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Abstract: Many disease-causing viruses target sialic acids (Sias), a class of nine-carbon sugars known
to coat the surface of many cells, including those in the lungs. Human beta coronaviridae, known for
causing respiratory tract diseases, often bind Sias, and some preferentially bind to those with 9-O-Ac-
modification. Currently, co-binding of SARS-CoV-2, a beta coronavirus responsible for the COVID-19
pandemic, to human Sias has been reported and its preference towards α2-3-linked Neu5Ac has been
shown. Nevertheless, O-acetylated Sias-protein binding studies are difficult to perform, due to the
ester lability. We studied the binding free energy differences between Neu5,9Ac2α2-3GalβpNP and
its more stable 9-NAc mimic binding to SARS-CoV-2 spike protein using molecular dynamics and
alchemical free energy simulations. We identified multiple Sia-binding pockets, including two novel
sites, with similar binding affinities to those of MERS-CoV, a known co-binder of sialic acid. In our
binding poses, 9-NAc and 9-OAc Sias bind similarly, suggesting an experimentally reasonable mimic
to probe viral mechanisms.

Keywords: SARS-CoV-2; MERS-CoV; CoV S protein; sialic acid; MM-PBSA; SOMD; binding free
energy simulations; molecular dynamics

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the beta coronavirus
responsible for the COVID-19 pandemic, is structurally highly similar to SARS-CoV-1
(73% sequence identity between spike proteins), yet is remarkably more infective [1]. Both
SARS-CoV-1 and SARS-CoV-2 share the same primary human cellular receptor angiotensin-
converting enzyme-2 (ACE-2), but this commonality in binding cannot explain the dif-
ference in infectivity. One possible mechanism for how SARS-CoV-2 achieves its high
infectivity is by binding to sialic acids (Sias), which coat many cell surfaces, especially
in the lungs, and are targeted by many disease-causing viruses. In the airways the first
encounter of the virus would be with soluble sialomucins, where the very high density
of Sias would provide high avidity. On the other hand, the action of cilia are constantly
pushing soluble mucins towards the upper airways. Some particles may escape by binding
to membrane-bound mucins and sulfated glycosaminoglycans, then are eventually handed
off to the high affinity ACE-2 receptors much closer to the plasma membrane.

Sias are part of a large family of over 50 derivatives of the 9-carbon sugar neuraminic
acid, where N-acetylneuraminic acid (Neu5Ac) is most common [2]. The beta coronavirus
Middle East respiratory syndrome coronavirus (MERS-CoV) is known to co-bind to Neu5Ac
in addition to its DPP4 primary receptor in a two-step binding mechanism, and depletion
of Neu5Ac was found to inhibit MERS-CoV entry into human airway cells [3]. Additionally,
MERS-CoV binds preferentially to α2-3-linked Sias over α2-6-linked ones [3]. In another
example, beta coronaviruses OC43 and HKUI are known to bind to 9-O-acetylated (9-
OAc) Sias [1,4,5], where O-acetylation is one of the most common Sia modifications found
in nature.
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While SARS-CoV-1 is not known for its binding to Sias, recent studies have shown
Sia binding by the SARS-CoV-2 spike (S) protein, and suggest that sialylated glycans can
facilitate viral entry [6,7]. In a lateral flow test, the SARS-CoV-2 S protein bound to both
Neu5Ac and α2-3/α2-6-linked Sias, where glycans are each attached to gold nanoparticles
(auNP) [8]. While stronger binding under experimental conditions was observed with
Neu5Ac-auNP over α2-3/α2-6-linked Sia-auNPs, the report did not preclude involvement
of α2-3/α2-6-linked Sias in SARS-CoV-2 S protein binding [8]. Binding studies using
sialylated glycans indicate low affinities to the SARS-CoV-2 S protein (~−10 kcal/mol) [9]
and specifically along the ACE-2 receptor binding domain (RBD), with mono-sialylated
ganglioside glycan affinities of 100–200 µM and multi-sialylated glycan affinities approach-
ing 900 µM, using catch-and-release ESI-MS (CaR-ESI-MS) (~−20 kcal/mol) [6]. A few
potential Sia-binding domains have been proposed in addition to the ACE-2 RBD, especially
along the flat region of the SARS-CoV-2 S protein N-terminal domain (NTD), but specific
sites have not been confirmed experimentally [10–17]. The S protein is made up of two
subunits: S1 for cell recognition, containing both NTD and ACE-2 RBD, and S2, which is
responsible for viral cell membrane fusion [18]. Given the density of Sias along cell surfaces,
and the role of S1 in cell recognition, Sias could increase viral binding affinity by acting
as an intermediate target or co-binder. We attempt to provide a quick overview of current
work on Sias-SARS-CoV-2 S protein binding, where a more thorough study may be found
in the recent review by Sun [19].

Experimental studies that test S protein binding to Neu5Ac and O-acetylated Sias using
glycan microarrays are informative towards understanding the disease and preferential
binding [9]. Even so, experimental testing is difficult with O-acetylated Sias due to the
instability of the ester with respect to migration and cleavage, which depends on pH,
temperature, and the presence of esterases [20–23]. N-Acetylated (NAc) Sias have been
proposed to be stable synthetic mimics, as they are chemically and structurally similar, as
seen in experimental and computational NMR studies [21]. Determining the similarity in
S protein binding of 9-NAc to 9-OAc Sias would be valuable when performing binding
array studies, and understanding the binding sites of sialic acids to SARS-CoV-2 S protein
is important when considering potential druggable sites.

To this end, we computed the binding free energies of modified Neu5Ac monosac-
charides and sialyloligosaccharides to SARS-CoV-2 S protein using molecular dynamics
(MD) simulations, starting with a binding pose based on MERS-CoV (Figures 1 and 2). Our
simulations revealed new possible Sia-binding sites ranging along the S1 unit, along the
NTD and ACE-2 RBD, with some approaching the S2 domain. Each binding site contains
a salt bridge connecting a conserved arginine residue to the carboxylate group of Sia, a
known motif in Sia–lectin binding [24]; while the binding to individual sites is predicted to
be weak, multiple binding to cell surface Sias could strengthen binding overall [1,25]. In
addition, we calculated relative binding free energies of ligands that differ in the chemical
modification at C9 (9-OH, 9-OAc, and 9-NAc), showing that the synthetic 9-NAc analogues
are excellent structural mimics of their naturally occurring 9-OAc counterparts. These
insights into Sia-S protein binding could lead to the design of therapeutics that inhibit the
binding of S protein to Sias on the cell surface, thereby limiting SARS-CoV-2 transmission.
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Figure 1. Structures of N-acetylneuraminic acid (Neu5Ac) and analogues, the simulated ligands in 
this study. (a) Neu5Ac; (b) Neu5,9Ac2; and (c) Neu5Ac9NAc are simulated ligands, corresponding 
to the unsubstituted Neu5Ac and its 9-OAc and 9-NAc forms. Two substitutions at R1 were simu-
lated, corresponding to the Sia monosaccharide or an α2-3-linked sialoside containing the terminal 
disaccharide of the GM3 ganglioside, commonly found on cell membranes, followed by para-nitro-
phenol (pNP), a molecule used in quantifying Sia binding and cleavage in sialidase activity assays. 
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Figure 2. Binding pose in SARS-CoV-2 S protein based on MERS-CoV S protein. (a) MERS-CoV S 
protein with Neu5Ac bound, cryo-EM structure; (b) initial binding pose of Neu5Ac in SARS-CoV-2 
S protein based on MERS-CoV S protein, used as a starting point for MD simulations; (c) structural 
overlay of pink SARS-CoV-2 S protein (PDB ID: 6VSB) with blue MERS-CoV S protein in complex 
with Neu5Ac, highlighting binding residues from MERS-CoV S protein (PDB ID: 6Q04). 

2. Results and Discussion 
2.1. Method Validation with Sia-MERS-CoV S Protein binding 

Modern free energy simulation methods are estimated to be accurate to within 1–2 
kcal/mol for well-behaved [26] protein/ligand systems, but this system presents additional 
challenges due to the exceptional flexibility of both the SARS-CoV-2 S protein and the 
ligands, the latter of which we have studied both computationally [20] and using NMR 
[21]. Based on a recent SAMPL6 challenge that evaluates binding free energy prediction 
methods [27], we used two methods in this study—an inexpensive implicit solvent ap-
proach known as molecular mechanics Poison–Boltzmann surface area (MM-PBSA) [28] 
to estimate absolute binding free energies, and a more rigorous approach based on al-
chemical intermediates known as SIRE-OpenMM molecular dynamics (SOMD) [29,30] to 
compute relative binding free energies of ligands that differ only in the chemical modifi-
cation at the Sia C9.  

Given the exploratory nature of Sia-SARS-CoV-2 S protein binding, we first validated 
our methods with Sias bound to the RBD in MERS-CoV S protein, known to preferentially 
bind to Neu5Ac-containing sialosides over Neu5,9Ac2- and Neu5Ac9NAc-containing si-
alosides. For over 1250 ns of combined simulation time, Neu5Ac was observed to stay 
within the experimentally determined binding site (Neu5Ac remained bound after over 

Figure 1. Structures of N-acetylneuraminic acid (Neu5Ac) and analogues, the simulated ligands in
this study. (a) Neu5Ac; (b) Neu5,9Ac2; and (c) Neu5Ac9NAc are simulated ligands, corresponding to
the unsubstituted Neu5Ac and its 9-OAc and 9-NAc forms. Two substitutions at R1 were simulated,
corresponding to the Sia monosaccharide or an α2-3-linked sialoside containing the terminal disac-
charide of the GM3 ganglioside, commonly found on cell membranes, followed by para-nitrophenol
(pNP), a molecule used in quantifying Sia binding and cleavage in sialidase activity assays.
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Figure 2. Binding pose in SARS-CoV-2 S protein based on MERS-CoV S protein. (a) MERS-CoV S
protein with Neu5Ac bound, cryo-EM structure; (b) initial binding pose of Neu5Ac in SARS-CoV-2 S
protein based on MERS-CoV S protein, used as a starting point for MD simulations; (c) structural
overlay of pink SARS-CoV-2 S protein (PDB ID: 6VSB) with blue MERS-CoV S protein in complex
with Neu5Ac, highlighting binding residues from MERS-CoV S protein (PDB ID: 6Q04).

2. Results and Discussion
2.1. Method Validation with Sia-MERS-CoV S Protein Binding

Modern free energy simulation methods are estimated to be accurate to within
1–2 kcal/mol for well-behaved [26] protein/ligand systems, but this system presents addi-
tional challenges due to the exceptional flexibility of both the SARS-CoV-2 S protein and the
ligands, the latter of which we have studied both computationally [20] and using NMR [21].
Based on a recent SAMPL6 challenge that evaluates binding free energy prediction meth-
ods [27], we used two methods in this study—an inexpensive implicit solvent approach
known as molecular mechanics Poison–Boltzmann surface area (MM-PBSA) [28] to esti-
mate absolute binding free energies, and a more rigorous approach based on alchemical
intermediates known as SIRE-OpenMM molecular dynamics (SOMD) [29,30] to compute
relative binding free energies of ligands that differ only in the chemical modification at the
Sia C9.

Given the exploratory nature of Sia-SARS-CoV-2 S protein binding, we first validated
our methods with Sias bound to the RBD in MERS-CoV S protein, known to preferentially
bind to Neu5Ac-containing sialosides over Neu5,9Ac2- and Neu5Ac9NAc-containing sialo-
sides. For over 1250 ns of combined simulation time, Neu5Ac was observed to stay within
the experimentally determined binding site (Neu5Ac remained bound after over 700 ns in
a single simulation). Both MM-PBSA binding energy and SOMD alchemical free energy
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differences show that Neu5Ac binds stronger than either modified variant, consistent with
experimental findings (Figure 3). For ~100 ns of combined simulation time, Neu5,9Ac2
remained bound, with each simulation unbinding before reaching 40 ns. For ~260 ns
of combined simulation time, Neu5,9Ac2 remained bound, with over 200 ns in a single
simulation. Interestingly, after 70 ns of binding, Neu5Ac9NAc unbound and returned the
binding pocket within 16 ns.
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Figure 3. Sia-binding free energy differences in MERS-CoV S protein. (a) SOMD and MM-PBSA
binding free energy differences for Neu5Ac, Neu5Ac9NAc and Neu5,9Ac2 bound in MERS-CoV S
protein. Neu5Ac binds stronger than Neu5,9Ac2 and Neu5Ac9NAc, where the Neu5Ac9NAc and
Neu5,9Ac2 result in nominal binding energy differences.; (b) Neu5Ac in MERS-CoV S protein binding
domain. Top three contributing residues for Neu5Ac are annotated with top contributor bolded. See
Figure S3 for energy decomposition results.

In the case of SOMD, Neu5Ac binds stronger than Neu5Ac9NAc and Neu5,9Ac2 by
1.6–1.7 kcal/mol. Both Neu5Ac9NAc and Neu5,9Ac2 bind very similarly, with a nominal
difference of 0.2 kcal/mol, within the margin of error. While the magnitudes of the binding
free energy differences are larger in the MM-PBSA results, they follow the same trend
as our SOMD results, where Neu5Ac binds stronger than Neu5Ac9NAc and Neu5,9Ac2
(by 8–10 kcal/mol), with the modified Sias binding very similarly. Given the shallow na-
ture of the binding pocket, we did not perform binding free energy simulations with the
larger sialosides, as the modified Neu5Ac test case is sufficient for validating our meth-
ods. As expected from shallow binding and experimental reports for weak binding affin-
ity [31], MM-PBSA binding energy results indicated overall weak binding (−20 kcal/mol
for Neu5Ac). Based on energy decomposition analysis, one of the key residues contributing
to this difference in binding is ARG307, which binds stronger to Neu5Ac (Figure 3).

Given that the MERS-CoV simulation predictions largely aligned with the experiment,
we proceeded toward computational discovery of Sia-binding sites in SARS-CoV-2 S protein
and estimation of binding free energies using the same computational approach.

2.2. Discovery and Analysis of Sias-SARS-CoV-2 S Protein Binding

We performed MD simulations of Neu5Ac, Neu5,9Ac2 and Neu5Ac9NAc bound in
SARS-CoV-2 S protein, starting with a docked pose based on the Neu5Ac-MERS-CoV S
protein complex (Figure 2, see Methods for details). After initially setting up docked ligands
in the cryo-EM structure of SARS-CoV-2 S protein (PDB ID: 6VSB), we found a large RMSD
in protein structure after ~200 ns of simulation time indicating a conformational change
of the S protein (Figure S1). We observed the single ACE-2 RBD-up moves downwards,
and each NTD shrinks inward towards the trimer core, indicating the flexibility of the S1
subunit, specifically the NTD and ACE-2 RBD. Dynamic cross correlation maps support
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the structural dependence between these regions, specifically between the NTD and ACE-
2 RBD-down and NTD and ACE-2 RBD-up regions (Figure S2) [32]. During the final
equilibration phase with no restraints, each Sia (Neu5Ac, Neu5,9Ac2, and Neu5Ac9NAc)
along the NTD of SARS-CoV-2 S protein became unbound. Interestingly, Neu5,9Ac2 and
Neu5Ac9NAc were observed to return to the original RBD and remained there for ~3 ps
before unbinding again. All three Sias subsequently sampled temporary binding events to
many regions of the S protein. From the simulation trajectories, we initially selected six
poses for further investigation, four of which are in Figure 4.
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decomposition analysis. * Residues conserved across omicron (PDB ID: 7TB4), kappa (PDB ID: 7VXB),
delta (PDB ID: 7W92), gamma (PDB ID: 7M8K), and original (PDB ID: 6VSB) variants of SARS-CoV-2.

All of the proposed sites from MD involve arginine forming a salt bridge with the Sia’s
carboxylate, a known motif in Sia–lectin binding [24]. In other Sia-S protein observations
without an interacting arginine, the Sia quickly dissociated in generally less than 10 ns.
While we observed many other binding sites in the MD simulations, such as along the
flat top of the NTD within the S1 domain (quick dissociation observed), along the S2
domain and between the S1 and S2 domains (deeper within the S protein trimer), we only
considered regions with longer association times and that may be accessible by Sias (see SI
video S1 for an overlay of example MD simulations of Sia unbinding and binding events).

Including the initial pose based on MERS-CoV, we chose four binding poses to inves-
tigate in closer detail (Figure 4). Here, we describe how each pose was found in our first
set of simulations. Structures of Neu5Ac, Neu5,9Ac2, Neu5Ac9NAc were docked into the
initial binding pocket along the NTD front (based on MERS-CoV, Figure 4a). Given the
shallow pocket, each sialic acid unbound and sampled different regions along the S protein.
Neu5Ac and Neu5,9Ac2 sampled the region behind this initial pose (Figure 4b). This pose
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is close to pose a, potentially allowing for more accessible Sia-binding domains along the
S protein NTD. Neu5Ac9NAc sampled a deeper binding pose between chains A (NTD)
and C (ACE-2 RBD) in the initial simulations (Figure 4c). Neu5Ac sampled the region
between the ACE-2 RBD and S2 domain and between chains A & B (Figure 4d). This region
is accessible for gangliosides to attach to the S protein and direct or inhibit the down to up
state of the ACE-2 RBD. Indeed, a previous study indicated that residues along this region
may function as a binding pose for glycosaminoglycans including heparan sulfate [33–35],
highlighting the importance of this region in cellular recognition. Both of these deeper
binding domains (Figure 4c,d) overlap with key regions in stabilizing the S protein and
affecting its ability to transition the ACE-2 RBD between “down” and “up” states [36]. Sia
binding in these regions may shift the S protein flexibility and ability to transition between
states, altering ACE-2 binding.

Notably, and to the best of our knowledge, these two Sia-binding poses (Figure 4c,d)
have not been previously proposed for Sia binding. One possible explanation is that a
number of simulations have been performed using a single NTD or subunit rather than
the full S protein trimer, which is needed to describe Sias binding between multiple trimer
units (such as between chains A & B in pose d).

In all initial MD simulations using the cryo-EM structure, Sia-unbinding events oc-
curred rapidly, given the high flexibility of the SARS-CoV-2 S protein and the resolution of
the cryo-EM structure. This flexibility was indicated by relatively fast increase in RMSD at
the start of simulations that used the cryo-EM structure. As such, we ran simulations with
the SARS-CoV-2 S protein in water to equilibrate the S protein, ideally to a more stable form.
We extracted several SARS-CoV-2 S protein structures from the equilibrated trajectories,
and used these for docking of the described four poses for production runs, which resulted
in longer simulation lengths prior to Sia unbinding. Results from these simulations are in
Figure 5.
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for transformations between Neu5,9Ac2 and Neu5Ac9NAc shown for poses (A–D), and between
Neu5,9Ac2α2-3GalβpNP and Neu5Ac9NAcα2-3GalβpNP shown for poses c and d. Error bars are
plotted from standard error of means across 4 simulations, when available. See Figure S4 for all
SOMD results, including Neu5Ac and Neu5Acα2-3GalβpNP), and Figure S5 for MM-PBSA energies
and energy decomposition results.

Figure 5 shows that in each binding pose, Neu5,9Ac2 and Neu5Ac9NAc bind very
similarly, with differences and errors much less than 1 kcal/mol. Each pose contains a
conserved arginine motif, which are conserved across most SARS-CoV-2 variants (omicron
(7TB4), kappa (7VXB), delta (7W92), gamma (7M8K), original (6VSB)). Binding residues
conserved across these variants are annotated in Figure 4. Neu5Ac binds weaker than either
modified Sia in pose a, with slightly weaker binding to LEU244 (Figures S4 and S5, but each
Sia binding strongest to ARG246). In pose b, ARG246 is again the tightest binding residue
to the Sias, and Neu5Ac binds more strongly than either Neu5,9Ac2 or Neu5Ac9NAc, likely
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due to its size fitting better in the shallow pocket (Figure S4). In pose C, ARG983 was the
tightest binding residue, and ARG355 and ARG466 for pose d. Neu5Ac binds slightly
stronger than either modified variant, especially to these key arginine residues (Figure S4).
Due to their size, Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-3GalβpNP, and Neu5Ac9NAcα2-
3GalβpNP in pose c were slightly displaced from the deep ARG983, resulting in the top
binding residue as LYS529 (Figure S4). While both Neu5,9Ac2 and Neu5Ac9NAc bound
weaker than the Neu5Ac, these differences were not large (~1 kcal/mol). In binding pose d,
while the Neu5Acα2-3GalβpNP binds stronger than Neu5,9Ac2α2-3GalβpNP, the standard
error of means is relatively large. Larger error bars calculated for binding poses c and
d are due to the range of flexibility observed in the S protein, Sias, and the position and
orientation of Sia in the binding pocket.

Based on MM-PBSA binding free energies, Sia binding in each pose of the SARS-
CoV-2 S protein is weak (<25 kcal/mol), but is consistent with experimental results [9],
and is comparable to that of Sia-MERS-CoV S protein binding (see Figures S4 and S5 for
MM-PBSA energies and decomposition analysis). Of all the binding poses, binding pose
d resulted in tighter binding of α2-3-linked Sias over their monomer counterparts in its
initial equilibrated pose used in SOMD. This highlights the importance of pose d in tighter
SARS-CoV-2 S protein co-binding to cell-surface Sias, influencing cellular recognition and
ACE-2 binding.

A number of other possible binding sites were observed in the MD simulations, but we
did not investigate them further due to the very short dwell times in the trajectories. Weak
binding was also observed with ARG158 and ARG237 along the NTD, but the binding
pocket was shallow, and dissociation quickly occurred during the equilibration of the Sias-S
protein complex. Binding was also observed to ARG328 along the outside of the S below
the ACE-2 RBD, but further simulations also showed the site as shallow and a weak binder.

3. Methods
3.1. Choice of Protein Structures, Sialic Acids, and Binding Poses

The initial protein-ligand complex for molecular dynamics simulations was chosen
based on available structures from the Protein Databank. At the start of this study, there
were no experimental or computationally modeled SARS-CoV-2 S protein structures with
sialic acids bound, to the best of our knowledge. We therefore searched for other human
beta coronavirus S protein structures available on the Protein Databank with a bound sialic
acid. The MERS-CoV S protein (PDB ID: 6Q04 [3]) has a 35% identity with SARS-CoV-2
S protein, and has an available structure with a bound sialic acid (Neu5Ac). There is no
known Sia binding or bound complex with SARS-CoV [1], although it shares a higher
sequence identity of 73% with the SARS-CoV-2 S protein (PDB ID: 6VSB [37]).

To generate an initial sialic acid binding pose with the SARS-CoV-2 S protein, we
performed sequence alignment with both S proteins (6VSB and 6Q04) using MultiSeq, [38]
an extension of the Multiple Alignment tool available in VMD [39], a freely available
structural graphics program for visualization and analysis. From the aligned structures and
conserved binding residues, notably arginine, we placed the Sia directly into the overlaid
SARS-CoV-2 S protein N-terminal domain and used the resulting complex as our initial
structure (Figure 2).

For additional ligand–protein complexes in both S proteins, we docked Sias (Figure 1)
into binding pockets using the OEDocking tool [40–43]. We docked Neu5Ac, Neu5,9Ac2,
and Neu5Ac9NAc into each S protein, based on evidence that other beta coronaviruses
(OC43 and HKUI [1,4]) prefer to bind Neu5,9Ac2 over Neu5Ac, and that N-acetylated
Sias have shown to be chemically and structurally reasonable mimics to O-acetylated
counterparts. Given that MERS-CoV S protein preferentially binds to α2-3 over α2-6-
linked sialic acids, we docked α2-3-linked sialic acids (Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-
3GalβpNP, and Neu5Ac9NAcα2-3GalβpNP) into deeper binding pockets of the SARS-CoV-
2 S protein, where these new poses were inferred from the molecular dynamics simulations
in which a free sialic acid would associate to various residues on the S protein.
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3.2. Molecular Dynamics Simulation Setup

Molecular dynamics simulations were performed using AMBER18 software suite,
using tleap for setup and pmemd.cuda for dynamics, running on servers equipped with
Intel Xeon CPUs and Nvidia GTX 980 Ti or 1080 Ti GPUs [44–48]. We used the ff14SB
protein force field, GLYCAM06 carbohydrate force field, the GAFF small molecule force
field for portions of the sialosides, and the TIP3P water model. Protein or protein–ligand
complexes were solved in a truncated octahedron box with 12.0 Å padding between
the biomolecule and simulation cell edge, resulting in around 120,000 water molecules,
and Na+ ions were added for a net neutral charge. Simulations were run with periodic
boundary conditions: a 2.0 fs time step, Langevin thermostat set to 298.15 K, and a collision
frequency of 5.0 ps−1. The particle mesh Ewald method was used to treat long-range
electrostatics with a real-space cutoff of 9.0 Å, and the SHAKE algorithm used to constrain
all bonds involving hydrogen. With restraints on complex heavy atoms with a restraint
weight of 10 kcal mol−1 Å−2, 1000 minimization steps were performed, followed by an
additional 500 steps with no constraints. We subsequently heated our system from 0.1 K to
298.15 K in a single simulation with equally spaced temperatures across 500 ps, at constant
pressure using a Berendsen barostat set to 1.0 atm and a compressibility of 4.5 × 10−5 bar−1,
and harmonic restraints on the protein complex heavy atoms with a force constant of
10 kcal mol−1 Å−2. Subsequent equilibration was performed at constant pressure using
5 × 100 ns simulations in which the harmonic restraints were set to 10.0, 1.0, 0.1, 0.01,
and 0 kcal mol−1 Å−2, respectively. Three production simulations were performed with
the NVT ensemble using the simulation cell volume taken from the final structure of the
equilibration run.

Trajectory analyses were carried out using the cpptraj [49] simulation analysis package
and free energy differences plots generated with matplotlib plotting software package in
python. Molecular structures were visualized with VMD [39].

The structures used in molecular dynamics simulations were 6VSB and 6Q04, each
without sialylation.

3.3. Computation of Binding Free Energies Using MM-PBSA and Alchemical Simulation Approaches

This study used a combination of two approaches for computing binding free energies:
a relatively approximate and inexpensive Molecular Mechanics Poisson–Boltzmann Surface
Area (MM-PBSA) approach to estimate binding free energies and a relatively accurate and
computationally expensive approach using alchemical intermediates to estimate binding
free energy differences between chemical modifications on the sialic acid ligand.

The MM-PBSA calculations used structures taken from the first set of molecular
dynamics simulations, production runs, and the equilibration runs for the alchemical
free energy simulations, and results were averaged across all sampled trajectories [50–52].
MM-PBSA can be used to calculate free energy differences, where the linearized Poisson–
Boltzmann equation is used to compute the solvation free energy components (charge
distribution and solvation free energy), and the LCPO method implemented in sander is
used to generate an empirical term for hydrophobic contributions based on surface area.
The binding free energy is the difference between the sum of ligand–protein complex
binding and its solvation and the sum of the solvation energies of the free ligand and
protein (Figure S6). Implicit solvation in the thermodynamic cycle calculations reduces
computational time compared to the explicit water molecules used for solvation in the above
alchemical free energy approach. Key interacting protein residues are identified by energy
decomposition analysis (EDA). Calculations were performed using MMPBSA.py [30]
AMBER software, from molecular dynamics simulation trajectories. Simulations ran for
up to 800 ns, and were terminated earlier if the Sia was observed to leave the binding
pocket, resulting in an average of 300 ns trajectories for Sias in the SARS-CoV-2 S protein.
This was deemed sufficient time for relative binding free energies, as our total simulation
lengths sampled in our MM-PBSA calculations are greater than the 1–10 ns range tested as



Molecules 2022, 27, 5322 9 of 14

sufficient in a paper studying MM-PBSA protein–ligand binding free energy convergences
from crystal structures [50].

3.4. Alchemical Free Energy Simulations: Setup and Procedure

Alchemical free energy simulations calculate the free energy difference between two
chemical states (i.e., ligand bound vs. unbound) by employing fictitious “alchemical”
intermediate states to improve thermodynamic overlap. These simulations were setup in
a similar fashion, but employed the automated Sire FESetup [53] tool to prepare systems
for alchemical free energy simulations using the Sire and OpenMM software packages
(SOMD) [32,54]. Due to differences in the software, there were some differences in the sim-
ulation details: we used a rectangular box with a 12.0 Å padding, performed minimization
over 300 steps, heated the system from 5.0 K to 298.15 K, and ran equilibration simulations
with decreasing constraint force constants in order of 8.0, 6.0, 4.0, 2.0, and 0 kcal mol−1 Å−2;
the first equilibration ran for 100 ps, and subsequent simulations ran for 100 ns, as in the
above case. We again used FESetup to generate the simulation inputs for the alchemical
intermediates describing the transformation occurring (such as Neu5Ac to Neu5,9Ac2).
These intermediate systems used dummy atoms and interpolated values of parameters, as
well as soft-core potentials to describe partial electrostatic and van der Waals interactions
according to the following, Equations (1) and (2) [55]:

rLJ = (2σijλ + rij
2)1/2, (1)

rCoul = (λ + rij
2)1/2, (2)

Here, rLJ and rCoul are “renormalized” distances that are input into the Lennard-
Jones and Coulomb potentials, respectively, ensuring that the potential never reaches the
singularity at r = 0, and rij represents the distance between disappearing/appearing atoms
i/j. The value of λ ranges from 0.0 to 1.0, in which λ = 0.0 represents the full interaction
with the original ligand’s transforming/disappearing atoms, and λ = 1.0 represents no
interaction with these atoms. For the appearing atoms, λ is replaced with 1 − λ, such
that interaction is fully turned on at λ = 1.0 (while full interaction is turned off for the
disappearing atoms).

Ligands were transformed over 13–21 linearly-spaced λwindows, based on a previous
study that used SOMD and other alchemical free energy methods in an assessment of bind-
ing affinities [56], and following the scheme outlined in the SI of Loeffler et al. [55] In general,
the first set of simulations for each transformation was run with 13 windows, and the sec-
ond set of simulations with 21 for greater certainty. Each simulation was minimized over
1000 steps prior to 5 ns production run in the NPT ensemble, where free energies were com-
puted from the last 4 ns, based on the assessments from Kuhn et al. and Mey et al. [56,57].
Each transformation was computed in the reverse direction, and simulations were repeated
in the forward and reverse directions, starting from the same equilibrated starting com-
plex. For example, Neu5,9Ac2 was transformed to Neu5Ac9NAc by slowly turning off
the interactions of Neu5,9Ac2 and slowly turning them on for Neu5Ac9NAc, over a set of
discrete steps, as described the SI of Loeffler et al. [55]. We used analyse_freenrg to calculate
free energy differences at 298 K using multistate Bennett acceptance ratio (MBAR) and
thermodynamic integration (TI) as a reference estimate [58–60].

The relative free energy of binding is computed as the free energy difference of the
alchemical transformation of the ligand bound to the protein and the ligand in solution,
i.e., water (Figure 6). The reliability of results was determined based on the similarity
between MBAR and TI, and from overlap matrices, where the first off-diagonal element
is at least 0.03 [57], but ideally close to 0.10 to ensure enough thermodynamic overlap
between simulation windows (Figure S7). Some test cases of longer simulations were
performed, but the thermodynamic overlap did not significantly improve compared to
more windows. The high degree of flexibility known for the SARS-CoV-2 S protein may
contribute to this observation. Thus, we increased the number of windows when necessary,
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and duplicate simulations were run for higher certainty and increased sampling. Solvated
ligand simulations each took about 45 min, and the solvated ligand-protein complex
calculations took about 1 day each, running on NVIDIA GTX 980 Ti or 1080 Ti hardware.
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S protein, where ∆∆Gbinding is the difference of two alchemical transformations in explicit solvent
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turned on as one progresses over the alchemical intermediates.

3.5. Sialic Acid Parametrization Procedure

We parametrized pNP with the same approach we used for Neu5,9Ac2 and Neu5Ac9NAc
in our previous study, which was designed to maximize compatibility with the GLYCAM
format [20,61]. Here, we briefly describe the procedure. A set of atomic partial charges was
derived for pNP. The procedure involves averaging over an ensemble of structures, sampled
using a MD simulation of GalβpNP in TIP3P water. We used a GLYCAM06 force field for
Gal and GAFF [62] for the para-nitrophenol (pNP) aglycon. The system was equilibrated
for 1 ns at 298.15 K, 1.0 atm (NPT), followed by a 100 ns production run at 298.15 K (NVT).
One hundred structures of GalβpNP were saved at 2 ns intervals and energy-minimized at
the HF/6-31G∗ level of theory, with all exocyclic dihedral angles constrained to their MD-
sampled values. For each of the 100 constrained energy-minimized structures, electrostatic
potential (ESP) calculations were computed using Gaussian16 software [63] and ESP data
used in a single-stage restrained ESP fitting (RESP) calculation, with a restraint weight of
0.01 applied to all atoms using the resp program from AmberTools. An arithmetic average
over the 100 sets of fitted charges yielded the final set of charges in the model.

The GLYCAM and GAFF force fields lacked torsional parameters to describe the
torsional energy profiles about the pNP functional group and Galβ–pNP linkage; these pa-
rameters were derived by fitting to reproduce torsional profiles from DFT at the HF/6- 31G∗
level of theory. We used the TeraChem quantum chemistry software for the energy mini-
mizations and the torsiondrive software to scan over the dihedral angles recursively [64–68].
The optimized geometries were used for single-point energies and atomistic forces cal-
culated at the ωB97X-D3/6–31++G(2d,2p) level of theory [69]. The parameters were
optimized by fitting to the quantum chemical energies using the ForceBalance optimization
software [68,70]. Bond stretching and angle bending parameters for the GalβpNP linkage
were copied from analogous parameters available in GLYCAM06. The values of optimized
parameters and simulation-ready parameter files are provided in Table S1.
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4. Conclusions

We have identified multiple weak Sia-binding sites on the SARS-CoV-2 S protein, with
two novel Sia-binding poses. Each novel pose, between the NTD and ACE-2 RBD (chains
A and C) and between the ACE-2 RBD and S2 domain (chains A and B), is accessible to
gangliosides for S protein attachment, and overlaps with regions known in stabilizing the
S protein. The binding in each pose is predicted to be weak, in overall agreement with
glycan microarray experiments [6,9]. We validated our methods using MERS-CoV-S protein,
confirming the experimental result that Neu5Ac binds stronger than that with either 9-OAc
or 9-NAc modification, and binding energies comparable to Sia-SARS-CoV-2 S protein
binding. Each Sia-binding pose in SARS-CoV-2 S protein contains an arginine residue that
is conserved across SARS-CoV-2 variants. The multiple Sia-binding sites on SARS-CoV-2 S
protein may lead to increased binding affinity to multiple Sias collocated on the cell surface,
and the existence of multiple binding sites to the S protein may be validated experimentally.
Neu5Ac in SARS-CoV-2 S protein binding sites tend to have stronger binding than their
9-OAc or 9-NAc modifications, but the differences are within the expected margin of error.
Binding free energies support 9-NAc Sias as close structural and chemical mimics of 9-OAc
Sias in SARS-CoV-2 and MERS-CoV S proteins, given the small energy differences (all
<1 kcal/mol with SOMD). This supports 9-NAc Sias as an experimentally stable mimic of
9-OAc counterparts to probe Sia-virus binding. Future experimental studies can validate
our differential binding free energy results and understanding the binding of modified Sias
can further elucidate the role of Sias in cellular recognition and the high transmissibility of
SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at: https:
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example MD simulations of Sia unbinding and binding events in the SARS-CoV-2 S protein (6VSB).

Author Contributions: Conceptualization, L.O. and L.-P.W.; methodology, L.O.; software, L.O.;
validation, L.O.; formal analysis, L.O.; investigation, L.O.; resources, L.-P.W., X.C. and A.V.; data
curation, L.O.; writing—original draft preparation, L.O.; writing—review and editing, L.O., L.-P.W.,
X.C. and A.V.; visualization, L.O.; supervision, L.-P.W., X.C. and A.V.; project administration, L.-P.W.,
X.C. and A.V.; funding acquisition, L.-P.W., X.C. and A.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the United States National Institutes of Health, grant no.
R01AI130684 and R01AI130684-03S1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: We are grateful for the insightful discussions with Caleb Oh at the UC Davis
Medical Center.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

https://www.mdpi.com/article/10.3390/molecules27165322/s1
https://www.mdpi.com/article/10.3390/molecules27165322/s1


Molecules 2022, 27, 5322 12 of 14

References
1. Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.-J.; Bosch, B.-J.; Rey, F.A.; de Groot, R.J.; et al.

Structural Basis for Human Coronavirus Attachment to Sialic Acid Receptors. Nat. Struct. Mol. Biol. 2019, 26, 481–489. [CrossRef]
[PubMed]

2. Varki, A.; Schauer, R. Sialic Acids. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H.,
Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009;
ISBN 978-0-87969-770-9.

3. Park, Y.-J.; Walls, A.C.; Wang, Z.; Sauer, M.M.; Li, W.; Tortorici, M.A.; Bosch, B.-J.; DiMaio, F.; Veesler, D. Structures of MERS-CoV
Spike Glycoprotein in Complex with Sialoside Attachment Receptors. Nat. Struct. Mol. Biol. 2019, 26, 1151–1157. [CrossRef]
[PubMed]

4. Hulswit, R.J.G.; Lang, Y.; Bakkers, M.J.G.; Li, W.; Li, Z.; Schouten, A.; Ophorst, B.; van Kuppeveld, F.J.M.; Boons, G.-J.; Bosch, B.-J.;
et al. Human Coronaviruses OC43 and HKU1 Bind to 9-O-Acetylated Sialic Acids via a Conserved Receptor-Binding Site in
Spike Protein Domain A. Proc. Natl. Acad. Sci. USA 2019, 116, 2681–2690. [CrossRef] [PubMed]

5. Li, Z.; Lang, Y.; Liu, L.; Bunyatov, M.I.; Sarmiento, A.I.; de Groot, R.J.; Boons, G.-J. Synthetic O-Acetylated Sialosides Facilitate
Functional Receptor Identification for Human Respiratory Viruses. Nat. Chem. 2021, 13, 496–503. [CrossRef] [PubMed]

6. Nguyen, L.; McCord, K.A.; Bui, D.T.; Bouwman, K.M.; Kitova, E.N.; Elaish, M.; Kumawat, D.; Daskhan, G.C.; Tomris, I.; Han,
L.; et al. Sialic Acid-Containing Glycolipids Mediate Binding and Viral Entry of SARS-CoV-2. Nat. Chem. Biol. 2022, 18, 81–90.
[CrossRef]

7. Nguyen, K.; Chakraborty, S.; Mansbach, R.A.; Korber, B.; Gnanakaran, S. Exploring the Role of Glycans in the Interaction of
SARS-CoV-2 RBD and Human Receptor ACE2. Viruses 2021, 13, 927. [CrossRef]

8. Baker, A.N.; Richards, S.-J.; Guy, C.S.; Congdon, T.R.; Hasan, M.; Zwetsloot, A.J.; Gallo, A.; Lewandowski, J.R.; Stansfeld, P.J.;
Straube, A.; et al. The SARS-CoV-2 Spike Protein Binds Sialic Acids and Enables Rapid Detection in a Lateral Flow Point of Care
Diagnostic Device. ACS Cent. Sci. 2020, 6, 2046–2052. [CrossRef]

9. Dhar, C.; Sasmal, A.; Diaz, S.; Verhagen, A.; Yu, H.; Li, W.; Chen, X.; Varki, A. Are Sialic Acids Involved in COVID-19 Pathogenesis?
Glycobiology 2021, 31, 1068–1071. [CrossRef]

10. Li, B.; Wang, L.; Ge, H.; Zhang, X.; Ren, P.; Guo, Y.; Chen, W.; Li, J.; Zhu, W.; Chen, W.; et al. Identification of Potential Binding
Sites of Sialic Acids on the RBD Domain of SARS-CoV-2 Spike Protein. Front. Chem. 2021, 9, 659764. [CrossRef]

11. Wang, C.-W.; Lee, O.K.; Fischer, W.B.; Wang, C.-W.; Lee, O.K.; Fischer, W.B. Screening Coronavirus and Human Proteins for Sialic
Acid Binding Sites Using a Docking Approach. AIMS Biophys. 2021, 8, 248–263. [CrossRef]

12. Milanetti, E.; Miotto, M.; Di Rienzo, L.; Nagaraj, M.; Monti, M.; Golbek, T.W.; Gosti, G.; Roeters, S.J.; Weidner, T.; Otzen, D.E.; et al.
In-Silico Evidence for a Two Receptor Based Strategy of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 509. [CrossRef] [PubMed]

13. Fantini, J.; Di Scala, C.; Chahinian, H.; Yahi, N. Structural and Molecular Modelling Studies Reveal a New Mechanism of Action
of Chloroquine and Hydroxychloroquine against SARS-CoV-2 Infection. Int. J. Antimicrob. Agents 2020, 55, 105960. [CrossRef]
[PubMed]

14. Zamorano Cuervo, N.; Grandvaux, N. ACE2: Evidence of Role as Entry Receptor for SARS-CoV-2 and Implications in Comorbidi-
ties. eLife 2020, 9, e61390. [CrossRef] [PubMed]

15. Vandelli, A.; Monti, M.; Milanetti, E.; Armaos, A.; Rupert, J.; Zacco, E.; Bechara, E.; Delli Ponti, R.; Tartaglia, G.G. Structural
Analysis of SARS-CoV-2 Genome and Predictions of the Human Interactome. Nucleic Acids Res. 2020, 48, 11270–11283. [CrossRef]

16. Seyran, M.; Takayama, K.; Uversky, V.N.; Lundstrom, K.; Palù, G.; Sherchan, S.P.; Attrish, D.; Rezaei, N.; Aljabali, A.A.A.; Ghosh,
S.; et al. The Structural Basis of Accelerated Host Cell Entry by SARS-CoV-2. FEBS J. 2021, 288, 5010–5020. [CrossRef]

17. Awasthi, M.; Gulati, S.; Sarkar, D.P.; Tiwari, S.; Kateriya, S.; Ranjan, P.; Verma, S.K. The Sialoside-Binding Pocket of SARS-CoV-2
Spike Glycoprotein Structurally Resembles MERS-CoV. Viruses 2020, 12, 909. [CrossRef]

18. Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus
Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [CrossRef]

19. Sun, X.-L. The Role of Cell Surface Sialic Acids for SARS-CoV-2 Infection. Glycobiology 2021, 31, 1245–1253. [CrossRef]
20. Khedri, Z.; Xiao, A.; Yu, H.; Landig, C.S.; Li, W.; Diaz, S.; Wasik, B.R.; Parrish, C.R.; Wang, L.-P.; Varki, A.; et al. A Chemical

Biology Solution to Problems with Studying Biologically Important but UnsTable 9-O-Acetyl Sialic Acids. ACS Chem. Biol. 2017,
12, 214–224. [CrossRef]

21. Li, W.; Battistel, M.D.; Reeves, H.; Oh, L.; Yu, H.; Chen, X.; Wang, L.-P.; Freedberg, D.I. A Combined NMR, MD and DFT
Conformational Analysis of 9-O-Acetyl Sialic Acid-Containing GM3 Ganglioside Glycan and Its 9-N-Acetyl Mimic. Glycobiology
2020, 30, 787–801. [CrossRef]

22. Ji, Y.; Sasmal, A.; Li, W.; Oh, L.; Srivastava, S.; Hargett, A.A.; Wasik, B.R.; Yu, H.; Diaz, S.; Choudhury, B.; et al. Reversible O-Acetyl
Migration within the Sialic Acid Side Chain and Its Influence on Protein Recognition. ACS Chem. Biol. 2021, 16, 1951–1960.
[CrossRef] [PubMed]

23. Oh, L.; Ji, Y.; Li, W.; Varki, A.; Chen, X.; Wang, L.-P. O-Acetyl Migration within the Sialic Acid Side Chain: A Mechanistic Study by
the Ab Initio Nanoreactor. Department of Chemistry, University of California, Davis, CA, USA. 2022, submitted.

24. Varki, A.; Angata, T. Siglecs—The Major Subfamily of I-Type Lectins. Glycobiology 2006, 16, 1R–27R. [CrossRef] [PubMed]
25. Marsh, L. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites. BioMed Res. Int.

2015, 2015, e746980. [CrossRef]

http://doi.org/10.1038/s41594-019-0233-y
http://www.ncbi.nlm.nih.gov/pubmed/31160783
http://doi.org/10.1038/s41594-019-0334-7
http://www.ncbi.nlm.nih.gov/pubmed/31792450
http://doi.org/10.1073/pnas.1809667116
http://www.ncbi.nlm.nih.gov/pubmed/30679277
http://doi.org/10.1038/s41557-021-00655-9
http://www.ncbi.nlm.nih.gov/pubmed/33753916
http://doi.org/10.1038/s41589-021-00924-1
http://doi.org/10.3390/v13050927
http://doi.org/10.1021/acscentsci.0c00855
http://doi.org/10.1093/glycob/cwab063
http://doi.org/10.3389/fchem.2021.659764
http://doi.org/10.3934/biophy.2021019
http://doi.org/10.3389/fmolb.2021.690655
http://www.ncbi.nlm.nih.gov/pubmed/34179095
http://doi.org/10.1016/j.ijantimicag.2020.105960
http://www.ncbi.nlm.nih.gov/pubmed/32251731
http://doi.org/10.7554/eLife.61390
http://www.ncbi.nlm.nih.gov/pubmed/33164751
http://doi.org/10.1093/nar/gkaa864
http://doi.org/10.1111/febs.15651
http://doi.org/10.3390/v12090909
http://doi.org/10.1038/s41401-020-0485-4
http://doi.org/10.1093/glycob/cwab032
http://doi.org/10.1021/acschembio.6b00928
http://doi.org/10.1093/glycob/cwaa040
http://doi.org/10.1021/acschembio.0c00998
http://www.ncbi.nlm.nih.gov/pubmed/33769035
http://doi.org/10.1093/glycob/cwj008
http://www.ncbi.nlm.nih.gov/pubmed/16014749
http://doi.org/10.1155/2015/746980


Molecules 2022, 27, 5322 13 of 14

26. Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M.K.; Greenwood, J.; et al. Accurate
and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy
Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015, 137, 2695–2703. [CrossRef]

27. Rizzi, A.; Murkli, S.; McNeill, J.N.; Yao, W.; Sullivan, M.; Gilson, M.K.; Chiu, M.W.; Isaacs, L.; Gibb, B.C.; Mobley, D.L.; et al.
Overview of the SAMPL6 Host–Guest Binding Affinity Prediction Challenge. J. Comput. Aided Mol. Des. 2018, 32, 937–963.
[CrossRef] [PubMed]

28. Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State
Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef]

29. Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.-P.; Simmonett, A.C.; Harrigan, M.P.;
Stern, C.D.; et al. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol.
2017, 13, e1005659. [CrossRef]

30. Woods, C.J.; Mey, A.S.; Calabro, G.; Julien, M. Sire Molecular Simulation Framework. Version 2020.1.0. Available online:
Http://Siremol.Org.2020.1.0 (accessed on 19 May 2020).

31. Li, W.; Hulswit, R.J.G.; Widjaja, I.; Raj, V.S.; McBride, R.; Peng, W.; Widagdo, W.; Tortorici, M.A.; van Dieren, B.; Lang, Y.; et al.
Identification of Sialic Acid-Binding Function for the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein. Proc.
Natl. Acad. Sci. USA 2017, 114, E8508–E8517. [CrossRef]

32. Brown, D.K.; Penkler, D.L.; Sheik Amamuddy, O.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A Software
Suite for Analyzing Molecular Dynamics Trajectories. Bioinformatics 2017, 33, 2768–2771. [CrossRef]

33. Mycroft-West, C.J.; Su, D.; Pagani, I.; Rudd, T.R.; Elli, S.; Gandhi, N.S.; Guimond, S.E.; Miller, G.J.; Meneghetti, M.C.Z.; Nader,
H.B.; et al. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1
Receptor-Binding Domain with Heparin. Thromb. Haemost. 2020, 120, 1700–1715. [CrossRef]

34. Kim, S.H.; Kearns, F.L.; Rosenfeld, M.A.; Casalino, L.; Papanikolas, M.J.; Simmerling, C.; Amaro, R.E.; Freeman, R. GlycoGrip: Cell
Surface-Inspired Universal Sensor for Betacoronaviruses. ACS Cent. Sci. 2022, 8, 22–42. [CrossRef] [PubMed]

35. Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.;
McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15.
[CrossRef] [PubMed]

36. Henderson, R.; Edwards, R.J.; Mansouri, K.; Janowska, K.; Stalls, V.; Gobeil, S.M.C.; Kopp, M.; Li, D.; Parks, R.; Hsu, A.L.; et al.
Controlling the SARS-CoV-2 Spike Glycoprotein Conformation. Nat. Struct. Mol. Biol. 2020, 27, 925–933. [CrossRef]

37. Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of
the 2019-NCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [CrossRef]

38. Roberts, E.; Eargle, J.; Wright, D.; Luthey-Schulten, Z. MultiSeq: Unifying Sequence and Structure Data for Evolutionary Analysis.
BMC Bioinform. 2006, 7, 382. [CrossRef] [PubMed]

39. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
40. McGann, M. FRED and HYBRID Docking Performance on Standardized Datasets. J. Comput. Aided Mol. Des. 2012, 26, 897–906.

[CrossRef]
41. McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [CrossRef]
42. Kelley, B.P.; Brown, S.P.; Warren, G.L.; Muchmore, S.W. POSIT: Flexible Shape-Guided Docking For Pose Prediction. J. Chem. Inf.

Model. 2015, 55, 1771–1780. [CrossRef]
43. OEDOCKING 3.3.1: OpenEye Scientific Software, Inc., Santa Fe, NM. Available online: http://www.eyesopen.com (accessed on

28 May 2019).
44. Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations

with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [CrossRef]
45. Le Grand, S.; Götz, A.W.; Walker, R.C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated

Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184, 374–380. [CrossRef]
46. Salomon-Ferrer, R.; Gotz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with

AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [CrossRef] [PubMed]
47. Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol.

Sci. 2013, 3, 198–210. [CrossRef]
48. Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi,

D.; Gilson, M.K.; et al. AMBER 2018; University of California: San Francisco, CA, USA, 2018.
49. Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.

J. Chem. Theory Comput. 2013, 9, 3084–3095. [CrossRef] [PubMed]
50. Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.-B.N.; Wang, H.; Ren, P.; Luo, R. Calculating Protein-Ligand Binding Affinities

with MMPBSA: Method and Error Analysis: Calculating Protein-Ligand Binding Affinities. J. Comput. Chem. 2016, 37, 2436–2446.
[CrossRef] [PubMed]

51. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating
Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res.
2000, 33, 889–897. [CrossRef]

http://doi.org/10.1021/ja512751q
http://doi.org/10.1007/s10822-018-0170-6
http://www.ncbi.nlm.nih.gov/pubmed/30415285
http://doi.org/10.1021/ct300418h
http://doi.org/10.1371/journal.pcbi.1005659
Http://Siremol.Org.2020.1.0
http://doi.org/10.1073/pnas.1712592114
http://doi.org/10.1093/bioinformatics/btx349
http://doi.org/10.1055/s-0040-1721319
http://doi.org/10.1021/acscentsci.1c01080
http://www.ncbi.nlm.nih.gov/pubmed/35106370
http://doi.org/10.1016/j.cell.2020.09.033
http://www.ncbi.nlm.nih.gov/pubmed/32970989
http://doi.org/10.1038/s41594-020-0479-4
http://doi.org/10.1126/science.abb2507
http://doi.org/10.1186/1471-2105-7-382
http://www.ncbi.nlm.nih.gov/pubmed/16914055
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1007/s10822-012-9584-8
http://doi.org/10.1021/ci100436p
http://doi.org/10.1021/acs.jcim.5b00142
http://www.eyesopen.com
http://doi.org/10.1021/ct200909j
http://doi.org/10.1016/j.cpc.2012.09.022
http://doi.org/10.1021/ct400314y
http://www.ncbi.nlm.nih.gov/pubmed/26592383
http://doi.org/10.1002/wcms.1121
http://doi.org/10.1021/ct400341p
http://www.ncbi.nlm.nih.gov/pubmed/26583988
http://doi.org/10.1002/jcc.24467
http://www.ncbi.nlm.nih.gov/pubmed/27510546
http://doi.org/10.1021/ar000033j


Molecules 2022, 27, 5322 14 of 14

52. Srinivasan, J.; Miller, J.; Kollman, P.A.; Case, D.A. Continuum Solvent Studies of the Stability of RNA Hairpin Loops and Helices.
J. Biomol. Struct. Dyn. 1998, 16, 671–682. [CrossRef]

53. Woods, C. FESetup: Automating Setup for Alchemical Free Energy Simulations. J. Chem. Inf. Modeling 2015, 55, 2485–2490.
54. Mey, A.S.J.S.; Jiménez, J.J.; Michel, J. Impact of Domain Knowledge on Blinded Predictions of Binding Energies by Alchemical

Free Energy Calculations. J. Comput. Aided Mol. Des. 2018, 32, 199–210. [CrossRef]
55. Loeffler, H.H.; Bosisio, S.; Duarte Ramos Matos, G.; Suh, D.; Roux, B.; Mobley, D.L.; Michel, J. Reproducibility of Free Energy

Calculations across Different Molecular Simulation Software Packages. J. Chem. Theory Comput. 2018, 14, 5567–5582. [CrossRef]
56. Kuhn, M.; Firth-Clark, S.; Tosco, P.; Mey, A.S.J.S.; Mackey, M.; Michel, J. Automated Assessment of Binding Affinity via Alchemical

Free Energy Calculations. J. Chem. Inf. Model. 2020, 60, 3120–3130. [CrossRef] [PubMed]
57. Mey, A.S.J.S.; Allen, B.K.; Macdonald, H.E.B.; Chodera, J.D.; Hahn, D.F.; Kuhn, M.; Michel, J.; Mobley, D.L.; Naden, L.N.; Prasad,

S.; et al. Best Practices for Alchemical Free Energy Calculations [Article v1.0]. Living J. Comput. Mol. Sci. 2020, 2, 18378. [CrossRef]
[PubMed]

58. Shirts, M.R.; Chodera, J.D. Statistically Optimal Analysis of Samples from Multiple Equilibrium States. J. Chem. Phys. 2008, 129,
124105. [CrossRef] [PubMed]

59. Kirkwood, J.G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3, 300–313. [CrossRef]
60. Merz, K.M.; Kollman, P.A. Free Energy Perturbation Simulations of the Inhibition of Thermolysin: Prediction of the Free Energy

of Binding of a New Inhibitor. J. Am. Chem. Soc. 1989, 111, 5649–5658. [CrossRef]
61. Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06:

A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. [CrossRef]
62. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field.

J. Comput. Chem. 2004, 25, 1157–1174. [CrossRef]
63. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;

Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
64. Ufimtsev, I.S.; Martinez, T.J. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry

Optimization, and First Principles Molecular Dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. [CrossRef]
65. Ufimtsev, I.S.; Martínez, T.J. Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.

J. Chem. Theory Comput. 2008, 4, 222–231. [CrossRef]
66. Ufimtsev, I.S.; Martinez, T.J. Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation.

J. Chem. Theory Comput. 2009, 5, 1004–1015. [CrossRef]
67. Wang, L.-P.; Song, C. Geometry Optimization Made Simple with Translation and Rotation Coordinates. J. Chem. Phys. 2016, 144,

214108. [CrossRef] [PubMed]
68. Wang, L.-P.; McKiernan, K.A.; Gomes, J.; Beauchamp, K.A.; Head-Gordon, T.; Rice, J.E.; Swope, W.C.; Martínez, T.J.; Pande, V.S.

Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. J. Phys. Chem. B 2017, 121,
4023–4039. [CrossRef] [PubMed]

69. Kesharwani, M.K.; Karton, A.; Martin, J.M.L. Benchmark Ab Initio Conformational Energies for the Proteinogenic Amino Acids
through Explicitly Correlated Methods. Assessment of Density Functional Methods. J. Chem. Theory Comput. 2016, 12, 444–454.
[CrossRef] [PubMed]

70. Wang, L.-P.; Martinez, T.J.; Pande, V.S. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. J. Phys.
Chem. Lett. 2014, 5, 1885–1891. [CrossRef]

http://doi.org/10.1080/07391102.1998.10508279
http://doi.org/10.1007/s10822-017-0083-9
http://doi.org/10.1021/acs.jctc.8b00544
http://doi.org/10.1021/acs.jcim.0c00165
http://www.ncbi.nlm.nih.gov/pubmed/32437145
http://doi.org/10.33011/livecoms.2.1.18378
http://www.ncbi.nlm.nih.gov/pubmed/34458687
http://doi.org/10.1063/1.2978177
http://www.ncbi.nlm.nih.gov/pubmed/19045004
http://doi.org/10.1063/1.1749657
http://doi.org/10.1021/ja00197a022
http://doi.org/10.1002/jcc.20820
http://doi.org/10.1002/jcc.20035
http://doi.org/10.1021/ct9003004
http://doi.org/10.1021/ct700268q
http://doi.org/10.1021/ct800526s
http://doi.org/10.1063/1.4952956
http://www.ncbi.nlm.nih.gov/pubmed/27276946
http://doi.org/10.1021/acs.jpcb.7b02320
http://www.ncbi.nlm.nih.gov/pubmed/28306259
http://doi.org/10.1021/acs.jctc.5b01066
http://www.ncbi.nlm.nih.gov/pubmed/26653705
http://doi.org/10.1021/jz500737m

	Introduction 
	Results and Discussion 
	Method Validation with Sia-MERS-CoV S Protein Binding 
	Discovery and Analysis of Sias-SARS-CoV-2 S Protein Binding 

	Methods 
	Choice of Protein Structures, Sialic Acids, and Binding Poses 
	Molecular Dynamics Simulation Setup 
	Computation of Binding Free Energies Using MM-PBSA and Alchemical Simulation Approaches 
	Alchemical Free Energy Simulations: Setup and Procedure 
	Sialic Acid Parametrization Procedure 

	Conclusions 
	References

