase expression of the pro-apoptotic proteins
Bax, Bad, and Bid (Jayanthi et al., 2001; Bachmann et al.,
2009; Beauvais et al., 2011; Raineri et al., 2012) and decrease
the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL
(Jayanthi et al., 2001; Beauvais et al., 2011; Raineri et al., 2012).
The decrease in the Bcl-2/Bax ratio in mitochondrial fractions
has been shown to promote cytochrome c (Cyt c) release from
mitochondria (Qiao et al., 2014; Nam et al., 2015). Subsequently,
Cyt c becomes part of the apoptosome with apoptotic peptidase
activating factor-1 (Apaf-1) and induced sequential activation of
the apoptosis executioners caspase-3, -6, and -7 (Shin et al., 2017).

Several studies have reported that multiple molecules are
involved in the apoptotic death of neurons induced by METH.
For instance, Kim et al. (1999) found that inhibition of protein
kinase C delta (PKCδ) or overexpression of a cleavage-resistant
PKCδ mutant protected against METH-elicited apoptosis in
mesencephalic dopaminergic cell cultures in vitro (Lin et al.,
2012). In follow-up studies, they showed that PKCδ inhibition

may rescue METH-elicited mitochondrial burden, pro-apoptosis,
and dopaminergic degeneration, implying that PKCδ is an
important gene involved in METH-induced mitochondrial
dysfunction and apoptosis in dopaminergic neuronal cells (Nam
et al., 2015; Nguyen et al., 2015; Shin et al., 2016; Mai et al., 2018).

Recently, Chen et al. (2016) reported that p53-upregulated
modulator of apoptosis (PUMA) was involved in the
mitochondrial apoptotic pathway induced by METH in
PC12 cells and SH-SY5Y cells. They suggested that PUMA
interacts with Bax and Bcl-2 in mitochondrial membranes to
drive Cyt c relocation from mitochondria to the cytoplasm,
causing activation of caspase-3, poly-ADP-ribose polymerase
(PARP) and apoptosis (Chen et al., 2016). Furthermore, through
microinjection of anti-micro (mi)R143 into the hippocampi
of mice, Zhang et al. (2016) revealed that miR143-dependent
PUMA upregulation reversed the METH-induced decrease in
microglial survival via regulation of apoptosis and autophagy. In
addition to miRNAs, long non-coding RNAs (lncRNAs) appear to
participate in METH-induced neuronal apoptosis by regulating
the coding genes of neurons. In our recent investigation, we
reported that several lncRNAs were expressed differentially
in primary cultured prefrontal cortical neurons treated with
METH. Further, using bioinformatics, we hypothesized that
lncRNA GAS5 modulates downstream molecules involved in
p53-mediated neuronal apoptosis, although more direct evidence
from in vivo and in vitro studies is needed (Figure 2; Xiong et al.,
2017).

Excitotoxicity
Glutamate (Glu), which is the main excitatory neurotransmitter
in the brain, has been reported to have an important role
in METH-induced excitotoxicity (Moratalla et al., 2017).
Glu accumulation over-activates various downstream signaling
pathways, mostly involving a surge in Ca2+ influx, to trigger
an increase in intracellular Ca2+ concentration (Chamorro
et al., 2016). Specifically, excessive Glu activates N-methyl-
D-aspartate receptors (NMDARs) and metabotropic glutamate
receptors (mGluRs) (Tseng et al., 2010). Activation of mGluRs
induces protein kinase C (PKC) phosphorylation and upregulates
NMDAR function, leading to an increase in Ca2+ influx, which
acts as a pervasive and pluripotent second messenger (Bahar et al.,
2016). Excess intracellular Ca2+ triggers a cascade of reactions
within cells to activate protein kinases, phosphatases, and nitric
oxide synthase (NOS). The latter subsequently promotes NO
production (Tseng et al., 2010), which causes endoplasmic
reticulum (ER) stress, activation of apoptotic pathways and,
eventually, METH-produced neurotoxic sequelae (Moratalla
et al., 2017).

In particular, ER stress occurs under various toxic stimuli
along with accumulation of misfolded proteins and activation
of unfolded protein response (UPR), which removes unfolded
and/or misfolded proteins in the ER, thereby recovering ER
homeostasis. ER stress leads to the activation of three ER-
resident transmembrane proteins: activating transcription factor-
6 (ATF6), inositol requiring protein-1 (IRE1) and protein kinase
RNA-like ER kinase (PERK) (Szegezdi et al., 2006; Hetz, 2012).
The roles of these three signaling pathways involve a reduction
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FIGURE 2 | This model illustrates the oxidative stress and mitochondrial dysfunction involved in METH-induced neurotoxic consequences. METH exposure produced
a considerable amount of ROS and RNS, named OH−, H2O2, O2

−, NO, and ONOO−. The excessive oxidative stress inhibits the key enzymes of the ETC, causing
mitochondrial dysfunction that leads to mitochondrial fission and mitophagy. Particularly, the impaired mitochondria trigger the increase of Bax and decrease of Bcl-2
and sequential cytochrome c (Cyt c) release, inducing activation of executioner caspases-3 and apoptosis which might be regulated by some molecules such as
p53-upregulated modulator of apoptosis (PUMA), protein kinase C delta (PKCδ), miRNAs, and long non-coding RNAs (lncRNAs) which are reviewed in the text.

in protein synthesis and expression of specific genes to cope
with proteotoxic stress (Wongprayoon and Govitrapong, 2017).
During prolonged ER stress, IRE1, PERK, and ATF6 may
induce pro-apoptotic signaling through activation of C/EBP
homologous protein (CHOP), which subsequently leads to the
initiation of ER stress-mediated apoptosis through regulation of
Bcl-2 family members (Bahar et al., 2016). ER stress leads to
apoptosis, including various mechanisms involving activation of
death receptors and participation of the mitochondria-dependent
cell death pathway (Sano and Reed, 2013). It has been shown
that neurotoxic doses of METH induce expression of several ER
stress genes, including those that encode the 78-kDa glucose-
regulated protein (GRP-78), CHOP, and ATF4, in the rat striatum
(Jayanthi et al., 2004; Beauvais et al., 2011). The ER stress induced
by METH appears to be associated with dopaminergic toxicity
and activation of the DA D1 receptor (Beauvais et al., 2011).
Recently, Wongprayoon and Govitrapong (2017) suggested that
METH-induced apoptotic death is mediated (at least in part)
through an ER-dependent mechanism involving CHOP, spliced
X-box binding protein 1 (XBP1), caspase-12, and caspase-3
in vitro. In addition, exposure to relatively high-dose METH
increases nuclear protein 1 (Nupr1) expression, which promotes

dopaminergic neuronal apoptosis and autophagy through a
Nupr1/CHOP pathway (Figure 3; Xu X. et al., 2017).

Neuroinflammation
Reactive neurogliocytes are considered to be sensitive markers
of nerve damage, which is a common response to CNS injury
(Ares-Santos et al., 2013). The neuroinflammation caused by
METH shows a close correlation with microglial activity as it is
activated rapidly after METH administration in DA-innervated
areas. Microglial activation following METH exposure may
result from the neuronal release of damage-associated molecular
patterns (DAMPs) (Xu E. et al., 2017). For instance, high-mobility
group box-1 (HMGB1) expression was found up-regulated
in response to METH treatment and shown to mediate the
neuroin?ammatory response in the nucleus accumbens, ventral
tegmental, and prefrontal cortex of the brain (Frank et al.,
2016). Thomas and colleagues suggested that METH-induced
microglial activation was regulated by DA-quinone (DAQ), a
metabolite of DA, because it activated microglia dose- and time-
dependently, and because inhibition of DAQ formation blocked
(at least partially) microgliosis (Thomas et al., 2008). The vital
role of DA in neuroinflammation was also evidenced by the
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FIGURE 3 | The image shows the excitatory toxicity model of METH. METH-mediated increase in extracellular glutamate level leads to stimulation of mGluR1/5 or
N-methyl-D-aspartate receptors (NMDARs). mGluR1/5-induced protein kinase C (PKC) activation phosphorylates and upregulates NMDAR function, leading to Ca2+

influx. The signaling results in enhancement of cytosolic Ca2+ level associated with nNOS activity, leading to NO production. NO acts as an ER stressor, and then,
UPR signaling pathway would be initiated in response to ER stress through three ER transmembrane mediators [inositol requiring protein-1 (IRE1)α, activating
transcription factor-6 (ATF6), and protein kinase RNA-like ER kinase (PERK)]. Subsequently, the mediators lead to special genes transcription as CHOP, GRP78, and
Caspase 12 which triggering a series of cascade involving apoptosis and autophagy.

observation that excessive DA released into the synaptic cleft
may stimulate regional microglia directly and trigger a neurotoxic
signal cascade (Thomas et al., 2008). The underlying mechanism
of microglial activation induced by METH is related to the Toll-
like receptor 4 (TLR4) located on microglia, which is involved
in the immune surveillance of pathogens and exogenous small
molecules (Bachtell et al., 2015). Activation of microglia may also
be mediated through the sigma-1 receptor, which involves ROS
generation and activation of the mitogen-activated protein kinase
(MAPK) and PI3K/Akt pathways in the neurotoxicity of METH
(Chao et al., 2017).

Activated microglial cells secrete not only neurotrophic factors
to prolong neuronal survival, but also cytotoxic mediators and
cytokines that induce inflammation and neurotoxicity (Zhang
et al., 2016). Studies have suggested that METH activates
nuclear factor-kappa B (NF-κB), inducing its transfer to the
nucleus and promoting the transcription of pro-inflammatory
cytokines in microglia (Ojaniemi et al., 2003; Shah et al., 2012;

Snider et al., 2013). This results in the release of various pro-
inflammatory factors such as interleukin 6 (IL-6), interleukin
1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemo-
attractant protein 1 (MCP-1), and cellular adhesion molecule
(ICAM-1) (Yamaguchi et al., 1991; Nakajima et al., 2004;
Goncalves et al., 2008; Snider et al., 2012), which are
thought to play key roles in METH-induced neuroinflammation
(Figure 4). Interestingly, astrocytes (which protect neurons
and promote sprouting) are activated because glial fibrillary
acidic protein (GFAP) immunoreactivity increases in the
striatum and indusium griseum upon METH treatment, thereby
implying complex mechanisms involving guidance molecules
and cytotoxic mediators in the neurotoxic consequences of
METH (Ares-Santos et al., 2013; Moratalla et al., 2017).

Long-Term Neurotoxicity
The effects of long-term exposure to METH are different from
those of acute injury. The former is characterized by impairment
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FIGURE 4 | METH produces neuronal damage through microglia associated neuroinflammation in addition to direct actions on neurons. METH damages
presynaptic terminals of neurons causing the production of DA-quinone (DAQ) and sequential ROS; these facilitate microglial activation. The activated microglia then
increase production of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 1β (IL-1β), monocyte chemo-attractant protein
1 (MCP-1), ICAM-1, ROS, and RNS, promoting neuroinflammation and neuronal injury. The damaged neurons release DAMPs that act on microglia, and aggravate
the inflammation and eventual neurotoxicity through the positive feedback mechanism.

of expression of tyrosine, tyrosine hydroxylase (TH), DAT, and
serotonin transporters (SERT), as well as DA depletion, decrease
in the density of DA D2 receptors, hypo-dopaminergic status,
and neuronal degeneration (Barr et al., 2002). In Wilson et al.
(1996) observed decreased expression of DA, TH, and DAT in
the striatum of chronic METH abusers post mortem, which might
explain the dysphoric effects of the drug and dose escalation
observed in some METH users (Wilson et al., 1996). The
decrease in levels of dopaminergic markers in the striatum was
shown by other studies, and could last for months to years
after METH abstinence in human abusers of METH (Volkow
et al., 2001a,b; Kitamura et al., 2007). Besides the striatum, a
long-lasting decrease in DAT levels was also observed in the
nucleus accumbens and prefrontal cortex of the brain (Davidson
et al., 2001; Sekine et al., 2001). In accordance with this study,
several previous reports have demonstrated that the density of
DAT, VMAT2, SERT, and DA D2 receptors is significantly lower
than that in healthy controls according to positron emission
tomography (PET) scans of the brains of METH abusers (Sekine
et al., 2001; Volkow et al., 2001b, 2015; Kish et al., 2009;
Boileau et al., 2016). Similar to that observed in METH abusers,

significant and sustained reductions in the levels of DA, TH,
and DAT were shown following single, high-dose, or binge
administration of METH in animal models (Figure 1; Hassan
et al., 1973; McConnell et al., 2015; Nguyen et al., 2015). These
results suggest persistent DA deficits as well as structural and
metabolic dysfunctions in specific brain regions that correlate
with several types of behavioral neurologic sequelae induced by
METH (Moszczynska and Callan, 2017).

When using a regimen that involves gradual increases in
METH administration to rats to mimic progressively larger
doses of the drug used by some human abusers of METH,
METH preconditioning protects against DA depletion caused
by binge METH challenge in the brain (Cadet et al., 2011;
Shen et al., 2016; Li et al., 2017). Further, chronic injections
of METH activate programs that prevent DA toxicity without
influencing drug-induced pathologic changes in serotoninergic
systems (Cadet et al., 2009). The plethora of exciting applications
of preconditioning in neuroprotection (Shen et al., 2016; Li
et al., 2017) reflect differences in the mechanisms involved in
METH toxicity on monoaminergic systems between the various
routes of METH administration. For instance, Cadet et al. (2011)
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reported differential METH-induced gene expression in the
striatum, including brain-derived neurotrophic factor (BDNF),
heme oxygenase-1 (HO-1) and heat shock protein 27 (Hsp27), in
the absence and presence of METH preconditioning and between
various brain regions. This result implies that the brain cannot
be considered as a homogeneous structure when assessing the
molecular effects of METH preconditioning (Cadet et al., 2011;
Table 1).

TREATMENT OF METH-INDUCED
NEUROTOXICITY

Targeting Oxidative Stress and
Mitochondrial Toxicity
Preclinical and clinical investigations have been applied to seek
effective and efficacious pharmacologic strategies for treatment
of METH neurotoxicity. As stated above, METH interferes with
DA reuptake and leads to DA oxidation; this leads to the
production of ROS and RNS, which trigger degeneration of
dopaminergic terminals and neuronal apoptosis. This pathway
demonstrates that oxidative stress is one of the main mechanisms
through which METH injures the CNS. Accordingly, antioxidant
pharmacotherapies have been applied to explore efficacious
strategies for the protection of neural cells suffering from
oxidative stress generated by METH.

For example, vitamin C (Vit.C) reduces the production of
free radicals, maintains GSH homeostasis, and induces the
expression of HO-1, which is critical in limiting cellular damage
by maintaining redox homeostasis within the brain (Rice, 2000;
Hediger, 2002). Huang et al. (2012) found that pretreatment with
Vit.C enhanced METH-elicited HO-1 expression and attenuated
METH-induced ROS production in neuronal/glial co-cultures.
Conversely, pharmacologic inhibition of HO-1 activity abolished
the suppressive effects of Vit.C (Huang et al., 2012). Recently,
Huang et al. (2017) found that treating cells with Vit.C before
METH exposure attenuated production of ROS and Beclin 1
time-dependently, suggesting that the protective effect of Vit.C
against METH toxicity is achieved via the attenuation of ROS
production and apoptosis, and that HO-1 induction by Vit.C
serves as a strategy for alleviation of METH neurotoxicity.
However, an in vivo study to test the neuroprotective action of
Vit.C in terms of METH exposure has not been conducted.

Selenium is an essential mineral found naturally in water,
soil, and food. It is often used as an antioxidant and dietary
supplement (Wang et al., 2017). In an in vivo study, Kim
et al. (1999) found that selenium supplementation for 13 weeks
significantly blocked a METH-induced increase in the lipid-
peroxidation marker malondialdehyde (MDA), decreased the
ratio of GSH/GSSG, and appeared to attenuate the loss of
DA in the striatum and substantia nigra. Consistently, Imam
et al. (1999) demonstrated that selenium pretreatment in
drinking water for 1 week prevented (at least in part) the
depletion of striatal DA induced by METH exposure in rodent
brains. Further in vitro research supported their findings by
showing that the increased oxidative stress induced by METH

is reversed upon the treatment of SH-SY5Y neuronal cells
with selenium, possibly through a reduction in glutathione
peroxidase (GPx) levels. This effects is attributed to the
incorporation of selenium into the amino acid selenocysteine by
GPx1 and GPx4, which have antioxidant functions (Barayuga
et al., 2013). However, in view of the narrow range between
the therapeutic and toxic doses of selenium, as well as the
dependence of the effect on the applied formulation, dose, and
method of treatment, supplementation should be undertaken
with appropriate precautions and avoidance of the side-effects of
selenium (Ungvari et al., 2014; Ghosh et al., 2015; Kielczykowska
et al., 2018).

Considering that mitochondrial dysfunction plays
an important part in METH-induced neurotoxic insult,
improvement of mitochondrial function might ameliorate the
oxidative stress and neural damage associated with this disorder.
The mood stabilizers lithium and valproate attenuate a series
of METH-induced changes, such as reduction of mitochondrial
Cyt c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, activity
of mitochondrial Cyt c oxidase, and the expression of several
proteins related to the apoptotic pathway. These phenomena
illustrate that lithium and valproate enhance mitochondrial
function and protect against the mitochondria-mediated toxicity
of METH (Bachmann et al., 2009). Feier et al. (2013) found that
lithium and valproate attenuated the effects of METH on the
activity of enzymes in the Krebs cycle, thereby alleviating the
impairment of respiratory chain complex activity (complexes
I, II, III, and IV). In their study, the effects of lithium and
valproate on some enzymes and in some brain areas were not
always identical. For instance, interventions using lithium and
valproate reversed the decrease in complex II activity in the
hippocampus and striatum of rats; however, in the amygdala and
prefrontal cortex, valproate (but not lithium) increased complex
II activity, notably in the METH group. This region-specific
effect on oxidative stress is in accordance with the previously
shown heterogeneity of oxidative-stress parameters across
brain regions and treatment regimens (Musavi and Kakkar,
2003).

Nicotinamide, which is a co-factor in the ETC, has been
reported to be an efficacious treatment for mitochondrial
encephalopathies, possibly through energy repletion (Penn et al.,
1992). Huang et al. (1997) revealed that nicotinamide treatment
before METH injection attenuated reductions in striatal DA
and ATP content 5 days later in vivo. These findings suggest
a close relationship between METH-induced perturbations of
energy metabolism and dopaminergic neurotoxicity, and that
potential therapeutic strategies might bypass bioenergetic defects
if defective mitochondrial energy metabolism has a role in
neurotoxicity. Inconsistently, Stephans et al. (1998) found that
nicotinamide perfusion during METH administration had no
effect on the long-term toxicity induced by METH. Given
the localized effect of nicotinamide on nerve terminals (i.e.,
striatum), it is likely to produce consequences vastly different
from those produced by systemic administration of METH. The
distinct routes of administration in the two studies, as well as
altered pharmacokinetics and bioavailability, might account for
this discrepancy.
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TABLE 1 | The summary of common METH treatment protocols in vivo or in vitro.

Species METH dosing regimen Key results Reference

SH-SY5Y cells 1.0 mM for 24 h Cell death and mitochondrial dysfunction Parameyong et al., 2013, 2015

SH-SY5Y cells 1.5 mM for 12 h Mitochondrial and oxidative damage Nam et al., 2015

SH-SY5Y cells 1.5 mM for 24 h ER stress and cell apoptosis Wongprayoon and Govitrapong, 2017

SH-SY5Y cells 1.68 mM for 24 and 48 h Oxidative stress and cell death Wu et al., 2007

SH-SY5Y cells 2.0 mM for 24 h Neuron apoptosis Chen et al., 2016

PC12 cells 3.0 mM for 24 h Neuronal apoptosis and autophagy Qiao et al., 2014; Chen et al., 2016;
Xu X. et al., 2017

Astrocytic cells 500 µM for 24 h Neuroinflammation Shah et al., 2012

Human astrocytes 50 nM, 5 µM, 100 µM, or 500 µM, for
24 h to 16 days

Oxidative stress Borgmann and Ghorpade, 2018

Primary cultures of rats
embryonic cortical neurons

4.0 mM treatment for 24 h Necroptosis Xiong et al., 2016

Rat mesencephalic
Dopaminergic neuronal cell line
(N27 cells)

2 mM for 24 h or 0.5 mM for 1 week Autophagy Lin et al., 2012

Mice A single dose of 3 mg/kg i.p. Hypermotor activity Snider et al., 2012

Mice A single dose of 30 mg/kg i.p. Neuroinflammation Goncalves et al., 2008

Mice A single dose of 40 mg/kg Cell apoptosis Jayanthi et al., 2001

Mice 1 mg/kg s.c., every day for 7 days Cognitive deficits Hsieh et al., 2014

Mice 2 mg/kg i.p. ×4, at 24 h intervals Memory impairment Hsieh et al., 2014

Mice 4 mg/kg i.p. ×4, at 2 h intervals Drug dependence, extracellular DA
release

Nakajima et al., 2004

Mice 4, 6, or 8 mg/kg i.p. ×4, at 2 h intervals Hyperthermia, hypoactivity, activated
striatal glia

McConnell et al., 2015

Mice 5 mg/kg i.p. ×4, at 2 h intervals Neuroinflammation, microglial activation Thomas et al., 2008; Raineri et al., 2012

Mice 8 mg/kg i.p. ×4, at 2 h intervals Dopaminergic deficit Nam et al., 2015

Mice 10 or 20 mg/kg ×2, at 2 h intervals Oxidative stress Thrash et al., 2010

Mice 10 mg/kg i.p. ×4, at 2 h intervals Oxidative stress Zhang et al., 2012

Mice 10 mg/kg i.p. ×2, at 2 h intervals Dopamine depletion, excitotoxicity Thrash-Williams et al., 2013

Mice 10 mg/kg i.p.×2, at 2 h intervals Oxidative stress, mitochondrial
dysfunction

Thrash-Williams et al., 2016

Mice 15 mg/kg i.p. every day for 7 days Dopaminergic markers decreases Klongpanichapak et al., 2006

Mice 30 mg/kg i.p. ×4, at 2 h intervals Microglial activation Chao et al., 2017

Mice 60 mg/kg, i.p. twice a day for four
consecutive days

Oxidative stress Shin et al., 2016

Rats A single dose of 10 mg/kg i.p. Neuroinflammation Frank et al., 2016

Rats 0.001, 0.03, 0.1 mg/kg/day
self-administration for three consecutive
days

Microglial activation, neuroinflammation Snider et al., 2013

Rats 0.3 and 1.0 mg/kg i.v. for 2 weeks METH addiction Baumann et al., 2002

Rats 2.5 mg/kg s.c., twice per day, for 7 days Decreased GABA, glutamate, and
glutamine levels in the PFC

Hsieh et al., 2014

Rats 5 mg/kg i.p. ×6, at 1 h intervals Dopamine depletion Cadet et al., 2009

Rats 10 mg/kg i.p. ×4, at 2 h intervals Mitochondrial dysfunction Burrows et al., 2000; Brown et al., 2005

Rats 10 mg/kg i.p. ×4, at 2 h intervals Striatal ER and mitochondrial stress
pathways

Beauvais et al., 2011

Rats 15 mg/kg i.p. ×8, at 12 h intervals Hepatic injury, oxidative stress, cell
autophagy and apoptosis

Xie et al., 2018

Rats 15 mg/kg i.p. ×4, at 2 h intervals Monoaminergic terminal loss LaVoie and Hastings, 1999

Rats 15 mg/kg i.p. ×8, at 12 h intervals Neuronal apoptosis and autophagy Xu X. et al., 2017

Rats Repeated escalating doses: 1–14 mg/kg
i.p., twice a day, at 6 h intervals, for
14 days

Dopaminergic neurons deficits Valian et al., 2017

Rats Repeated escalating doses: 1–10 mg/kg,
twice a day, at 5 h intervals, for 10 days

Cognitive deficits Beirami et al., 2018

Monkeys 2 mg/kg i.m. ×4, at 2 h intervals Oxidative stress Hashimoto et al., 2004

i.p., intraperitoneal; i.v., intravenous; s.c., subcutaneous; i.m., intramuscular; ER, endoplasmic reticulum; METH, Methamphetamine.
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It has been reported that METH users experience a higher
risk of developing Parkinson’s disease despite the different brain
areas affected by METH and Parkinson’s disease (Callaghan
et al., 2010, 2012; Curtin et al., 2015). Talipexole is used as
an antiparkinsonian agent in Japan. It was shown to react
strongly with OH−, with similar reaction kinetics against METH
neurotoxicity in vitro and in vivo, indicating the potency of the
neuroprotective action of talipexole due to its scavenging of OH−
(Mizuno et al., 1993; Kondo et al., 1998). In addition, Kish et al.
(2017) suggested that, in principle, the striatal DA deficiency
caused by METH may be corrected by DA substitution if safety
and patient selection could be resolved. We hope that these
findings will prompt researchers to investigate the potential of
antiparkinsonian drugs and therapies targeted at specific brain
regions for amelioration of the effects of METH on the brain.

Targeting Excitotoxicity
Excitatory Receptor Antagonists
As discussed above, the excitatory toxicity of METH is closely
related to the high release of Glu, which activates NMDARs and
GluRs, leading to the influx of excess Ca2+ and triggering a
series of intracellular cascade reactions. Therefore, several drugs
targeting these receptors have been explored in recent years.

For example, melatonin is a potent protector against
oxidative damage and regulates the movement of free Ca2+

intracellularly in the CNS (Suwanjang et al., 2016; Xu et al.,
2016). Using a melatonin preparation, Singhakumar et al.
(2015) demonstrated that the suppression of neuronal nitrogen-
activated protein kinase and alteration of the NMDAR subunits
NR2A and NR2B induced by METH were attenuated in the
hippocampus of mice. Ekthuwapranee et al. (2015) suggested
that melatonin reduced the METH-elicited inflammation,
autophagy, and death of hippocampal progenitor cells in vitro.
These findings are of interest to clinicians as melatonin
protects against mitochondrial dysfunction, apoptosis,
and dopaminergic degeneration, which are considered to
contribute to several psychosomatic manifestations in METH
abusers.

N-acetylcysteine (NAC) is a pro-glutamatergic compound.
It is of considerable interest because NAC attenuates the
excitatory toxicity of Glu by standardizing extracellular Glu
levels in the nucleus accumbens via stimulation of the cystine–
glutamate antiporter (Mcketin et al., 2017). Other actions of
NAC include antioxidant activity, modulation of DA release,
improvement of mitochondrial dysfunction, and reductions
in levels of pro-inflammatory cytokines (Scofield and Kalivas,
2014). Several investigators have examined the effects of
NAC in METH-exposure models owing to its broad efficacy
against neuropsychiatric disorders involving schizophrenia,
bipolar disorder, depression, memory impairments, and cognitive
sequelae (Berk et al., 2012, 2014; Rapado-Castro et al., 2017).
They found that pre-treatment with NAC significantly improved
the reduction in density of DA transporters induced by high-
dose METH treatment in mice, rats, and monkeys using PET
(Hashimoto et al., 2004; Zhang et al., 2012). These results suggest
that NAC reduces neurotoxic damage and possibly alleviates
associated neuropsychiatric symptoms in METH abusers; these

data were supported by clinical findings (Gray et al., 2012; Prado
et al., 2015). Nonetheless, full-scale clinical trials to establish
definitively if NAC has a therapeutic benefit (and the nature of
this benefit) are needed.

Other chemical compounds targeting excitatory receptors
have also shown therapeutic potential against METH. Baldwin
et al. (1993) found that dizocilpine, a non-competitive NMDAR
antagonist, acted as a potent anti-convulsant and protected
dopaminergic neurons in the striatum against METH-induced
neurotoxicity in vivo. Ma et al. (2013) reported that topiramate
showed considerable potential in reducing the excitatory toxicity
of METH. They hypothesized that topiramate has a complex
mechanism of action that includes antagonism of several Glu
receptors, blockade of voltage-dependent Na+ channels, and
inhibition of carbonic anhydrase (Ma et al., 2013). In addition,
Baptista et al. (2012) suggested that neuropeptide Y, with
receptors Y1, Y2, and Y5, reduce Glu release to protect neurons
from METH excitotoxicity. Activation of Y1 or Y2 receptors
prevents METH-induced cell death, and the Y1 subtype is
responsible for blocking the decrease in neuronal differentiation
induced by METH (Baptista et al., 2012).

Neuronal (n)NOS Inhibitors
The excitability of METH has been shown to be closely related
to ONOO− generation, which can be protected selectively
by nNOS inhibitors, ONOO− scavengers, or decomposition
catalysts (Imam et al., 2000). nNOS inhibitors, such as 7-
nitroindazole (7-NI) (Di Monte et al., 1996; Virmani et al., 2003),
AR-R17477AR (Sanchez et al., 2003), S-Methylthiocitrulline,
3-bromo-7-nitroindazole (Itzhak et al., 2000), and the new
nitrone-based radical scavenger S34176 (Lockhart et al., 2005),
have shown significant protective effects and been used in
investigations of METH-evoked neurotoxicity. Callahan and
Ricaurte (1998) found that 7-NI generated hypothermic effects
and afforded total protection against the DA depletions elicited
by METH in the striatum of mice at 20◦C. However, at 28◦C,
7-NI produced minimal effects on body temperature and failed
to alleviate METH-induced DA reductions. This findings suggest
that the neuroprotective action of 7-NI was likely related to its
ability to induce hypothermia (Callahan and Ricaurte, 1998).
Itzhak et al. (2000) revealed that pretreatment with 7-NI before
METH injection afforded protection against the depletion of
dopaminergic markers induced by METH, but did not affect
persistent hyperthermia at a low dose. These data suggest that
diminished production of NO by nNOS inhibitors, rather than
thermoregulation, might prevent METH-produced neurotoxicity
(Itzhak et al., 2000). However, the detailed mechanism of action,
such as the possible role of NO regulation by 7-NI, has not been
elucidated.

Anti-neuroinflammation
The inflammatory response induced by activated microglia plays
a crucial role in the neurotoxicity of METH. Hence, blockade
of microglial activation seems to be a promising method for
the suppression of METH-induced neurotoxic effects (Abdul
Muneer et al., 2011). The antibiotic minocycline has anti-
inflammatory and neuroprotective effects in the CNS that are
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TABLE 2 | The summary of pharmacotherapy approaches in METH-induced neurotoxicity in vivo or in vitro.

Agent Mechanism of
action

Species METH dosing regimen Key results Reference

Vit. C A scavenger of free
radicals

Rat cortical
neuron-glia cultures

5 mM for 1, 3, 6, 12, 18, and
24 h

• Attenuated METH-induced
ROS production

Huang et al., 2012

Selenium An antioxidant Mice 10 mg/kg i.p.×4, at 2 h.
intervals

• Attenuated METH-induced
DA depletion
• Attenuated METH-induced

reductions in GSH level,
GSH/GSSG ratio, and
depletion of DA

Imam et al., 1999;
Kim et al., 1999

Selenium An antioxidant SH-SY5Y cells 100 mM for 24 h • Increased the GPx1 and
GPx4 proteins levels
• Limited METH-induced ROS

production

Barayuga et al.,
2013

Lithium/valproate Regulation of Cyt c,
Bcl-2/Bax ratio, and
apoptosis proteins

Rats No exact dose • Attenuated METH-induced
decreases in mitochondrial
Cyt c and Bcl-2/Bax ratio
Inhibited the METH-induced
reduction of COX activity

Bachmann et al.,
2009

Talipexole (OH−)-scavenging
and D2 agonist
activity

Mice 5mg/kg i.p.×4, at 2 h. intervals • Attenuated METH-induced
reduction of TH activity

Kondo et al., 1998

Melatonin An antioxidant and
regulates free calcium
ions movement
intracellularly

Hippocampal
neural progenitor
cells

Concentration range: 50, 100,
300, 500, 600, 800, and
1000 µM for 3 days

• Ameliorated METH-induced
decrease in proliferation

Ekthuwapranee
et al., 2015

Dizocilpine A non-competitive
NMDA antagonist

Rats 15 mg/kg i.p.×4, at 2 h.
intervals

• Provided substantial
protection against neurotoxic
loss of striatal DA and 5-HT

Baldwin et al., 1993

NAC Stimulates the
cystine–glutamate
antiporter

Mice 1 mg/kg/day, s.c. for 7 days • Suppressed METH-induced
elevation of extracellular DA
levels

Miyamoto et al.,
2014

Topiramate Antagonism of
several GluRs,
blockade of
voltage-dependent
sodium channels

volunteers No exact dose • Increased GABA activity,
antagonism of several GluRs

Ballester et al.,
2017

Neuropeptide Y Antagonism of
several GluRs,
blockade of
voltage-dependent
sodium channels

neurosphere
cultures

10 nM for 24 h • Prevented METH-induced
apoptosis and decrease of
neuronal differentiation

Baptista et al.,
2012

7-NI A potent inhibitor of
nNOS

Mice 10 mg/kg i.p. ×4, at 2 h
intervals

• Protected against
METH-induced DA depletion
• Counteracted the decrease in

the DA metabolite level

Di Monte et al.,
1996

AR-R17477AR nNOS inhibitor Mice 1, 3, 6 and 9 mg/kg, i.p. ×3, at
3 h intervals

• Attenuated the decrease in
striatal DA and DA metabolite
concentrations

Sanchez et al.,
2003

S-
methylthiocitrulline

nNOS inhibitor Mice 5 mg/kg i.p. ×3, at 3 h intervals • Protection against the
depletion of dopaminergic
markers

Itzhak et al., 2000

3-bromo-7-
nitroindazole

nNOS inhibitor Mice 5 mg/kg i.p. ×3, at 3 h intervals • Afforded protection against
the depletion of dopaminergic
markers

Itzhak et al., 2000

S34176 Nitrone-based radical
scavenger

Mice 5 mg/kg i.p. ×4, at 2 h intervals • Attenuated METH-mediated
depletion of striatal DA levels

Lockhart et al.,
2005

Minocycline An antibiotic Mice 3 mg/kg/day s.c., once daily for
5 days or 3 mg/kg s.c. ×3, at
3 h intervals

• Attenuated the level of DA
and its major metabolite,
3,4-dihydroxyphenyl acetic
acid

Zhang et al., 2006

(Continued)
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TABLE 2 | Continued

Agent Mechanism of
action

Species METH dosing regimen Key results Reference

• Attenuated a reduction in DAT
immunoreactivity

Ibudilast Phosphodiesterase-4
inhibitor

Rats Self-administered
0.05 mg/kg/infusion for 25 days

• Attenuated METH-seeking
during abstinence

Charntikov et al.,
2015

Modafinil A cognitive enhancer Mice 5 mg/kg, i.p. ×4, 2 h intervals • Counteracted the decrease of
TH and DAT levels
Prevented METH-induced
increases in BAX/Bcl-2 ratio

Raineri et al., 2012

MH6-KLH METH vaccine Rats 0, 1.0, 5.6 mg/kg, s.c., once • Produced high antibody titers
of METH and sequestered
METH in the periphery of rats
• Blocked the thermoregulatory

and psychomotor responses
produced by METH

Miller et al., 2013

SMA–KLH METH vaccine Mice 1, 2, or 3 mg/kg i.p., once • Reduced METH-induced
conditioned approach
behaviors
• Decreased conditioned

activity levels

Shen et al., 2013

Anti-METH
mAb4G9

Anti-METH antibody Rats 1 mg/kg i.v., once • Reduced METH brain values White et al., 2014

9cRA A active derivative of
vitamin A

Rats 5 mg/kg, s.c. ×4, 2 h intervals • Reversed METH-induced TH
immunoreactivity, and
neurodegeneration in
dopaminergic neurons

Reiner et al., 2014

7, 8-DHF A novel potent TrkB
agonist

Mice 3.0 mg/kg/day s.c., once daily
for 5 days

• Attenuated the reduction of
DAT in the striatum
• Attenuated microglial

activation in the striatum

Ren et al., 2014

CCK-8 An endogenous
hormone

Mice Concentration range: 0, 3, 10,
20, and 40 mg/kg, i.p. ×4, 3 h
intervals

• Attenuated METH-induced
hyperthermia, the decrease of
TH and DAT in the striatum,
and TH in the substantial
Ingra

Gou et al., 2015

i.p., intraperitoneal; i.v., intravenous; s.c., subcutaneous; ROS, reactive oxygen species; DAT, dopamine transporter; METH, Methamphetamine; Cyt c, cytochrome c.

thought to be mediated by the inhibition of microglial activation
(Zhang et al., 2006). Zhang et al. (2006) observed that the
reduction of DA and DAT immunoreactivity after repeated
administration of METH was attenuated dose-dependently if
minocycline was used in the striatum of mice. They suggested
that minocycline may (at least in part) protect against METH-
induced neurotoxicity via inhibition of microglial activation
in vivo (Zhang et al., 2006). The phosphodiesterase-4 inhibitor
ibudilast increases brain levels of glial-derived neurotrophic
factor and reduces microglial activation and production of pro-
inflammatory cytokines (Charntikov et al., 2015). Clinical trials
have shown that ibudilast can improve METH-induced acute
injury (Bates et al., 2006). Further, ibudilast reverses the decrease
in levels of synaptic signaling protein produced by chronic intake
of METH (Charntikov et al., 2015). Although further clinical
trials and animal experiments are needed, minocycline and
ibudilast may have therapeutic potential for METH neurotoxicity
through modulation of neuroimmune signaling. In addition,
Raineri et al. (2012) revealed that modafinil (a cognitive enhancer

with weak stimulant-like behavior used for the treatment of
sleep apnea, narcolepsy, and shift work-induced sleep disorders)
prevented METH-induced microglial and astroglial activation in
the human brain, thus avoiding the induction of inflammatory
processes.

Vaccine Immunotherapies
Immunotherapies reduce the amount of drug in the CNS
by triggering the production of antibodies binding the drug
molecule after systemic absorption of METH (Ballester et al.,
2017). Miller et al. (2013) found that, in rats receiving a
KLH-conjugated METH-like hapten vaccine (MH6-KLH) and
the vaccine succinyl MA (SMA–KLH), higher antibody titer-
dependent METH serum concentrations, yet lower METH
concentrations, in the CNS were observed, which suggested
reduced METH concentrations in the brain. In addition, it
was shown that anti-METH/AMP mAb4G9 therapy protected
maternal and fetal rat brains from METH-induced damage
(Gentry et al., 2006; White et al., 2014). Another study
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reported that a human–mouse monoclonal antibody binding
to methylphenidate, named anti-METH antibody (mAB7F9),
elicited a significant reduction in the METH concentration
(Ballester et al., 2017). In particular, a combined approach using
monoclonal and polyclonal antibodies was more effective in
reducing the METH concentration in the brain (Hambuchen
et al., 2015). However, the limitations of a vaccine remain;
these include incomplete blockade of drug effects, prolonged
delay in the production of sufficient circulating antibodies, and
considerable variation in the antibody titer (Baracz and Cornish,
2016). Furthermore, given that anti-METH antibodies cannot
cross the blood–brain barrier, this therapy may be too expensive
because antibodies must be administered repeatedly to maintain
an effective level (Chen et al., 2013).

Drugs for Chronic Damage
Long-term exposure to METH leads to DA depletion,
impairment of dopaminergic markers, and neuronal
degeneration (Barr et al., 2002; Ballester et al., 2017). Therefore,
extensive investigations, including those of several drugs in
clinical trials, have been performed to explore efficacious
pharmaceutical interventions for recovery from neural injury
resulting from METH use. For instance, Reiner et al. (2014)
reported that 9 cis-retinoic acid (9cRA), a biologically active
derivative of Vit.A, reversed the METH-induced decrease
in immunoreactivity and apoptosis of T-helper cells via
inhibition of the export of nuclear receptor 77 from the
nucleus to the cytosol in primary cultured dopaminergic
neurons. Their in vivo experiments showed that 9cRA (delivered
via the intracerebroventricular route) also antagonized the
immunoreactivity of T-helper cells and locomotor activity in
the striatum of rats indirectly through a signaling mechanism
involving bone morphogenetic protein. This result is similar to
that of a study by Yin et al. (2012) showing that 9cRA produced
neuroprotective effects in a rodent model of Parkinson’s
disease involving reduced rotational behavior and loss of
T-helper cells in the substantia nigra, but increased DA release
in the striatum. In the report by Yin et al. (2012), 9cRA
was repeatedly administered through the intra-nasal route
as intracerebral delivery is not feasible for repeated drug
administration and may require chronic cannulation, whereas
small molecules bypass the blood–brain barrier and reach
brain parenchyma non-invasively if delivered via the intranasal
route.

Cognition-enhancing as well as antidepressant and
neuroprotective effects are conferred by 7, 8-Dihydroxyflavone
(7, 8-DHF), a high-affinity tropomyosin receptor kinase B
(TrkB) agonist that activates downstream signaling (Devi and
Ohno, 2012; Hashimoto, 2013). Ren et al. (2014) observed
that 7, 8-DHF significantly prevented the reduction of DAT
and microglial activation in the striatum of mice after repeated
METH administration. In their study, it was investigated whether
7, 8-DHF prevents neurotoxicity through a signaling pathway
upstream of DA terminals, and if reduction of microglial
activation occurs as a consequence (rather than a cause) of
METH-induced neurotoxicity. In view of the vital role of
microglial activation in neurotoxicity, this should be explored in

further detail. Endogenous hormones have shown therapeutic
potential in METH treatment. For instance, Cholecystokinin-8
(CCK-8) pretreatment has been shown to attenuate the decrease
in expression of TH and DAT in the striatum (Gou et al., 2015).
Overall, these drugs have shown the potential for amelioration
of hypo-dopaminergic status and neuron degeneration; however,
their precise mechanism of action is not known (Table 2).

FUTURE PERSPECTIVES

The complex mechanisms underlying METH-evoked
neurotoxicity affect sub-regions of the CNS in various ways.
Important advances have been made regarding the basic
neurobiology of METH-produced neurotoxicity; however, these
findings have not resulted in the development of efficacious
drug therapy. Nevertheless, in view of the great harm elicited
by METH to the CNS, exploration of toxic mechanisms
and pharmacotherapies are anticipated in preclinical/clinical
investigations. Natural compounds such as 1-methyl-l, 2, 3,
4-tetrahydroisoquinoline (1MeTIQ), resveratrol, curcumin,
and gingko biloba have garnered considerable inhibition owing
to their ability to scavenge excess free radicals to protect
neurons. Accordingly, some researchers have shifted focus
to natural compounds to make major breakthroughs. Wasik
and Antkiewicz-Michaluk (2017) suggested that 1MeTIQ can
apply a brake to several processes related to neurotoxicity
(e.g., elimination of free radicals, inhibition of MAO, and Glu-
dependent excitotoxicity) without side-effects. Therefore, the
use of natural compounds may represent a promising strategy
for preventing METH neurotoxicity. In a recent study, the
therapeutic effect of carbon nanotubes, which enabled oxidation
of METH-enhanced extracellular DA in the striatum of mice,
was demonstrated (Xue et al., 2016). Considering the favorable
properties (e.g., large surface areas, superior bundle strength, and
highly electrostatic attraction to neurotransmitters such as DA)
of nanotubes, their use merits further research as a new approach
for treatment of METH abuse-induced neurotoxicity.
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