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Although invasion reproductive numbers (IRNs) are utilized frequently in continuous-time
models with multiple interacting pathogens, they are yet to be explored in discrete-time
systems. Here, we extend the concept of IRNs to discrete-time models by showing how
to calculate them for a set of two-pathogen SIS models with coinfection. In our exploration,
we address how sequencing events impacts the basic reproductive number (BRN) and IRN.
As an illustrative example, our models are applied to rhinovirus and respiratory syncytial
virus co-circulation. Results show that while the BRN is unaffected by variations in the
order of events, the IRN differs. Furthermore, our models predict copersistence of multiple
pathogen strains under cross-immunity, which is atypical of analogous continuous-time
models. This investigation shows that sequencing events has important consequences
for the IRN and can drastically alter competition dynamics.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The basic reproductive number, R0, is a critical threshold in mathematical epidemiology. This quantity, defined as the
“expected number of secondary cases produced, in a completely susceptible population, by a typical infected individual
during its entire period of infectiousness” [(Diekmann, Heesterbeek, & Metz, 1990), p. 365], is used to determine whether a
diseasewill persist, with R0 >1 indicating disease persistence. R0 has been studied in numerous continuous and discrete-time
epidemic models (e.g. (Allen, 1994; Allen& van den Driessche, 2008; Crawford& Kribs-Zaleta, 2009; Hernandez-Ceron, Feng,
& van den Driessche, 2013; Lewis, Rencławowicz, van Den Driessche, & Wonham, 2006; Qiu, Kong, Li, & Martcheva, 2013))
and has proved useful for informing disease control strategies. Although the basic reproductive number (BRN) is invaluable, it
has its restrictions. One main restriction is that it can only be used to describe disease spread in a naive population.

As many communities around the globe are endemic for at least one pathogen (e.g. Chagas disease in Latin America,
malaria in parts of Africa, and dengue in regions of South America), it becomes necessary to study invasion reproductive
numbers (IRNs). An IRN describes the number of secondary infections produced by an infected individual in a population
where one (or more) other pathogen is endemic (Porco& Blower,1998). This quantity displays the same threshold behavior as
R0, namely if the IRN of a pathogen is greater than 1, the pathogen can spread in a population endemic with the other
disease(s).
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IRNs have been utilized frequently in continuous-timemodels (e.g. (Crawford& Kribs-Zaleta, 2009; Martcheva& Pilyugin,
2006; Nuno, Chowell, Wang, & Castillo-Chavez, 2007; Qiu et al., 2013; Zhang, Sandland, Feng, Xu, & Minchella, 2007));
however, they are yet to be explored in discrete-time systems. This may be due to the lack of multiple-pathogen discrete-time
models in literature. While discrete-time competition models have been studied for over forty years and shown to exhibit
both competitive exclusion and coexistence under different conditions (Cushing, Levarge, Chitnis, & Henson, 2004; Edmunds
et al., 2003; Franke & Yakubu, 1991; Hassell & Comins, 1976; Smith & Zhao, 2001), the only discrete-time multiple-pathogen
models, to the best of our knowledge, are discussed in (Perez-Velazquez, 1999) and (Allen, Kirupaharan, & Wilson, 2004). In
the former article, a discrete-time SIS model of two competing pathogen strains with demography and cross-immunity is
analyzed. The basic reproductive number of each strain is calculated and stability analyses are conducted for the disease-free
and boundary equilibria. The study also asserts that a coexistence equilibrium exists if and only if the basic reproductive
numbers of both strains are identical. Since most parameter values used in this model did not satisfy the coexistence con-
dition, the principle of competitive exclusion is supported. Additionally, through numerical simulations, the author in (Perez-
Velazquez, 1999) illustrates how demography can result in complex population dynamics such as period doubling and chaos.
It is important to highlight that nowhere in the analysis of (Perez-Velazquez, 1999) is the IRN of the two strains mentioned or
alluded to.

In (Allen et al., 2004), Allen et al. present single-patch and two-patch discrete-time SIS models for n cocirculating path-
ogens with complete cross-immunity and no demography. Here too, the authors compute the BRNs and address stability of
the disease-free and single-strain endemic equilibria. Their analysis reveals that the principle of competitive exclusion holds
in a single patch, where the pathogen with the greatest BRN dominates (given that the BRN is greater than 1). However,
coexistence of multiple pathogen strains is possible in two patches and is impacted by both dispersal probabilities and BRNs.
Although (Allen et al., 2004) examines disease persistence in a populationwith multiple pathogen strains, we note that at no
point in the study are IRNs mentioned.

The primary purpose of this current work is to extend the derivation of IRNs to discrete-time models, using as illustrative
examples a set of two-pathogen SIS models. Unlike (Perez-Velazquez, 1999) and (Allen et al., 2004), the models that we
propose assume that coinfection by both pathogen strains is possible. Like (Allen et al., 2004), however, we leave demography
implicit (as explained in the next section) because our interest is in developing the concept of IRNs in discrete-time models
using the simplest possible multiple-pathogen coinfection scenario. By extending IRNs in this fashion, our research adds to
the analytical tools by which discrete-time models can be examined and enriches literature on multiple-pathogen discrete-
time systems.

The secondary purpose of this article is to investigate howdifferent assumptions on the ordering of events in discrete-time
models impact the BRN and IRN, and ultimately the types of biological conclusions that can be drawn from them. When
creating discrete-time models, it is common practice to specify the order of events (e.g. (Bravo de la Parra, Marv�a, S�anchez, &
Sanz, 2017; Hilker& Liz, 2013; Klepac& Caswell, 2011; Lewis et al., 2006; Perez-Velazquez, 1999; Weide& Hilker, 2019)). This
is because different orderings can lead to differing conclusions as described in theWest Nile virus study of (Lewis et al., 2006)
where changing the order of disease-induced mortality, natural mortality, birth, infection, and transfer resulted in distinct
forms of the BRN. Although various sequential formulations of our coinfection model can be derived using different ordering
of events, we consider only three sequential models where either (a) all infection events occur before recovery, (b) infection
and recovery are intertwined, or (c) recovery precedes infection. These three formulations encompass a wide range of
infection/recovery patterns that may arise in nature and thus any conclusions obtained from them can be extended to a
plethora of other models that follow a similar pattern.

In addition, we consider a formulation of the coinfection model that assumes that events occur simultaneously, as in
continuous-time systems. The model of (Allen et al., 2004) assumes a small enough time step that all event types can occur
simultaneously without emptying any of the compartments. Although the structure of the model in (Perez-Velazquez, 1999)
is partially ordered, with both infection types occurring simultaneously, a fully simultaneous “ordering” of events, as pre-
sented in this work, has not previously been explored in a discrete-time model using arbitrary time step size. While a specific
order of events may be necessary when describing certain biological processes (e.g. animal life cycles), there are instances
where events in discrete-time models can occur simultaneously (e.g. when describing disease transmission). In such sce-
narios, a different formulation of discrete-time models is required, namely the simultaneous formulation that we propose.

The present study extends the single-patch model of (Allen et al., 2004) in two ways: by formulating it in terms of an
arbitrary time step, following notation such as in (Castillo-Chavez & Yakubu, 2001; Lewis et al., 2006; Smith & Zhao, 2001),
and by allowing coinfection. Relaxing the assumption of a small time step requires addressing the order of events, while
relaxing the assumption of complete cross-immunity to consider a broad spectrum of coinfection interactions vastly increases
the size of the model. Because of the complexity involved in articulating and analyzing the general n-pathogen model, we
begin by developing the models and analysis using two pathogens only. The following section develops the different for-
mulations of the two-pathogen discrete-time SIS coinfection model. We derive and compare their respective BRNs and IRNs
to develop generalizations about the impact of ordering on these key epidemiological quantities. Next, the models are applied
to a specific example of rhinovirus (RV) and respiratory syncytial virus (RSV) co-circulation to provide insight on the rela-
tionship between these two pathogens at the population level. Finally, we extend the models and results to the more general
case with n pathogens cocirculating.
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2. Two-pathogen models

The discrete-time models that we first consider describe the dynamics of two pathogen strains competing for susceptible
humans within a population, as shown in Fig. 1. In the models, humans are compartmentalized into four classes: susceptible
(S), infected with pathogen 1 (I1), infected with pathogen 2 (I2), and infected with both pathogens (I12). Throughout the

following sections, we take the proportion of people infected with pathogen 1 to be xðtÞ ¼ I1ðtÞþI12ðtÞ
N , and the proportion of

people infected with pathogen 2 to be yðtÞ ¼ I2ðtÞþI12ðtÞ
N , where the constant N represents the total human population. The

infection and recovery rates of each pathogen are given by bi; i ¼ 1;2 and gi; i ¼ 1;2 respectively, while the relative likelihood
of coinfectionwith pathogen i given infectionwith the other pathogen is represented by ki;i ¼ 1;2.We note that, ecologically,
ki inversely measures the level of interspecific competition, with high ki values indicating low interspecific competition. The
parameter bi ¼ expð�biDtÞ represents the proportion of people who do not get infected with pathogen i by a single infective
within a certain time interval and gi ¼ expð� giDtÞ, i ¼ 1;2 is the proportion that do not recover from pathogen i in that time
interval. In our study, we take the time step, Dt, to be 1. Hence, bi ¼ expð�biÞ and gi ¼ expð� giÞ. The proportion of sus-
ceptibles who do not get infected with pathogen i in unit time when xi proportion of the population is infectious with
pathogen i is therefore represented by bxii .

Some authors have studied the interactions of demographic changes and infection dynamics, but our interest is focused on
the infection dynamics alone in a population at equilibrium, similarly to Allen et al. (Allen et al., 2004). In a simple SIS
monoinfection cycle, recovery and demographic renewal are mathematically equivalent, since (assuming no vertical trans-
mission) both have the effect of replacing infectives with an equivalent number of susceptibles, so that a single event (and
associated parameter) can account for both. Here our interest is instead on the interplay among infections, and the impact of
order of events on discrete-time reproduction numbers.

In the subsections below, we develop the simultaneous formulation of the discrete-time SIS coinfection model, referred to
as SIM, along with the three sequential formulations which we call SEQ1, SEQ2, and SEQ3.
2.1. SIM model formulation (n ¼ 2)

The complication in extending the model of (Allen et al., 2004) (which already assumes that infection and recovery occur
simultaneously) to allow both arbitrary time steps and coinfection involves the result of coexposure to multiple pathogens
during a single time step. Such coexposure should qualitatively reflect the altered susceptibilities ki caused by a primary
exposure, specifically the special cases ki ¼ 1 (no interaction) and ki ¼ 0 (full cross-immunity) of which this model is a
generalization. To address this issue, we assume thatmultiple exposures during a single time step occur in random order with
equal frequency, and define some notation. We let qi ¼ minð1; kiÞ and then define

QiðtÞ ¼
 
1� bqixiðtÞi

1� bxiðtÞi

!2

:

Fig. 1. SIS coinfection model for two pathogens.
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Qi gives the proportion of coexposed individuals first exposed to pathogen jsiwho become coinfected with both infections i
and j in a single time step. For ki ¼ 1, we have Qi ¼ 1 (unaltered susceptibility means coexposure implies coinfection), while
for ki ¼ 0, Qi ¼ 0 (complete cross-immunity means monoinfection only). We also note that as xi/0, Qi/q2i remains defined.
More broadly, when ki <1, Qi <1 (reduced susceptibility means not all coexposed become coinfected), while for ki � 1, Qi ¼ 1
(under unreduced susceptibility, all coexposed become coinfected).

For the two-pathogen model, by assumption half of the susceptibles coexposed to both pathogens 1 and 2 in a single time
step are first exposed to pathogen 1, and the other half to pathogen 2 first. All coexposed individuals are assumed to become
infected by their first exposure, j. Whether they also become infected by their second exposure, i, depends on the altered
susceptibility ki to that second pathogen, as well as on the prevalence of that pathogen, xiðtÞ. Q2ðtÞ of those coexposed at time
step t first exposed to pathogen 1will become coinfected; the remaining 1� Q2ðtÞwill become infected only with pathogen 1.
Similarly Q1ðtÞ of those coexposed first exposed to pathogen 2 will also develop pathogen 1. Thus overall, of the coexposed (in
S), the proportions moving to classes I1, I2 and I12, respectively, are 1

2 ð1� Q2Þ, 12 ð1� Q1Þ, and 1
2 ðQ1 þ Q2Þ. This leads to the

following model.

Sðt þ 1Þ ¼ SðtÞbxðtÞ1 byðtÞ2 þ I1ðtÞbk2yðtÞ2 ð1� g1Þ þ I2ðtÞbk1xðtÞ1 ð1� g2Þ þ I12ðtÞð1� g1Þð1� g2Þ�
xðtÞ�� yðtÞ �

yðtÞ� 1
�

k2yðtÞ
I1ðt þ 1Þ ¼ SðtÞ 1� b1 b2 þ 1� b2 2
ð1� Q2ðtÞÞ þ I1ðtÞb2 g1

þI2ðtÞ
�
1� bk1xðtÞ1

�
ð1� g2Þ þ I12ðtÞg1ð1� g2Þ

(1)

�
xðtÞ �

xðtÞ� 1
��

yðtÞ� �
k2yðtÞ

�

I2ðt þ 1Þ ¼ SðtÞ b1 þ 1� b1 2

ð1� Q1ðtÞÞ 1� b2 þ I1ðtÞ 1� b2 ð1� g1Þ

þI2ðtÞbk1xðtÞ1 g2 þ I12ðtÞð1� g1Þg2�
xðtÞ�� yðtÞ� 1
I12ðt þ 1Þ ¼ SðtÞ 1� b1 1� b2 2
ðQ1ðtÞ þ Q2ðtÞÞ

þI1ðtÞ
�
1� bk2yðtÞ2

�
g1 þ I2ðtÞ

�
1� bk1xðtÞ1

�
g2 þ I12ðtÞg1g2:
Reading the equations, at time t, a susceptible individual can become infected with either pathogen 1 or pathogen 2. The

proportion of people that do not get infected with either pathogen is represented by bxðtÞ1 byðtÞ2 . These individuals remain in the
susceptible class during the next time step and are joined by people in the I1 and I2 classes who recover from infection at time
t and do not develop the other infection, and by members of I12 who recover from both infections in the same time step.

The individuals in I1 at time t þ 1 consist of those susceptibles Swho developed infection 1 but not infection 2, those in I1
who neither recovered from their infection nor were coinfected at the previous time step (I1ðtÞg1bk2yðtÞ2 ), those in I2 who
developed infection 1 and recovered from infection 2, and those coinfected I12 who recovered from infectionwith pathogen 2
but not from infection with pathogen 1. The population in I2 at each time step is composed in a similar fashion.

Humans in the coinfected class, I12, who remain in that class at time t þ 1 are those who neither recovered from infection
with pathogen 1 nor pathogen 2 during the previous time step (I12ðtÞg1g2). Adding to this class are those individuals from I1
who developed infection 2 but did not recover from infection 1, and a similar proportion from I2 who developed infection 1
but did not recover from infection 2. In addition, some of the susceptibles who were dually exposed develop both infections.

We note that for the special case k1 ¼ 1, model (1) simplifies to

eS1ðt þ 1Þ ¼ eS1ðtÞb~I1ðtÞ
N
1 þ~I1ðtÞð1� g1Þ

~I1ðt þ 1Þ ¼ eS1ðtÞ
0BB@1� b

~I1 ðtÞ
N
1

1CCAþ~I1ðtÞg1
(2)
where eS1ðtÞ ¼ SðtÞ þ I2ðtÞ represents the class of individuals susceptible to pathogen 1 and ~I1ðtÞ ¼ I1ðtÞ þ I12ðtÞ are those
infected with pathogen 1. A similar reduction of the SIM model can be obtained when k2 ¼ 1. For this case, model (1)
simplifies to
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eS2ðt þ 1Þ ¼ eS2ðtÞb~I2 ðtÞ
N
2 þ~I2ðtÞð1� g2Þ

~I2ðt þ 1Þ ¼ eS2ðtÞ
0BB@1� b

~I2ðtÞ
N
2

1CCAþ~I2ðtÞg2
(3)
where eS2ðtÞ ¼ SðtÞ þ I1ðtÞ denotes those within the population that are susceptible to pathogen 2 and ~I2ðtÞ ¼ I2ðtÞ þ I12ðtÞ
represents those infected with pathogen 2. Since the total population, N, is constant, (2) and (3) can further be written
respectively as

~I1ðt þ 1Þ ¼
 
N � eI1ðtÞ

!0BB@1� b
~I1ðtÞ
N
1

1CCAþ~I1ðtÞg1 (4)
and

~I2ðt þ 1Þ ¼
 
N � eI2ðtÞ

!0BB@1� b
~I2ðtÞ
N
2

1CCAþ~I2ðtÞg2: (5)
2.2. SEQ1 model formulation (I1; I2;R1;R2)

In the first sequential model formulation of the discrete-time SIS model, we assume that infectionwith pathogen 1 occurs
first and is followed by infectionwith pathogen 2, then recovery from pathogen 1, and finally recovery from pathogen 2. From
this ordering of events, we obtain the following system of difference equations for the SEQ1 model (a step-by-step formu-
lation of this system is provided in Appendix A):

Sðt þ 1Þ ¼ SðtÞ
h
bxðtÞ1

�
byðtÞ2 þ

�
1� byðtÞ2

�
ð1� g2Þ

�
þ
�
1� bxðtÞ1

�
ð1� g1Þ

�
bk2yðtÞ2 þ

�
1� bk2yðtÞ2

�
ð1� g2Þ

�i
þI1ðtÞð1� g1Þ

h
bk2yðtÞ2 þ

�
1� bk2yðtÞ2

�
ð1� g2Þ

i
þI2ðtÞð1� g2Þ

h
bk1xðtÞ1 þ

�
1� bk1xðtÞ1

�
ð1� g1Þ

i
þI12ðtÞ½ð1� g1Þð1� g2Þ�

I ðt þ 1Þ ¼ SðtÞ
�
1� bxðtÞ

�
g
h
bk2yðtÞ þ

�
1� bk2yðtÞ

�
ð1� g Þ

i

1 1 1 2 2 2

þI1ðtÞg1
h
bk2yðtÞ2 þ

�
1� bk2yðtÞ2

�
ð1� g2Þ

i
þI2ðtÞ

h�
1� bk1xðtÞ1

�
g1ð1� g2Þ

i
þI12½g1ð1� g2Þ�

(6)

I ðt þ 1Þ ¼ SðtÞg
h
bxðtÞ

�
1� byðtÞ

�
þ
�
1� bxðtÞ

��
1� bk2yðtÞ

�
ð1� g Þ

i

2 2 1 2 1 2 1

þI1ðtÞ
h�

1� bk2yðtÞ2

�
ð1� g1Þg2

i
þI2ðtÞg2

h
bk1xðtÞ1 þ

�
1� bk1xðtÞ1

�
ð1� g1Þ

i
þI12ðtÞ½ð1� g1Þg2�

I ðt þ 1Þ ¼ SðtÞ
h�

1� bxðtÞ
��

1� bk2yðtÞ
�
g g

i

12 1 2 1 2

þI1ðtÞ
h�

1� bk2yðtÞ2

�
g1g2

i
þI2ðtÞ

h�
1� bk1xðtÞ1

�
g1g2

i
þI12ðtÞ½g1g2�:
We note that for the special case k1 ¼ 1, model (6) simplifies to
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~I1ðt þ 1Þ ¼
 
N � eI1ðtÞ

!
g1

0BB@1� b
~I1 ðtÞ
N
1

1CCAþ~I1ðtÞg1; (7)
while for k2 ¼ 1 it simplifies to

~I2ðt þ 1Þ ¼
 
N � eI2ðtÞ

!
g2

0BB@1� b
~I2 ðtÞ
N
2

1CCAþ~I2ðtÞg2: (8)
2.3. SEQ2 model formulation (I1;R1; I2;R2)

The second sequential formulation of the SIS model assumes the following order of events: infection with pathogen 1,
recovery frompathogen 1, infectionwith pathogen 2, and finally recovery from pathogen 2. From this, we obtain the system of
difference equations for the SEQ2 model:

Sðt þ 1Þ ¼ SðtÞ
�
bxðtÞ1 þ

�
1� bxðtÞ1

�
ð1� g1Þ

��
byðtÞ2 þ

�
1� byðtÞ2

�
ð1� g2Þ

�
þI1ðtÞð1� g1Þ

h
byðtÞ2 þ

�
1� byðtÞ2

�
ð1� g2Þ

i
þI2ðtÞð1� g2Þ

h
bk1xðtÞ1 þ

�
1� bk1xðtÞ1

�
ð1� g1Þ

i
þI12ðtÞ½ð1� g1Þð1� g2Þ�

I ðt þ 1Þ ¼ SðtÞ
�
1� bxðtÞ

�
g
h
bk2yðtÞ þ

�
1� bk2yðtÞ

�
ð1� g Þ

i

1 1 1 2 2 2

þI1ðtÞg1
h
bk2yðtÞ2 þ

�
1� bk2yðtÞ2

�
ð1� g2Þ

i
þI2ðtÞ

h�
1� bk1xðtÞ1

�
g1ð1� g2Þ

i
þI12½g1ð1� g2Þ�

(9)

I ðt þ 1Þ ¼ SðtÞg
h
bxðtÞ

�
1� byðtÞ

�
þ
�
1� bxðtÞ

�
ð1� g Þ

�
1� byðtÞ

�i

2 2 1 2 1 1 2

þI1ðtÞ
h
ð1� g1Þ

�
1� byðtÞ2

�
g2
i

þI2ðtÞg2
h
bk1xðtÞ1 þ

�
1� bk1xðtÞ1

�
ð1� g1Þ

i
þI12ðtÞ½ð1� g1Þg2�

I ðt þ 1Þ ¼ SðtÞ
h�

1� bxðtÞ
�
g
�
1� bk2yðtÞ

�
g
i

12 1 1 2 2

þI1ðtÞ
h
g1
�
1� bk2yðtÞ2

�
g2
i

þI2ðtÞ
h�

1� bk1xðtÞ1

�
g1g2

i
þI12ðtÞ½g1g2�:
For ki ¼ 1; i ¼ 1 or 2, this model has the same simplifications as SEQ1.

2.4. SEQ3 model formulation (R1;R2; I1; I2)

In the third sequential model, we assume that recovery from pathogen 1 occurs first and is followed by recovery from
pathogen 2, then infectionwith pathogen 1, and finally infectionwith pathogen 2. The system of difference equations for SEQ3
is

Sðt þ 1Þ ¼ SðtÞ
h
bxðtÞg11 byðtÞg22

i
þI1ðtÞ

h
ð1� g1ÞbxðtÞg11 byðtÞg22

i
þI2ðtÞ

h
ð1� g2ÞbxðtÞg11 byðtÞg22

i
þI12ðtÞ

h
ð1� g1Þð1� g2ÞbxðtÞg11 byðtÞg22

i
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I1ðt þ 1Þ ¼ SðtÞ
h�

1� bxðtÞg11

�
bk2yðtÞg22

i
þI1ðtÞbk2yðtÞg22

h
g1 þ ð1� g1Þ

�
1� bxðtÞg11

�i
þI2ðtÞ

h
ð1� g2Þ

�
1� bxðtÞg11

�
bk2yðtÞg22

i
þI12ðtÞð1� g2Þbk2yðtÞg22

h
g1 þ ð1� g1Þ

�
1� bxðtÞg11

�i (10)

I ðt þ 1Þ ¼ SðtÞ
h
bxðtÞg1

�
1� byðtÞg2

�i

2 1 2

þI1ðtÞ
h
ð1� g1ÞbxðtÞg11

�
1� byðtÞg22

�i
þI2ðtÞ

h
g2b

k1xðtÞg1
1 þ ð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
þI12ðtÞð1� g1Þ

h
g2b

k1xðtÞg1
1 þ ð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
I ðt þ 1Þ ¼ SðtÞ

h�
1� bxðtÞg1

��
1� bk2yðtÞg2

�i

12 1 2

þI1ðtÞ
�
1� bk2yðtÞg22

�h
g1 þ ð1� g1Þ

�
1� bxðtÞg11

�i
þI2ðtÞ

h
g2
�
1� bk1xðtÞg11

�
þ ð1� g2Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
þI12ðtÞ

h
g1
�
g2 þ ð1� g2Þ

�
1� bk2yðtÞg22

��
þð1� g1Þðg2

�
1� bk1xðtÞg11

�
þ ð1� g2Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
The SEQ3 model can be simplified for ki ¼ 1; i ¼ 1;2. However, this simplification is different from that of SEQ1 and SEQ2
due to the fact that recovery from each pathogen occurs before infection in SEQ3, while recovery occurs after infection in
SEQ1 and SEQ2. For k1 ¼ 1 or k2 ¼ 1 respectively, the SEQ3 model becomes

~I1ðt þ 1Þ ¼
�
N �~I1ðtÞ

�26641� b
~I1ðtÞ
N g1
1

3775þ~I1ðtÞ

2664g1 þ ð1� g1Þ

0BB@1� b
~I1 ðtÞ
N g1
1

1CCA
3775 (11)
or

~I2ðt þ 1Þ ¼
 
N � eI2ðtÞ

!26641� b
~I2 ðtÞ
N g2
2

3775þ~I2ðtÞ

2664g2 þ ð1� g2Þ

0BB@1� b
~I2 ðtÞ
N g2
2

1CCA
3775: (12)
3. Basic reproductive numbers (n ¼ 2)

The BRN of each model is calculated using the next generation matrix approach outlined in (Allen & van den Driessche,
2008). When modeling scenarios with n pathogens, it is common for the BRN to have the form R0 ¼ maxiðRiÞ, i ¼ 1;2;…;

n. While R0 measures the ability of any combination of pathogens to invade a susceptible population, Ri measures the ability of
pathogen i to invade it. In the following subsections, we denote the overall BRN of each model by R0k

, k ¼ s;1;2;3, where k
describes the model at hand (s indicating the simultaneous model and 1, 2, and 3 indicating each of the sequential models).
Additionally, we represent each model's pathogen i-only BRN by Rik .

3.1. SIM BRN

Our analysis begins with the calculation of the basic reproductive number of the simultaneous model. Using the next
generationmatrix approach of (Allen& van den Driessche, 2008), we obtain the vector of new infections that survive the time
interval
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F ¼

0BBBBBBBBBBB@

SðtÞ
�
1� bxðtÞ1

��
byðtÞ2 þ

�
1� byðtÞ2

� 1
2
ð1� Q2ðtÞÞ

�

SðtÞ
�
bxðtÞ1 þ

�
1� bxðtÞ1

� 1
2
ð1� Q1ðtÞÞ

��
1� byðtÞ2

�

SðtÞ
�
1� bxðtÞ1

��
1� byðtÞ2

� 1
2
ðQ1ðtÞ þ Q2ðtÞÞ

1CCCCCCCCCCCA
;

and the vector of all other transitions
T ¼

0BBBB@
I1ðtÞbk2yðtÞ2 g1 þ I2ðtÞ

�
1� bk1xðtÞ1

�
ð1� g2Þ þ I12ðtÞg1ð1� g2Þ

I1ðtÞ
�
1� bk2yðtÞ2

�
ð1� g1Þ þ I2ðtÞbk1xðtÞ1 g2 þ I12ðtÞð1� g1Þg2

I1ðtÞ
�
1� bk2yðtÞ2

�
g1 þ I2ðtÞ

�
1� bk1xðtÞ1

�
g2 þ I12ðtÞg1g2

1CCCCA:
Differentiating these with respect to the infected states (I1, I2, I12) and evaluating at the unique disease-free equilibrium
(N,0,0,0), we have

F ¼
0@ b1 0 b1

0 b2 b2
0 0 0

1A and T ¼
0@ g1 0 g1ð1� g2Þ

0 g2 g2ð1� g1Þ
0 0 g1g2

1A:

� �

The basic reproductive number of the SIM model, R0s

, is calculated as rðFðI3 � TÞ�1Þ ¼ max b1
1�g1

; b2
1�g2

¼ maxðR1s
;R2s

Þ,

where I3 is the 3� 3 identity matrix. In this expression, bi
1�gi

can be interpreted as the product of the number of infections in

one time step (b) by the average duration of infection in time steps ( 1
1�gi

¼P∞
n¼0g

n
i ).

3.2. SEQ1 BRN (I1; I2;R1;R2)

Using the next generation operator method to calculate the BRN of the SEQ1 model (6), our F and T matrices are

F ¼

0BB@
SðtÞ

h�
1� bxðtÞ1

�
bk2yðtÞ2 g1 þ

�
1� bxðtÞ1

��
1� bk2yðtÞ2

�
g1ð1� g2Þ

i
SðtÞ

h
bxðtÞ1

�
1� byðtÞ2

�
g2 þ

�
1� bxðtÞ1

��
1� bk2yðtÞ2

�
ð1� g1Þg2

i
SðtÞ

h�
1� bxðtÞ1

��
1� bk2yðtÞ2

�
g1g2

i
1CCA

and
T ¼

0BBBB@
I1ðtÞ

h
bk2yðtÞ2 g1 þ

�
1� bk2yðtÞ2

�
g1ð1� g2Þ

i
þ I2ðtÞ

h�
1� bk1xðtÞ1

�
g1ð1� g2Þ

i
þ I12½g1ð1� g2Þ�

I1ðtÞ
h�

1� bk2yðtÞ2

�
ð1� g1Þg2

i
þ I2ðtÞ

h
bk1xðtÞ1 g2 þ

�
1� bk1xðtÞ1

�
ð1� g1Þg2

i
þ I12ðtÞ½ð1� g1Þg2�

I1ðtÞ
h�

1� bk2yðtÞ2

�
g1g2

i
þ I2ðtÞ

h�
1� bk1xðtÞ1

�
g1g2

i
þ I12ðtÞ½g1g2�

1CCCCA:
Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the unique disease-free equilibrium
(N,0,0,0), we have

F ¼
0@ b1g1 0 b1g1

0 b2g2 b2g2
0 0 0

1A and T ¼
0@ g1 0 g1ð1� g2Þ

0 g2 g2ð1� g1Þ
0 0 g1g2

1A:
The BRN of the SEQ1 model, R01
, is calculated as

r
�
FðI � TÞ�1

�
¼ max

�
b1g1
1� g1

;
b2g2
1� g2

�
¼ max

 
b1
X∞
n¼1

gn1; b2
X∞
n¼1

gn2

!
¼ max

�
R11

;R21

	
:
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It is clear that R01
<R0s

. The reason for this is embedded in the order of events in SEQ1. Since recovery follows infection in
SEQ1, an infected individual must avoid recovery in order to be counted as infected after each time step. A proportion gi of
infected individuals do not recover, hence the gi term in R01

; i ¼ 1;2. This gi term is not present in R0s
due to the concurrent

nature of infection and recovery events in the simultaneous model.

3.3. SEQ2 BRN (I1;R1; I2;R2)

To calculate the BRN of the SEQ2 model, we use the following F and T matrices:

F ¼

0BB@
SðtÞ

h�
1� bxðtÞ1

�
g1b

k2yðtÞ
2 þ

�
1� bxðtÞ1

�
g1
�
1� bk2yðtÞ2

�
ð1� g2Þ

i
SðtÞ

h
bxðtÞ1

�
1� byðtÞ2

�
g2 þ

�
1� bxðtÞ1

�
ð1� g1Þ

�
1� byðtÞ2

�
g2
i

SðtÞ
h�

1� bxðtÞ1

�
g1
�
1� bk2yðtÞ2

�
g2
i

1CCA
and
T ¼

0BBBB@
I1ðtÞ

h
g1b

k2yðtÞ
2 þ g1

�
1� bk2yðtÞ2

�
ð1� g2Þ

i
þ I2ðtÞ

h�
1� bk1xðtÞ1

�
g1ð1� g2Þ

i
þ I12½g1ð1� g2Þ�

I1ðtÞ
h
ð1� g1Þ

�
1� byðtÞ2

�
g2
i
þ I2ðtÞ

h
bk1xðtÞ1 g2 þ

�
1� bk1xðtÞ1

�
ð1� g1Þg2

i
þ I12ðtÞ½ð1� g1Þg2�

I1ðtÞ
h
g1
�
1� bk2yðtÞ2

�
g2
i
þ I2ðtÞ

h�
1� bk1xðtÞ1

�
g1g2

i
þ I12ðtÞ½g1g2�

1CCCCA:
Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the unique disease-free equilibrium
(N,0,0,0), we have

F ¼
0@b1g1 0 b1g1

0 b2g2 b2g2
0 0 0

1A and T ¼
0@ g1 0 g1ð1� g2Þ

0 g2 g2ð1� g1Þ
0 0 g1g2

1A:
The BRN for the SEQ2 model, R02
, is calculated as

r
�
FðI � TÞ�1

�
¼ max

�
b1g1
1� g1

;
b2g2
1� g2

�
¼ max

 
b1
X∞
n¼1

gn1; b2
X∞
n¼1

gn2

!
¼ max

�
R12

;R22

	
:

Here, the R02
expression matches that of R01

. This is because just as in SEQ1, recovery from a given pathogen follows infection
in the SEQ2 model.

3.4. SEQ3 BRN (R1;R2; I1; I2)

Finally, we compute the BRN for the SEQ3 model. In this case, we use

F ¼

0BB@
SðtÞ

h�
1� bxðtÞg11

�
bk2yðtÞg22

i
SðtÞ

h
bxðtÞg11

�
1� byðtÞg22

�i
SðtÞ

h�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
1CCA

and
T ¼

0BBBBBBBBBBBBBBB@

I1ðtÞ
h
g1b

k2yðtÞg2
2 þ ð1� g1Þ

�
1� bxðtÞg11

�
bk2yðtÞg22

i
þ I2ðtÞ

h
ð1� g2Þ

�
1� bxðtÞg11

�
bk2yðtÞg22

i
þI12

h
g1ð1� g2Þbk2yðtÞg22 þ ð1� g1Þð1� g2Þ

�
1� bxðtÞg11

�
bk2yðtÞg22

i
I1ðtÞ

h
ð1� g1ÞbxðtÞg11

�
1� byðtÞg22

�i
þ I2ðtÞ

h
g2b

k1xðtÞg1
1 þ ð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
þI12

h
ð1� g1Þg2bk1xðtÞg11 þ ð1� g1Þð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
I1ðtÞ

h
g1
�
1� bk2yðtÞg22

�
þ ð1� g1Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
þ I2ðtÞ

h
g2
�
1� bk1xðtÞg11

�
þð1� g2Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
þ I12ðtÞ

h
g1g2 þ ð1� g1Þg2

�
1� bk1xðtÞg11

�
þg1ð1� g2Þ

�
1� bk2yðtÞg22

�
þ ð1� g1Þð1� g2Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i

1CCCCCCCCCCCCCCCA
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Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the unique disease-free equilibrium
(N,0,0,0), we have

F ¼
0@ b1g1 0 b1g1

0 b2g2 b2g2
0 0 0

1A and T ¼
0@ g1 0 g1ð1� g2Þ

0 g2 g2ð1� g1Þ
0 0 g1g2

1A:
The BRN of the SEQ3 model, R03
, is calculated as

r
�
FðI � TÞ�1

�
¼ max

�
b1g1
1� g1

;
b2g2
1� g2

�
¼ max

 
b1
X∞
n¼1

gn1; b2
X∞
n¼1

gn2

!
¼ max

�
R13

;R23

	
:

Note that the BRNs are identical for all three sequential models. This occurs because the SEQ1 and SEQ2 models differ only
in coinfection terms (altered susceptibility to a second infection), but BRNs are defined in the context of a single pathogen
invading an uninfected population. Meanwhile, the SEQ1 and SEQ3 models describe the same infection cycle (infection,
recovery, infection, recovery, etc.). The only difference between them is the point at which the population is observed within
that cycle; in SEQ1 it is observed after recovery and in SEQ3 after infection.

3.5. Global stability of disease-free equilibrium

To conduct global stability analysis of the disease-free equilibrium, we illustrate our approach with the SEQ1 model; the
same approach can be used for the other models. The proportion of the population involving pathogen i is denoted by xi,
where x1 ¼ I1þI12

N and x2 ¼ I2þI12
N . In Theorem 1, we show that the DFE is GAS when maxðki;1ÞRi <1 for all i ¼ 1;2.

Theorem 1. For the SEQ1 model, if maxðki;1ÞRi <1 for some i, then limt/∞xiðtÞ ¼ 0. Furthermore, if maxðki;1ÞRi <1 for all
i ¼ 1;2, then the DFE ðN;0;0;0Þ is globally asymptotically stable (GAS).

Proof. From the SEQ1 equations,

x1ðt þ 1Þ ¼ g1x1ðtÞ
 
1þ SðtÞ

N
1� bx1ðtÞ1
x1ðtÞ

þ I2ðtÞ
N

1� bk1x1ðtÞ1
x1ðtÞ

!

¼ g1x1ðtÞ
 
1þ

�
1� x1ðtÞ �

I2ðtÞ
N

�
1� bx1ðtÞ1
x1ðtÞ

þ I2ðtÞ
N

1� bk1x1ðtÞ1
x1ðtÞ

!

¼ g1x1ðtÞ
 
1þ ð1� x1ðtÞÞ

1� bx1ðtÞ1
x1ðtÞ

þ I2ðtÞ
N

bx1ðtÞ1 � bk1x1ðtÞ1
x1ðtÞ

!
:

If k1 >1, bx1ðtÞ1 � bk1x1ðtÞ1 >0, so that

x1ðt þ 1Þ< g1x1ðtÞ
 
1þ ð1� x1ðtÞÞ

1� bx1ðtÞ1
x1ðtÞ

þ ð1� x1ðtÞÞ
bx1ðtÞ1 � bk1x1ðtÞ1

x1ðtÞ

!

< g1x1ðtÞ
 
1þ 1� bk1x1ðtÞ1

x1ðtÞ

!
< g1x1ðtÞð1þ k1b1Þ:
Thus, when g1ð1þ k1b1Þ<1 (which is equivalent to k1R1 <1), x1ðtþ 1Þ< x1ðtÞ. Since the sequence fx1ðtÞg is monotone
decreasing and bounded below by 0, limt/∞x1ðtÞ ¼ 0.

If k1 <1, bx1ðtÞ1 � bk1x1ðtÞ1 <0 and we have
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x1ðt þ 1Þ< g1x1ðtÞ
 
1þ ð1� x1ðtÞÞ

1� bx1ðtÞ1
x1ðtÞ

!

< g1x1ðtÞ
 
1þ 1� bx1ðtÞ1

x1ðtÞ

!
< g1x1ðtÞð1þ b1Þ:
In this case, when g1ð1þ b1Þ<1 (which is equivalent to R1 <1) then x1ðt þ 1Þ< x1ðtÞ and so limt/∞x1ðtÞ ¼ 0. Therefore, if
maxðk1;1ÞR1 <1, limt/∞x1ðtÞ ¼ 0.

For x2ðtþ 1Þ, we have

x2ðt þ 1Þ ¼ g2x2ðtÞ
0@1þ SðtÞ

N

bx1ðtÞ1

�
1� bx2ðtÞ2

�
þ
�
1� bx1ðtÞ1

��
1� bk2x2ðtÞ2

�
x2ðtÞ

þ I1ðtÞ
N

1� bk2x2ðtÞ2
x2ðtÞ

1A

¼ g2x2ðtÞ
0@1þ

�
1� x2ðtÞ �

I1ðtÞ
N

� bx1ðtÞ1

�
1� bx2ðtÞ2

�
þ
�
1� bx1ðtÞ1

��
1� bk2x2ðtÞ2

�
x2ðtÞ

þ I1ðtÞ
N

1� bk2x2ðtÞ2
x2ðtÞ

1A

¼ g2x2ðtÞ
0@1þ ð1� x2ðtÞÞ

1� bk2x2ðtÞ2 � bx1ðtÞ1

�
bx2ðtÞ2 � bk2x2ðtÞ2

�
x2ðtÞ

þ I1ðtÞ
N

bx1ðtÞ1

�
bx2ðtÞ2 � bk2x2ðtÞ2

�
x2ðtÞ

1A:
If k2 >1, bx2ðtÞ2 � bk2x2ðtÞ2 >0, so that

x2ðt þ 1Þ< g2x2ðtÞ
0@1þ ð1� x2ðtÞÞ

1� bk2x2ðtÞ2 � bx1ðtÞ1

�
bx2ðtÞ2 � bk2x2ðtÞ2

�
x2ðtÞ

þ ð1� x2ðtÞÞ
bx1ðtÞ1

�
bx2ðtÞ2 � bk2x2ðtÞ2

�
x2ðtÞ

1A
< g2x2ðtÞ

 
1þ ð1� x2ðtÞÞ

1� bk2x2ðtÞ2
x2ðtÞ

!

< g2x2ðtÞ
 
1þ 1� bk2x2ðtÞ2

x2ðtÞ

!
< g2x2ðtÞð1þ k2b2Þ;

meaning that when g2ð1þ k2b2Þ<1 (equivalently, k2R2 <1), x2ðtþ 1Þ< x2ðtÞ. Since the sequence fx2ðtÞg is monotone
decreasing and bounded below by 0, limt/∞x2ðtÞ ¼ 0.

If k2 <1, then bx2ðtÞ2 � bk2x2ðtÞ2 <0, 1� bk2x2ðtÞ2 <1� bx2ðtÞ2 , and we have

x2ðt þ 1Þ< g2x2ðtÞ
0@1þ ð1� x2ðtÞÞ

bx1ðtÞ1

�
1� bx2ðtÞ2

�
þ
�
1� bx1ðtÞ1

��
1� bk2x2ðtÞ2

�
x2ðtÞ

1A
< g2x2ðtÞ

 
1þ ð1� x2ðtÞÞ

1� bx2ðtÞ2
x2ðtÞ

!

< g2x2ðtÞ
 
1þ 1� bx2ðtÞ2

x2ðtÞ

!
< g2x2ðtÞð1þ b2Þ:
In this case, when g2ð1þ b2Þ<1 (which is equivalent to R2 <1) then x2ðt þ 1Þ< x2ðtÞ and so limt/∞x2ðtÞ ¼ 0. Therefore, if
maxðk2;1ÞR2 <1, limt/∞x2ðtÞ ¼ 0.

Clearly, if maxðki;1ÞRi <1 for all i ¼ 1;2, then all of the infectious classes go to 0 and the DFE ðN;0;0;0Þ is GAS. ∎
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4. Single-strain endemic equilibria

As in most epidemiological models, when R0 >1, a pathogen can invade a susceptible population. More specifically here,
when Ri >1 for pathogen i, an equilibrium exists in which only pathogen i is endemic. This result holds for all four sequences
of events explored here (SEQ1, SEQ2, SEQ3, and SIM) as well as for models considering any number of pathogens. For any
given pathogen i, if all classes involving infection with a pathogen other than i (including coinfection with pathogen i and
some other pathogen) are set to 0, then there remain only two compartments to identify, namely S and Ii, which sum toN. The
resulting equilibrium condition is equivalent to that of the corresponding one-pathogen model (equation (13) for the SIM
model, (14) for SEQ1 and 2, and (15) for SEQ3).

Iiðt þ 1Þ ¼ ðN � IiðtÞÞ

0B@1� b
Ii ðtÞ
N
i

1CAþ IiðtÞgi: (13)

0 1

Iiðt þ 1Þ ¼ ðN � IiðtÞÞgiB@1� b

IiðtÞ
N
i
CAþ IiðtÞgi: (14)

0 1 2 0 13

Iiðt þ 1Þ ¼ ðN � IiðtÞÞB@1� b

Ii ðtÞ
N gi
i

CAþ IiðtÞ64gi þ ð1� giÞB@1� b
Ii ðtÞ
N gi
i

CA75: (15)
The existence of a unique single-pathogen endemic equilibrium (EE) for the SIM and SEQmodels (which is independent of
the number of pathogens involved in the formulations) is described in Theorem 2, and is followed by local stability analysis in
Theorem 3.

Theorem 2. For equations (13)e(15), if Ri >1, a single-strain EE ðS; IiÞ exists and is unique.

Proof.We begin by providing a detailed proof for the existence and uniqueness of the single-strain EE for (14) and note that
the existence and uniqueness of the single-strain EE for (13) and (15) can be proved in an analogous fashion.

The fixed point condition for (14) is given by

I�i ¼
�
N � I�i

	
gi

0B@1� b
I�
i
N
i

1CAþ I�i gi;

and can be rewritten as
�
N � I�i

	 ¼ I�i
1� gi

gi

 
1� b

I�
i
N
i

!

� �
(or else Ii ¼ 0). Adding Ii to both sides and dividing by N yields

f ðxÞ ¼ x

 
1þ 1� gi

gi
�
1� bxi

	! ¼ 1;

where x ¼ I�i
N.

Differentiating with respect to x, we have

f 0ðxÞ ¼ 1þ ð1� giÞ
gi
�
1� bxi

	2 
1� bxi þ bxi log bxi
�
:

x x
The last term, hðbi Þ where hðyÞ ¼ 1� yþ y log y, is positive since h0ðyÞ ¼ log y<0 on (0,1) and hð1Þ ¼ 0 (note 0< bi <1)).
Thus, f 0ðxÞ>0 on ð0;1Þ, meaning that f is monotone increasing within that interval.
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Since f is positive and increasing on (0,1) and f ð1Þ>1, f ðxÞ ¼ 1 has a unique solution in (0,1) if and only if limx/0þ f ðxÞ ¼
1�gi

�gi logbi
<1. Thus, a unique pathogen i EE (and hence a unique root of f) exists if and only if 1� gi < � gi logbi ¼ gibi, which is

equivalent to Ri ¼ bigi
1�gi

>1. ∎
Stability of these EEs involves invasion reproductive numbers, which are developed in section 5. The following theorem

makes use of the IRN expressions derived in section 5.2.

Theorem 3. (i) When Ri >1, the unique EE is LAS in the 1-pathogen system (13), (14), or (15). (ii) When Ri >1 and the IRN of all

other pathogens with regard to pathogen i is less than 1, say ~Rj <1 for jsi, the unique single-strain EE for pathogen i is LAS in the n-
pathogen system.

Proof.We begin by providing a detailed proof of part (i) for (14), and note that the proof for (13) and (15) can be obtained in
a similar manner.

For (14), let GðIiÞ ¼ ðN� IiÞgi
�
1� b

Ii
N
i

�
þ Iigi. The EE is LAS iff

��G0ðIiÞ
�� ¼ gib

x
i ð1þ bið1� xÞÞ<1, where x is the pathogen i EE.

Since we cannot solve explicitly for x in the EE expression (as x
�
1þ 1�gi

ð1�bx
i Þgi

�
¼ 1 is transcendental for x), we consider the

inverse and view bi as a function of x. Given x
�
1þ 1�gi

ð1�bxi Þgi

�
¼ 1, we have

1� gi
gið1� expð�bixÞÞ

¼ 1� x
x

1� expð�bixÞ ¼
x

1� x
1� gi
gi

expð�bixÞ ¼ 1� x
1� x

1� gi
gi

�bix ¼ ln
�
1� x

1� x
1� gi
gi

�
bi ¼

1
x
ln
�
gi � gix
gi � x

�
:

Notice that in the second line of equalities, 1� expð�bixÞ ¼ x
1�x

1�gi
gi

is less than 1. This forces x
1�x<

gi
1�gi

which implies that

x< gi since the function z
1�z is monotone increasing on (0,1). Substituting bi into jG0ðIiÞj we obtain����G0ðIiÞ

���� ¼ Fðgi; xÞ ¼
gi � x
1� x

þ gi � x
x

ln
�
gi � gix
gi � x

�
:

To prove Fðgi;xÞ<1, we wish to show, using techniques from multivariable calculus, that max Fðgi; xÞ<1 on 0< x< gi <1.

Notice that the domain does not include the boundary (i.e. x ¼ 0 or gi ¼ 1). This is because x ¼ 0 implies bigi
1�gi

¼ 1 (as

limx/0

"
x

 
1þ 1�gi

ð1�bx
i Þgi

!#
¼ 1�gi

bigi
¼ 1 iff bigi

1�gi
¼ 1 ), a contradiction to our assumption that bigi

1�gi
>1. In addition, gi ¼ 1 implies

that x ¼ 1 (from x
�
1þ 1�gi

ð1�bxi Þgi

�
¼ 1), a contradiction to the requirement that x< gi.

Note that F has no critical points in 0< x< gi <1. We will prove this by showing that Fgi >0 on its domain (since a critical
point in the domain must satisfy Fgi ¼ Fx ¼ 0). For 0< x< gi <1, we require

h1ðxÞ ¼
x

1� x
þ lnð1� xÞ> x

gi
þ ln

�
1� x

gi

�
¼ h2ðxÞ:
If we let h1ðzÞ ¼ z
1�zþ lnð1� zÞ, we obtain h01ðzÞ ¼ z

ð1�zÞ2 >0 on ð0;1Þ and h1ð0Þ ¼ 0. Hence, h1 >0 on ð0;1Þ. Likewise, letting

h2ðzÞ ¼ zþ lnð1� zÞ, we notice h02ðzÞ ¼ � z
1�z<0 on ð0;1Þ and h2ð0Þ ¼ 0, meaning that h2 <0 on the domain. This proves that

Fgi >0. We note that, similarly, Fx <0 on the interior of 0< x< gi <1.
Since
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lim
x/0

Fgi ¼ lim
x/0

�
1

1� x
� 1
gi
þ 1

x
ln
�
gi � gix
gi � x

��
¼ 0

and

lim
gi/1

Fx ¼ lim
gi/1

"
ð1� giÞð1� 2xÞ

xð1� xÞ2
� gi
x2

ln
�
gi � gix
gi � x

�#
¼ 0;

ð1;0Þ is a critical point of F. Also, limgi/1Fðgi;xÞ ¼ 1, for 0< x<1, limx/0Fðgi;xÞ ¼ 1, for 0< gi <1, and Fðgi;giÞ ¼ 0, for 0< gi <1.
Thus, max Fðgi; xÞ ¼ 1 and is attained on the boundary lines x ¼ 0 and gi ¼ 1. Since the boundary is not included in our
domain, we have jG0ðIiÞj ¼ Fðgi;xÞ<1. This proves that the unique EE is LAS.

For (ii), we again prove LAS for the EE of (14) in the SEQ1 model with n ¼ 2. The proof proceeds similarly for the other
models and for n>2. We calculate the Jacobian matrix for the SEQ1 model and substitute the single-strain EE for pathogen 1.

The eigenvalues of the resulting block-triangular matrix are 1, bk1x1 g1g2, b
x
1g1ð1þ b1ð1� xÞÞ, and g2

�
1þ b2k2 þ b2ð1� k2Þ

�
1�

x
g1

��
. The first eigenvalue, 1, comes from the redundancy of the 4� 4 Jacobian matrix since N is constant. The second

eigenvalue, bk1x1 g1g2, is clearly in ð0;1Þ, and the third eigenvalue is G0ðI1Þ which is proven to be in (0,1) by part (i) of this
theorem. We complete the proof of (ii) by showing that the fourth eigenvalue, denoted l4ðxÞ, is also in ð0;1Þ.

Since 1þ b2 >b2ð1� k2Þ x
g1 for any value of k2, it follows that l4ðxÞ>0. Likewise, we have l4ðxÞ<1 through the following

sequence of inequalities which hold iff the previous inequality is satisfied:

~R2 <1

R2
h
ð1� x�Þbx�1 þ k2

�
1� ð1� x�Þbx�1

�i
<1 ðcf : sec: 5:2Þ

R2

��
1� x

g1

�
þ k2

x
g1

�
<1

b2g2
1� g2

�
1� ð1� k2Þ

x
g1

�
<1

b2g2

�
1� ð1� k2Þ

x
g1

�
<1� g2

g2

�
1þ b2 � b2ð1� k2Þ

x
g1

�
<1

l4ðxÞ<1:
The eigenvalues obtained after substituting the single-strain EE for pathogen 2 into the Jacobian matrix for SEQ1 are 1,

bk2y2 g1g2, b
y
2g2ð1þ b2ð1� yÞÞ, and g1f1þ b1½1� yð1� k1Þ�g. With these values, the LAS of the pathogen 2 EE follows in an

analogous manner as that of the pathogen 1 EE (in this case, proof that the fourth eigenvalue is in (0,1) follows directly from
~R1 <1). ∎

In order to examine the co-persistence of two or more pathogens in an endemic state, we first consider IRNs, which
provide threshold conditions for a disease to invade a population endemic with another disease(s).

5. Invasion reproductive numbers (n ¼ 2)

To obtain the invasion reproductive number (IRN) in a two-pathogen model when pathogen i is endemic (i.e. Ri >1), we
reclassify the infectious classes and apply the next generation operator method to the compartments representing invading
pathogens. With pathogen 1 resident, for instance, the invading pathogen is taken to be pathogen 2, making the infectious
classes I2 and I12. The IRN for pathogen 2 invading a pathogen-1-endemic population is denoted ~R2 since the resident
pathogen can then be left implicit.

5.1. SIM IRN

As established in the previous section, unique single-strain endemic equilibria exist when the corresponding BRN exceeds
1. Here, to derive ~R2s

we consider the pathogen 1 endemic equilibrium that exists when R1s
>1, so that I2 and I12 are the

invading classes. Letting
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F ¼

0BB@ SðtÞ
�
bxðtÞ1 þ

�
1� bxðtÞ1

� 1� Q1ðtÞ
2

��
1� byðtÞ2

�
þ I1ðtÞ

�
1� bk2yðtÞ2

�
ð1� g1Þ

SðtÞ
�
1� bxðtÞ1

��
1� byðtÞ2

�Q1ðtÞ þ Q2ðtÞ
2

þ I1ðtÞ
�
1� bk2yðtÞ2

�
g1

1CCA
and
T ¼
 
I2ðtÞbk1xðtÞ1 g2 þ I12ðtÞð1� g1Þg2
I2ðtÞ

�
1� bk1xðtÞ1

�
g2 þ I12ðtÞg1g2

!
;

we evaluate the resulting F and T matrices at the unique pathogen 1 endemic equilibrium ðN� I� ;I� ;0;0Þ. These matrices are
1 1

F ¼
�
a a
b b

�
and T ¼

0@ g2b
k1x�
1 g2ð1� g1Þ

g2
�
1� bk1x

�

1

�
g1g2

1A;

 !

where the pathogen 1 prevalence x� is the unique root of x 1þ 1�g1

ð1�bx1Þ
¼ 1,

a ¼ b2

�
bx

�
1 þ

�
1� bx

�
1

�1� Q�
1

2

�
ð1� x�Þ þ k2ð1� g1Þx�

�
;

"� ��Q� þ q2
#

and b ¼ b2 1� bx1
1 2
2

ð1� x�Þ þ k2g1x
� :
The pathogen 2 IRN for the SIM model is then

~R2s
¼ R2s

8<:ð1� x�Þ
24bx�1 þ

�
1� bx

�
1

�1þmin
�
1; k22

�
2

35þ k2x
�

9=;:
In this expression, the BRN, R2s
, is multiplied by the weighted-average susceptibility of 1 and k2, where 1 is weighted by

the proportion of the population not infected with pathogen 1 that either remain uninfected in the next time step or, if they
become infected with pathogen 1 and are coexposed, develop both infections, and k2 is weighted by those already infected
with pathogen 1. We note that when k2 ¼ 1, ~R2s

¼ R2s
.

In a similar manner, the pathogen 1 IRN for the SIM model is

~R1s
¼ R1s

8<:ð1� y�Þ
24by�2 þ

�
1� by

�

2

�1þmin
�
1; k21

�
2

35þ k1y
�

9=;;

where y� is the unique root of y

 
1þ 1�g2

ð1�by2Þ

!
¼ 1. This expression has an interpretation analogous to that of R2s

Furthermore,

when k1 ¼ 1, ~R1s
¼ R1s

.

5.2. SEQ1 IRN (I1; I2;R1;R2)

To obtain the IRN of the SEQ1 model when pathogen 1 is endemic (i.e. R11
>1), we reclassify the infectious classes and use

the next generation operator method. The infectious classes are now taken to be I2I2 and I12. Letting

F ¼

0BB@
SðtÞ

h
bxðtÞ1

�
1� byðtÞ2

�
g2 þ

�
1� bx1ðtÞ

	�
1� b2k

yðtÞ
2

�
ð1� g1Þg2

i
þI1ðtÞ

h�
1� b2k

yðtÞ
2

�
ð1� g1Þg2

i
SðtÞ

h�
1� bxðtÞ1

��
1� bk2yðtÞ2

�
g1g2

i
þ I1ðtÞ

h�
1� bk2yðtÞ2

�
g1g2

i
1CCA

and
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T ¼
 
I2ðtÞ

h
bk1xðtÞ1 g2 þ

�
1� bk1xðtÞ1

�
ð1� g1Þg2

i
þ I12ðtÞ½ð1� g1Þg2�

I2ðtÞ
h�

1� bk1xðtÞ1

�
g1g2

i
þ I12ðtÞg1g2

!
;

we evaluate the resulting F and T matrices at the unique pathogen 1 endemic equilibrium ðN� I�1; I
�
1;0;0Þ.

F ¼
�
a a
b b

�
and T ¼

0@ g2 � g1g2
�
1� bk1x

�

1

�
g2ð1� g1Þ

g1g2
�
1� bk1x

�

1

�
g1g2

1A;

where

a ¼ b2k2g2

"
ð1� x�Þ

 
1� g1 þ bx

�
1 g1 � bx

�
1 þ bx

�
1
k2

!
þ x�ð1� g1Þ

#
;

and

b ¼ b2k2g2
h
ð1� x�Þ

�
g1 � bx

�
1 g1

�
þ x�g1

i
:

Here, detT ¼ g1g22b
k1x
1 and

���tr T��� ¼ g2 þ g1g2b
k1x
1 . Since detT <1, the Jury criterion requirement detT þ 1<2 is satisfied.

Through the set of inequalities

g1g2b
k1x
1 <1

g1g2b
k1x
1 ð1� g2Þ<1� g2

g1g2b
k1x
1 � g1g

2
2b

k1x
1 <1� g2

g2 þ g1g2b
k1x
1 <1þ g1g

2
2b

k1x
1 ;

we see that tr T <detT þ 1 and thus rðTÞ<1.

Using the F and T matrices, ~R21
¼ rðFðI � TÞ�1Þ ¼ R21

½ð1� x�Þbx�1 þ k2ð1� ð1� x�Þbx�1 Þ�. In this model, the pathogen 1

prevalence x� is the unique root of x
�
1þ 1�g1

ð1�bx1Þg1

�
¼ 1. The IRN when pathogen 2 is endemic is computed in a similar manner

as ~R21
and calculated to be ~R11

¼ R11
½ð1� y�Þþ k1y��. Here, the pathogen 2 prevalence y� is the unique solution to y

�
1þ

1�g2
ð1�by2Þg2

�
¼ 1. We note that when k2 ¼ 1, ~R21

¼ R21
and when k1 ¼ 1, ~R11

¼ R11
.

~R21
is a multiple of R21

that is theweighted average of 1 and k2. The value 1 is weighted by the proportion of the population
that started out not infected by pathogen 1 and remained uninfected by pathogen 1 during one time step, while k2 is weighed
by the rest of the population. Likewise, ~R11

is a multiple of R11
that consists of a weighted average of 1 and k1, with 1 weighted

by the proportion of the population that is not infected with pathogen 2 and k1 weighted by the proportion that is infected
with pathogen 2.

5.3. SEQ2 IRN (I1;R1; I2;R2)

We obtain the IRN when pathogen 1 is endemic in a similar manner as above. Here, we let

F ¼

0BB@
SðtÞ

h
bxðtÞ1

�
1� byðtÞ2

�
g2 þ

�
1� bxðtÞ1

�
ð1� g1Þ

�
1� byðtÞ2

�
g2
i

þI1ðtÞ
h
ð1� g1Þ

�
1� byðtÞ2

�
g2
i

SðtÞ
h�

1� bxðtÞ1

�
g1
�
1� bk2yðtÞ2

�
g2
i
þ I1ðtÞ

h
g1
�
1� bk2yðtÞ2

�
g2
i
1CCA

and
T ¼
 
I2ðtÞ

h
bk1xðtÞ1 g2 þ

�
1� bk1xðtÞ1

�
ð1� g1Þg2

i
þ I12ðtÞ

h
ð1� g1Þg2

I2ðtÞ
h�

1� bk1xðtÞ1

�
g1g2

i
þ I12ðtÞ½g1g2�

!
:

and evaluating the resulting F and T matrices at the unique pathogen 1 endemic equilibrium ðN� I�1; I
�
1;0;0Þ, we have
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F ¼
�
a2 a2
b2 b2

�
and T ¼

0@ g2 � g1g2
�
1� bk1x

�

1

�
g2ð1� g1Þ

g1g2
�
1� bk1x

�

1

�
g1g2

1A
where
a2 ¼ b2g2
h
ð1� x�Þ

�
1� g1 þ bx

�
1 g1

�
þ x�ð1� g1Þ

i
; and b2 ¼ b2k2g2

h
ð1� x�Þ

�
g1 � bx

�
1 g1

�
þ x�g1

i
:

Since the T matrix presented here is identical to that of Section 5.2, we know that rðTÞ<1.
With these F and T matrices, we obtain

~R22
¼ r
�
FðI � TÞ�1

�
¼ R22

h
1�

�
1� ð1� x�Þbx�1

�
g1 þ k2

�
1� ð1� x�Þbx�1

�
g1
i
;

where x� is the same as that in SEQ1. The factor which R is multiplied by in the expression for ~R is a simplification of
22 22h�
x� þ ð1� x�Þ

�
1� bx

�
1

��
ð1� g1Þ þ ð1� x�Þbx�1

i
þ k2

h�
x� þ ð1� x�Þ

�
1� bx

�
1

��
g1
i
:

In this expression, the value 1 is weighted by the sum of the proportion of individuals who were initially infected with
pathogen 1 but recovered (x�ð1� g1Þ), the proportion of people initially uninfected with pathogen 1 who became infected

with pathogen 1 and recovered from said infection (ð1� x�Þð1� bx
�
1 Þð1� g1Þ), and the proportion of people initially uninfected

by pathogen 1 who remained uninfected during one time step ðð1� x�Þbx�1 ). Moreover, k2 is weighted by the sum of the
proportion of individuals who were infected with pathogen one at the beginning of the time step and did not recover (x�g1),
and the proportion of individuals initially uninfected with pathogen 1 who became infected and did not recover within the

time period (ð1� x�Þð1� bx
�
1 Þg1).

The IRN when pathogen 2 is endemic is calculated to be

~R12
¼ R12

½ð1� y�Þ þ k1y
��;

where y� is the same as that in SEQ1. This is identical to ~R11
and results from the fact that infectionwith pathogen 1 occurs first

in both SEQ1 and SEQ2. Therefore, the point at which we count the number of secondary pathogen 1 infections is identical for
both models and occurs when the population is divided into only two categories: those infected with pathogen 2 and those
not infected with pathogen 2. In addition, when k2 ¼ 1, ~R22

¼ R22
and when k1 ¼ 1, ~R12

¼ R12
.

5.4. SEQ3 IRN (R1;R2; I1; I2)

To calculate the IRN of the SEQ3 model when pathogen 1 is endemic, we use

F ¼
 
SðtÞ

h
bxðtÞg11

�
1� byðtÞg22

�i
þ I1ðtÞ

h
ð1� g1ÞbxðtÞg11

�
1� byðtÞg22

�i
SðtÞ

h�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
þ I1ðtÞ

�
1� bk2yðtÞg22

�h
g1 þ ð1� g1Þ

�
1� bxðtÞg11

�i!

and
T ¼

0BBBBBB@

I2ðtÞ
h
g2b

k1xðtÞg1
1 þ ð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
þI12

h
ð1� g1Þg2bk1xðtÞg11 þ ð1� g1Þð1� g2ÞbxðtÞg11

�
1� byðtÞg22

�i
I2ðtÞ

h
g2
�
1� bk1xðtÞg11

�
þ ð1� g2Þ

�
1� bxðtÞg11

��
1� bk2yðtÞg22

�i
þI12ðtÞ

h
g2
�
g1 þ ð1� g1Þ

�
1� bk1xðtÞg11

��
þ ð1� g2Þ

�
1� bk2yðtÞg22

��
g1 þ ð1� g1Þ

�
1� bxðtÞg11

��i

1CCCCCCA
Evaluating the resulting F and T matrices at the unique pathogen 1 endemic equilibrium ðN � I�1; I
�
1;0;0Þ we have

F ¼
�
a3 a3
b3 b3

�
and T ¼

0@ g2b
k1x�g1
1 g2b

k1x�g1
1 ð1� g1Þ

g2
�
1� bk1x

�g1
1

�
g2
�
1� bk1x

�g1
1 ð1� g1Þ

�1A
where
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a3 ¼ b2g2b
x�g1
1 ½ð1� x�Þ þ x�ð1� g2Þ� and b3 ¼ b2k2g2

h
ð1� x�Þ

�
1� bx

�g1
1

�
� x�bx

�g1
1 ð1� g1Þ

i
:

� �

Here, detT ¼ g1g22b

k1xg1
1 and ��tr T�� ¼ g2 þ g1g2b

k1xg1
1 . To prove that rðTÞ<1, we use the approach described in Section 5.2,

but replace x (in the determinant and trace expressions of Section 5.2) with xg1.
With these F and T matrices,

~R23
¼ r
�
FðI � TÞ�1

�
¼ R23

h
ð1� x�g1Þbx

�g1
1 þ k2

�
1� ð1� x�g1Þbx

�g1
1

�i
;

 
xg1

!

where x� is the unique solution to x 1þ ð1�g1Þb1

1�b
xg1
1

¼ 1. The factor by which R23
is multiplied in the expression for ~R23

is a

simplification of

½x�ð1� g1Þ þ ð1� x�Þ�bx�g11 þ k2
h
x�g1 þ ðx�ð1� g1Þ þ ð1� x�ÞÞ

�
1� bx

�g1
1

�i
:

In this expression,1 is weighted by the sum of the proportion of people originally infected with pathogen 1 who recovered
andwere not reinfectedwith the pathogen and the proportion of people whowere originally uninfected with pathogen 1 and
remained uninfected during one time step. The parameter k2 is weighted by the sum of the proportion of people originally
infected with pathogen 1 who did not recover, the proportion of people originally infected with pathogen 1 who recovered
and were re-infected, and the proportion of people originally uninfected with pathogen 1 but who got infected with the
pathogen during one time step. Infections are transmitted by the proportion x�g1 of people who do not recover from infection
with pathogen 1.

The IRNwhen pathogen 2 is endemic is ~R13
¼ R13

½ð1� y�g2Þþ k1y�g2�, where y� is the unique root of y

 
1þ ð1�g2Þbyg22

1�b
yg2
2

!
¼ 1.

R13
is multiplied by a weighted average of 1 and k1, with k1 weighted by the proportion of people originally infected with

pathogen 2 who did not recover in one time step and 1 is weighted by the rest of the population. This ~R13
expression is similar

to that of ~R12
and ~R11

except for the fact that y� is multiplied by g2 in ~R13
(y�g2 represents the proportion of people who do not

recover from infection with pathogen 2). The inclusion of the g2 factor is due to recovery occurring first in the SEQ3 model,
hence an individual must fail to recover from infection with pathogen 2 in order to be counted in the IRN. Although the IRNs
for the SEQ1 and SEQ3 models appear to be different, they are in fact identical as detailed in Appendix C. Lastly, notice that
when k2 ¼ 1, ~R23

¼ R23
and when k1 ¼ 1, ~R13

¼ R13
.

Fig. 2. BRN/IRN Threshold Curves ki >1. In this graph, g1 ¼ g2 ¼ 0:4 and k1 ¼ k2 ¼ 2. In region E0, we see extinction of both pathogens, in E1, the persistence of
only pathogen 1, in E2, the persistence of only pathogen 2, and in E3, co-persistence of both pathogens.



Fig. 3. BRN/IRN Threshold Curves for ki <1. In this graph, g1 ¼ g2 ¼ 0:4 and k1 ¼ k2 ¼ 0:7. In region E0, we see extinction of both pathogens, in E1, the
persistence of only pathogen 1, in E2, the persistence of only pathogen 2, and in E3, co-persistence of both pathogens.

Fig. 4. BRN/IRN Threshold Curves b1 vs. b2. In this graph, g1 ¼ 0:15, g2 ¼ 0:24, k1 ¼ 0:7 and k2 ¼ 1:5. In region E0, we see extinction of both pathogens, in E1,
the persistence of only pathogen 1, in E2, the persistence of only pathogen 2, and in E3, co-persistence of both pathogens. The dotted gray box delineates the E0
region for the SIM model while the dotted black box delineates the E0 region for the SEQ1, SEQ2, and SEQ3 models.
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5.5. Dual-endemic equilibrium

It is straightforward to verify numerically that when both IRNs for a given model exceed 1, a unique dual-endemic
equilibrium exists and is globally asymptotically stable.
6. BRN/IRN threshold comparisons (n ¼ 2)

Through the above computations, it is evident that there is great variation in the IRN expressions for the SIM, SEQ1, SEQ2,
and SEQ3 models. However, what remains unclear is how the different models' IRN thresholds compare (i.e. whether one
model's threshold is more or less restrictive than another). To better analyze the IRNs, we create IRN threshold curves for
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when ~R1 and ~R2 for the various models equal 1 and begin by plotting these curves on the R1 vs. R2 axes inMathematica. The R1
vs. R2 plane has been utilized in previous studies on co-circulating pathogens (e.g. (Crawford & Kribs-Zaleta, 2009; Kribs &
Mitchell, 2015; Martcheva & Pilyugin, 2006)) and allows for a primarily epidemiological comparison of our different models.
As seen in Figs. 2 and 3, the threshold curves divide the plane into four distinct regions of possible model outcomes
(extinction of both pathogens, E0, persistence of only pathogen 1, E1, persistence of only pathogen 2, E2, and co-persistence of
both pathogens, E3).

As an example of how these curves were generated, consider the ~R1 ¼ 1 curve. We fixed the gi and ki parameters while
varying b2. For each value of b2, we solved for the pathogen 2 endemic equilibrium, and used this equilibrium value to
numerically solve for b1 in the equation ~R1 ¼ 1. With this pair of b1 and b2 values, we calculated R1 and R2 for the respective
models. Generating the ~R2 ¼ 1 curves was done in a similar manner while varying b1 and solving for the pathogen 1 endemic
equilibrium. To minimize the effect of parameter values on the threshold graphs, we keep k1 ¼ k2 and g1 ¼ g2 in Figs. 2 and 3.
We find that while the SEQ2 model predicts a larger region of co-persistence of both pathogens than the other models for
ki <1, it predicts a smaller region of co-persistence for ki >1.

While the SEQ1 and SEQ3 IRN curves and the SEQ1 and SEQ2 ~R1 ¼ 1 curveswill always overlap due to themodels' identical
~R1 and/or ~R2 expressions, in general, the ordering of the curves in Figs. 2 and 3 is not always consistent. For example, since
~R22

> ~R21
if and only if k2 <1 (meaning that it is easier for strain two to survive in SEQ2 than SEQ1 for k2 <1), and vice versa for

k2 >1, we find that the SEQ1 ~R2 threshold curve will be above that of SEQ2 for k2 <1, with the ordering switched for k2 >1
(Appendix B). In addition, the position of the SIM model curves relative to other curves varies with parameter values. For
example, if g1 ¼ g2 ¼ 0:05;b1 ¼ b2 ¼ 0:2;k1 ¼ k2 ¼ 0:001, we have ~R22

> ~R2s
, but for a different set of gi values, namely, g1 ¼

g2 ¼ 0:7, we have ~R22
< ~R2s

.
In addition to focusing on the epidemiological variation between themodels in the R1 vs. R2 plane, we can observe how the

behavior of each model changes with respect to raw parameter values such as b1 and b2. Since the various models have
different BRN's, viewing the IRN threshold curves on a b1 vs. b2 axis allows for the visualization of an additional regionwhere
certain models predict disease extinction while others do not. This is the case depicted in Fig. 4. The region between the gray
and black boxes illustrates b1 and b2 values for which the sequential models predict disease extinction but the SIM model
does not. In fact, parts of that space represent the E1, E2, and E3 regions predicted by the SIMmodels. In addition, the L shaped
region created by the two sets of ~R1 ¼ 1 and ~R2 ¼ 1 curves illustrates a space where the SIMmodel predicts co-persistence of
both pathogens but the sequential models do not. The region of co-persistence predicted by the SIM model in this case is
larger than that of the sequential models. This results from the fact that recovery occurs after infection in the sequential
models. Infected individuals must avoid recovery in order to be counted in the BRNs of the sequential models, which reduces
the BRNs and thus makes it less likely to predict persistence of the pathogens.
Fig. 5. Coexistence with Complete Cross-Immunity. The parameter values used to generate this figure are g1 ¼ 0:15; g2 ¼ 0:24; k1 ¼ k2 ¼ 0. With these
parameter values, we witness the possibility of coexistence of the two pathogen strains in the SEQ and SIM models.
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Through numerical simulations, we are able to investigate how the different model BRN/IRN threshold curves behave as
the likelihood of coinfection approaches zero or infinity. For all of the discrete-time models, we find that the region of co-
persistence of the two pathogens widens as ki; i ¼ 1;2 increases, but becomes smaller as ki decreases (as illustrated in
Figs. 2 and 3). As the likelihood of coinfection increases, the interspecific competition between the two pathogens decreases.
This causes the relationship between the pathogens to become more and more mutualistic, resulting in both strains aiding
each other to become established within the community. Unlike autonomous continuous-timemodels, when k1 ¼ k2 ¼ 0 (i.e.
when the two strains exhibit cross-immunity and interspecific competition is at its maximum), we see that for awide range of
parameter values (one of which is shown in Fig. 5), all of our discrete-time models predict a region of co-persistence of both
pathogens.

To further explore the competition dynamics between two pathogen strains in our SEQ and SIM models under the
assumption of complete cross-immunity, we observe what happens in the limit as Dt ¼ T approaches zero (recall that in
formulating the discrete-time models, we assume Dt ¼ 1). In this scenario, we find that all of the models have the same BRN

and IRNs. The BRN in this case is max ðR1;R2Þ ¼max
�
b1
g1
;b2
g2

�
, the pathogen 1 IRN (~R1) is

R1
R2
, and pathogen 2 IRN (~R2) is

R2
R1
. Notice

that the BRN and IRN expressions are similar to what one expects to find in a continuous-time formulation of the coinfection
models. Co-persistence of the two pathogen strains is possible if R1, R2, ~R1, and ~R2 are greater than 1. As shown in Theorem 4, it
Table 2
Pathogen 1 & 2 Endemic Equilibria. In this table, x� is the proportion of people infected with pathogen 1 at the pathogen 1 endemic equilibrium and y� is
the proportion of people infected with pathogen 2 at the pathogen 2 endemic equilibrium.

Endemic Equilibria SEQ1, SEQ2 SEQ3 SIM

x� is unique root of
x

 
1þ 1� g1

ð1� bx1Þg1

!
¼ 1 x

 
1þ ð1� g1Þbxg11

1� bxg11

!
¼ 1 x

 
1þ 1� g1

1� bx1

!
¼ 1

y� is unique root of
y

 
1þ 1� g2

ð1� by2Þg2

!
¼ 1 y

 
1þ ð1� g2Þbyg22

1� byg22

!
¼ 1 y

 
1þ 1� g2

1� by2

!
¼ 1

Table 3
RV & RSV Parameter Values. RSV is taken to be pathogen 1 in the discrete-time models and RV is pathogen 2.

Symbol Value/Range Source

b1 0.28 days�1 Moore, Jacoby, Hogan, Blyth, and Mercer (2014)
b2 0.36 days�1 Eggo et al. (2016)
g1 0.1 days�1 Weber et al. (2001)
g2 0.14 days�1 Gwaltney, Hendley, Simon, and Jordan (1967)
k1, k2 (0; 1) Assumed

Table 4
BRNs and IRNs for RV (pathogen 1) and RSV (pathogen 2). Calculations use values from Table 4 and k1 ¼ k2 ¼ 0:05.

Model R1 R2 ~R1 ~R2

SEQ1 2.66 2.40 1.29 0.91
SEQ2 2.66 2.40 1.29 1.05
SEQ3 2.66 2.40 1.29 0.91
SIM 2.94 2.76 1.16 1.03

Table 1
Summary of BRNs and IRNs for two-pathogen models.

Model BRN Pathogen 1 IRN Pathogen 2 IRN

SEQ1
max

�
b1g1
1� g1

;
b2g2
1� g2

�
R11

½ð1� y�Þþ k1y�� R21
½ð1� x�Þbx�1 þ k2ð1� ð1� x�Þbx�1 Þ�

SEQ2 same as SEQ1 same as SEQ1 ~R21
g1 þ R21

ð1� g1Þ
SEQ3 same as SEQ1 same as SEQ1 same as SEQ1
SIM

max
�

b1
1� g1

;
b2

1� g2

�
R1s

(
ð1� y�Þ

"
by

�

2 þ ð1� by
�

2 Þ1þminð1; k21Þ
2

!#
þ k1y�

)
R2s

8<:ð1� x�Þ
24bx�1 þ ð1� bx

�
1 Þ1þminð1; k22Þ

2

35þ k2x�

9=;
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is impossible for both IRNs to be greater than 1. This means that in the limit as T approaches 0, competitive exclusion occurs if
R1 and R2 are greater than 1.

Theorem 4. ~R1and ~R2 cannot both be greater than 1 in the limit as T approaches 0.

Proof.Notice that limT/0
~R1 ¼ limT/0

R1
R2
, and limT/0

~R2 ¼ limT/0
R2
R1
. Consequently limT/0

~R1,limT/0
~R2 ¼ 1. Since they are

reciprocals of each other, they cannot both exceed 1. ∎

7. RV and RSV coinfection

We nowapply the above models to describe RV and RSV circulationwithin a human population. RV and RSV are two of the
main causes of common respiratory tract infections such as pneumonia, bronchiolitis, and the common cold. Since there are
currently no vaccines for these viruses, reinfection by either pathogen, and even co-infection by both pathogens have been
reported (Greer et al., 2009; Hogan, Glass, Moore, & Anderssen, 2016; Zlateva et al., 2014). During co-infections, it is believed
that RSV and RV behave in an antagonistic manner. This is supported by numerous studies which show that infection by one
virus is associated with a reduced likelihood of infection by the other virus (Greer et al., 2009; Karppinen, Toivonen, Schuez-
Havupalo, Waris, & Peltola, 2016; Martin, Fairchok, Stednick, Kuypers, & Englund, 2013).

Most previous RV/RSV mathematical models have examined these viruses individually (e.g. (Adler & Kim, 2013; Hogan
et al., 2016; Pinky & Dobrovolny, 2016)). The only model to consider RV and RSV coinfection (Pinky & Dobrovolny, 2016)
focuses on the within-host competition dynamics of the two viruses. There is currently no model that considers RV and RSV
co-circulation at the population level. In addition, although RV and RSV hospital case reports are given in daily, weekly, or
monthly intervals as mentioned in (Eggo, Scott, Galvani, & Meyers, 2016; Leecaster et al., 2011; Weber, Weber, & Milligan,
2001), none of the existing models are situated in discrete time. Given the available viral infection data sets, it is natural
(and one may even argue more appropriate) to consider a discrete-time model of RV and RSV as we do here.

In all of our models, pathogen 1 is taken to be RSV and pathogen 2 is RV. Most of the parameter values used in the models
were obtained from previously published studies and are shown in Table 3. The transmission rate for RV is the average of the
estimated child to child, adult to child, and adult to adult transmission rates found in (Eggo et al., 2016). Due to the inhibitory
relationship between the two viruses, we take ki <1; i ¼ 1;2.

To illustrate the kind of variation in results that may occur when using the discrete-time models to describe RV and RSV
spread, we take k1 ¼ k2 ¼ 0:05. The BRNs and IRNs obtained for this particular choice of ki are in Table 4. These values place
us within the E1 region of SEQ1 and SEQ3 and the E3 region of the SEQ2 and SIMmodels. While all of the models predict that
RV can spread in a completely susceptible population, only the SEQ2 and SIM models predict that the virus will spread in a
population endemic with RSV. On the other hand, the SEQ1 and SEQ3 models illustrate the unusual phenomenon that the
presence of one virus (RSV) actually protects against invasion by another (RV), a phenomenon also depicted in (Crawford &
Kribs-Zaleta, 2009) for two co-circulating HPV strains. Switching the order of RSV and RV, namely letting RSV be pathogen 2
and RV be pathogen 1 while keeping k1 ¼ k2 ¼ 0:05, shows that our discrete-time systems are sensitive to the order of each
pathogen. In this scenario (not depicted here), the IRN for both pathogens is greater than 1 in all of the models. Conflicting
results such as these show how model assumptions about the order of disease infection and recovery events impact
epidemiological conclusions.

8. Multiple pathogens (n>2)

Writing and analyzing models for more than two (say n) cocirculating pathogens becomes complex rapidly because of the
number of classes (2n) and reproduction numbers (n2n�1) such models have. As discussed in (Mitchell & Kribs, 2019), even
the notation for such models becomes complicated. In general, coinfection classes IAðtÞ exist for any subset A of pathogens.
Assuming that any such subset A of pathogens can be considered resident, the system then has an overall invasion repro-
ductive number A

~R0 measuring the ability of any pathogen not in A to invade, as well as more specific IRNs A
~Ri measuring the

ability of a specific pathogen i not in A to invade. We therefore first consider a three-pathogen model, in order to illustrate the
changes from two-pathogen models. Following the approach of earlier sections, we use the SEQ1 formulation (all infection
events, in numerical order, followed by all recovery events, in numerical order) to demonstrate results, but similar results can
be shown for the other orders of events.

8.1. Three-pathogen SEQ1 model

We can write a discrete-time three-pathogen model using the SEQ1 event sequence (infection with pathogens 1, 2, and 3,

followed by recovery from pathogens 1, 2, and 3) in matrix form as X
!ðt þ 1Þ ¼ MðX!ðtÞÞ,X!ðtÞ if we define the following

notation:
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� Let the vector of state variables be X
! ¼ ðS; I1; I2; I3; I12; I13; I23; I123ÞT :

� Let the prevalences for each pathogen be xðtÞ ¼ x1ðtÞ ¼ ðI1 þ I12 þ I13 þ I123Þ=Njt , yðtÞ ¼ x2ðtÞ ¼ ðI2 þ I12 þ I23 þ I123Þ=Njt ,
zðtÞ ¼ x3ðtÞ ¼ ðI3 þ I13 þ I23 þ I123Þ=Njt .

� Let ki be the factor of increased vulnerability to infection with pathogen i of individuals already infected with at least one
other pathogen.

� Denote the proportion of individuals already infected with some pathogen (not i) who become, and remain, infected with
pathogen i (for at least 1 time step) as jiðtÞ ¼ ð1� bkixiðtÞi Þgi <1: Denote the remainder of such individuals, who do not
acquire and retain infection i from time t to time tþ 1, as hiðtÞ ¼ 1� jiðtÞ ¼ bkixiðtÞi þ ð1� bkixiðtÞi Þð1� giÞ � 1.

Finally, then, the matrix M is given by

266666666664

A1þA2h3 ð1�g1Þh2h3 h1ð1�g2Þh3 h1h2ð1�g3Þ ð1�g1Þð1�g2Þh3 ð1�g1Þh2ð1�g3Þ h1ð1�g2Þð1�g3Þ ð1�g1Þð1�g2Þð1�g3Þ
j0h2h3 g1h2h3 j1ð1�g2Þh3 j1h2ð1�g3Þ g1ð1�g2Þh3 g1h2ð1�g3Þ j1ð1�g2Þ g1ð1�g2Þð1�g3Þ
A3h3 ð1�g1Þj2h3 h1g2h3 h1j2ð1�g3Þ ð1�g1Þg2h3 ð1�g1Þj2ð1�g3Þ h1g2ð1�g3Þ ð1�g1Þg2ð1�g3Þ
A4þA5j3 ð1�g1Þh2j3 h1ð1�g2Þj3 h1h2g3 ð1�g1Þð1�g2Þj3 ð1�g1Þh2g3 h1ð1�g2Þ ð1�g1Þg2ð1�g2Þg3
j0j2h3 g1j2h3 j1g2h3 j1j2ð1�g3Þ g1g2h3 g1j2ð1�g3Þ j1g2ð1�g3Þ g1g2ð1�g3Þ
j0h2j3 g1h2j3 j1ð1�g2Þj3 j1h2g3 g1ð1�g2Þj3 g1h2g3 j1ð1�g2Þ g1ð1�g2Þg3
A6g2j3 ð1�g1Þj2j3 h1g2j3 h1j2g3 ð1�g1Þg2j3 ð1�g1Þj2g3 h1g2g3 ð1�g1Þg2g3
j0j2j3 g1j2j3 j1g2j3 j1j2g3 g1g2j3 g1j2g3 j1g2g3 g1g2g3

377777777775
;

where A1 ¼ bx1b
y
2ðbz3 þ ð1� bz3Þð1� g3ÞÞ, A2 ¼ bx1ð1� by2Þð1� g2Þþ ð1� bx1Þð1� g1Þh2, bx1ð1� by2Þg2 þ ð1� bx1Þð1� g1Þj2, A4 ¼

bx1b
y
2ð1� bz3Þg3, A5 ¼ bx1ð1� by2Þð1� g2Þþ ð1� bx1Þð1� g1Þh2, A6 ¼ bx1ð1� by2Þþ ð1� bx1Þð1� g1Þð1� bk2y2 Þ, and j0 ¼ ð1� bx1Þg1.
In the special case ki ¼ 1, this system reduces to the single-pathogenmodel (14) for transmission of pathogen iwhere ~Si ¼

Nð1� xiÞ and ~Ii ¼ Nxi (e.g., equation (7) for i ¼ 1), or to the two-pathogen SEQ1 model which excludes pathogen i.
The basic reproductive number R0 can be calculated using next-generation matrix methods. The key matrices here are

F ¼

2666666664

b1g1 0 0 b1g1 b1g1 0 b1g1
0 b2g2 0 b2g2 0 b2g2 b2g2
0 0 b3g3 0 b3g3 b3g3 b3g3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3777777775
;

T ¼

2666666664

g1 0 0 g1ð1� g2Þ g1ð1� g3Þ 0 g1ð1� g2Þð1� g3Þ
0 g2 0 g2ð1� g1Þ 0 g2ð1� g3Þ g2ð1� g1Þð1� g3Þ
0 0 g3 0 g3ð1� g1Þ g3ð1� g2Þ g3ð1� g1Þð1� g2Þ
0 0 0 g1g2 0 0 g1g2ð1� g3Þ
0 0 0 0 g1g3 0 g1g3ð1� g2Þ
0 0 0 0 0 g2g3 g2g3ð1� g1Þ
0 0 0 0 0 0 g1g2g3

3777777775
;

and FðI7 � TÞ�1 ¼

2666666664

R1 0 0 R1 R1 0 R1
0 R2 0 R2 0 R2 R2
0 0 R3 0 R3 R3 R3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3777777775
;

where I7 is the 7� 7 identity matrix, Ri ¼ bigi
1�gi

(i ¼ 1;2;3), and thus R0 ¼ maxiRi.

The proof that (Theorem 1) for maxð1;kiÞRi <1, xiðtÞ/0 as t/∞ is identical to that for the two-pathogenmodel. Therefore
the disease-free equilibrium is globally asymptotically stable when maxiðmaxð1; kiÞRiÞ<1. Similarly, the existence of three
single-pathogen endemic equilibria (each unique for the respective pathogen) when the respective Ri >1 (Theorem 2) follows
the proof for one or two pathogens. Also as before, the conditions for local stability of these equilibria (Theorem 3) involve the
system's overall IRN with respect to pathogen i being less than 1, but here that IRN takes a more complicated form.
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To study coinfection one computes the IRNs using appropriately adjusted next-generation methods. For instance, to
compute 1

~R0 , the overall IRNwhen [only] pathogen 1 is endemic, we consider the reduced state vector ðI2; I12; I3; I13; I23; I123Þ
representing the invading pathogens, equal to zero at the pathogen-1 equilibrium. Now the matrices are

F ¼

26666664
B2 B2 0 0 B2 B2
B12 B12 0 0 B12 B12
0 0 B3 B3 B3 B3
0 0 B13 B13 B13 B13
0 0 0 0 0 0
0 0 0 0 0 0

37777775;

T ¼

26666664
h1g2 ð1� g1Þg2 0 0 h1g2ð1� g3Þ ð1� g1Þg2ð1� g3Þ
j1g2 g1g2 0 0 j1g2ð1� g3Þ g1g2ð1� g3Þ
0 0 h1g3 ð1� g1Þg3 h1g3ð1� g2Þ ð1� g1Þð1� g2Þg3
0 0 j1g3 g1g3 j1ð1� g2Þg3 g1ð1� g2Þg3
0 0 0 0 h1g2g3 ð1� g1Þg2g3
0 0 0 0 j1g2g3 g1g2g3

37777775;
2

B2 B2 B2 B2
3

and FðI6 � TÞ�1 ¼

66666666666666666664

1� g2 1� g2
0 0

1� g2 1� g2
B12

1� g2

B12
1� g2

0 0
B12

1� g2

B12
1� g2

0 0
B3

1� g3

B3
1� g3

B3
1� g3

B3
1� g3

0 0
B13

1� g3

B13
1� g3

B13
1� g3

B13
1� g3

0 0 0 0 0 0

0 0 0 0 0 0

77777777777777777775

;

�
�
� �

�
�

where Bi ¼ bigi ðbx*1 þ ð1� bx*1 Þð1� g1ÞkiÞ S�N þ ð1� g1ÞkiI1N , B1i ¼ bigi ð1� bx*1 Þg1kiS�N þ g1ki
I1
N , i ¼ 2;3. The overall IRN with

pathogen 1 resident is thus 1
~R0 ¼ maxð1~R2; 1

~R3Þ , where

1
~Ri ¼

Bi þ B1i
1� gi

¼ Ri

�
bx*1

S�

N
þ ki

��
1� bx*1

� S�
N

þ I�1
N

��
:

That is, the IRN for pathogen 2 or 3 invading when pathogen 1 is resident is the given pathogen's BRN multiplied by the
average susceptibility of that population to the invading infection. The term in brackets is a weighted average of a factor of 1
(for those S�

N of the population who avoid infection with pathogen 1) and a factor of ki (for the rest of the population, who do
become infected with pathogen 1).

The overall IRN of the system when pathogen 2 or 3 is resident has the same structure but not an identical formulation,
given the way that order of infection affects susceptibility.

In the case where two of the pathogens are already resident in the populationdsay, pathogens 1 and 2, with R1 >1, R2 >1,

2
~R1 >1 and 1

~R2 >1 (so that such a dual-endemic equilibrium exists)dthe system's overall IRN is the same as the IRN for the

remaining pathogen, e.g., 12
~R0 ¼ 12

~R3. In this case, only the four compartments involving pathogen 3 count as infected,
leading to the next-generation matrices

F ¼ b3g3k3

2664
B4 B4 B4 B4
B5 B5 B5 B5
B6 B6 B6 B6
B7 B7 B7 B7

3775; T ¼ g3

2664
h1h2 ð1� g1Þh2 h1ð1� g2Þ ð1� g1Þð1� g2Þ
j1h2 g1h2 j1ð1� g2Þ g1ð1� g2Þ
h1j2 ð1� g1Þj2 h1g2 ð1� g1Þg2
j1j2 g1j2 j1g2 g1g2

3775;
2
B4R3k3 B4R3k3 B4R3k3 B4R3k3

3

and FðI6 � TÞ�1 ¼ 664B5R3k3 B5R3k3 B5R3k3 B5R3k3

B6R3k3 B6R3k3 B6R3k3 B6R3k3
B7R3k3 B7R3k3 B7R3k3 B7R3k3

775;

where
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B4 ¼
�
bx*1 by*2

.
k3 þ A5

� S�
N

þ ð1� g1Þh2
I�1
N
þ h1ð1� g2Þ

I�2
N
þ ð1� g1Þð1� g2Þ

I�12
N
;

B5 ¼ j0h2
S�

N
þ g1h2

I�1
N
þ j1ð1� g2Þ

I�2
N
þ g1ð1� g2Þ

I�12
N
;

B6 ¼ A6g2
S�

N
þ ð1� g1Þj2

I�1
N
þ h1g2

I�2
N
þ ð1� g1Þg2

I�12
N
;

B7 ¼ j0j2
S�

N
þ g1j2

I�1
N
þ j1g2

I�2
N
þ g1g2

I�12
N
;

and thus we have, finally,

12
~R0 ¼ 12

~R3 ¼ ðB4 þ B5 þ B6 þ B7ÞR3k3 ¼ R3

�
bx*1 by*2

S�

N
þ k3

�
1� bx*1 by*2

S�

N

��
:

Again the last factor is a weighted average susceptibility at the equilibrium where pathogens 1 and 2 are endemic.
The other two IRNs involving two resident pathogens have the same structure but, again, not identical forms due to the

effects of the ordering of events. Numerical analysis appears to indicate that when all three such dual-resident IRNs exceed 1,
a triple-endemic equilibrium exists and is globally stable.

8.2. n-pathogen model

To extend the three-pathogen model to n pathogens, one must define 2n state variables (compartments),
�
n
i

�
of them

involving i-fold coinfection (i ¼ 0;1;…;n). Following the pattern for n ¼ 2 and n ¼ 3, one can see that the derivation of R0
remains straightforward, with all relevant matrices upper triangular, and the next-generation matrix's eigenvalues along the
diagonals, with R0 ¼ maxiRi once again, i ¼ 1;2;…;n. Again the disease-free equilibrium is globally asymptotically stable for
maxiðmaxð1; kiÞRiÞ<1, while n single-pathogen endemic equilibria Ei (each unique for the given pathogen) exist iff the
corresponding Ri >1, and are LAS iff Ri >1 and i

~R0 <1. Multi-endemic equilibria involving a subset A of m of the n pathogens
exist when the m different IRNs, each involving one pathogen in A invading the equilibrium at which the other m� 1
pathogens in A are endemic, all exceed 1. These A-endemic equilibria are stable when other pathogens not in A cannot invade
them.

9. Discussion & concluding remarks

Discrete-time systems are sensitive to ordering and are more prone to chaotic and other complex behavior than
continuous-time models, but may nevertheless be more appropriate to describe scenarios where the biology of a system
demands discrete representation. However, it is important to note that the conclusions obtained from these models depend
on underlying assumptions about the sequencing of events. In this paper, we develop multiple formulations of a novel two-
pathogen discrete-time coinfection model and provide a detailed analysis of how differences in the ordering of infection and
recovery events impact two critical quantities, the BRN and IRN, for each pathogen. Our work is the first to extend the
derivation of IRNs to discrete-time systems and to introduce discrete-time coinfection models with arbitrary time steps. To
the authors' knowledge, in extending the model to n>2 pathogens, this is also the first paper to derive IRNs where multiple
pathogens are assumed resident.

Our results show that whether events in a discrete-time model are sequenced or not impacts the BRN. Due to the order of
events in the sequential models, a gi term appears in their BRNs. This occurs because an individual must fail to recover during
a time step in order to be counted in the BRN. Since events occur simultaneously in the SIMmodel, an infected individual does
not need to evade recovery in order to be counted in the BRN, hence the lack of a gi term in the SIM model's BRN expression.
This difference in BRNs makes it possible to find parameter values such that the sequential models predict disease extinction
(R0 <1) while the SIM model predicts disease invasion (R0 >1), a contradiction that can be especially alarming from a public
health standpoint.

One peculiar finding of this research is the potential for the SEQ and SIM models to predict a region of coexistence for the
two pathogen strains under the assumption of complete cross-immunity. This result differs from the competitive exclusion
principle that is typical of autonomous continuous-time models (e.g. (Pelosse & Kribs-Zaleta, 2012)) and that is observed in
the partially ordered model of (Perez-Velazquez, 1999), where only infection events occur simultaneously. The fact that
competitive exclusion is seen in the Perez-Velazquez model but not in any of our models (when cross-immunity is consid-
ered) highlights the significance of ordering assumptions in discrete-time models. It is essential for researchers to be mindful
of such assumptions when formulating their models, as differences in formulation can drastically impact model predictions.
For example, assuming cross-immunity, the partially ordered model in (Perez-Velazquez, 1999) suggests that control
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strategies should target the pathogen that is more likely to spread, while the SEQ and SIMmodels presented here suggest that
control aimed at both pathogens may be needed.

As shown in Theorem 4, the apparent contradiction in competition dynamics between our discrete-time coinfection
models and an analogous continuous-time version (both with complete cross-immunity) is resolved in the limit as Dt ¼ T
approaches 0. Under this scenario, all of the discrete-time models predict competitive exclusion and have BRN and IRN
expressions similar to those of a continuous-time formulation of the coinfection model. This result shows that it becomes
more difficult for both IRNs to exceed 1 for small time steps, and that the region of co-persistence in the R1 vs. R2 graphs (e.g.
Figs. 2 and 3) constricts for small T. Furthermore, the result illustrates that time steps are crucial in the study of discrete-time
systems since different time steps can produce fundamentally different model conclusions.

Given that events in the coinfection model are ordered, our work illustrates that ordering affects the IRN but not the BRN
of the two pathogens. As seen in Table 1, the IRN (especially the pathogen 2 IRN) is more sensitive to assumptions on the
sequence of events than the BRN. This is because many factors are involved in calculating the IRN that are not needed for
the BRN, factors such as whether an individual was infected with the endemic strain at the beginning of a time step,
whether he or she recovered from the endemic strain, became infected with the invading strain, etc. It is common
knowledge in discrete-time mathematical modeling that ordering of events can affect important epidemiological quantities
such as the BRN (Lewis et al., 2006). However, since IRNs have not been studied in discrete time until now, this research
shows that ordering has implications of which mathematical biologists working with discrete-time models may not pre-
viously have been aware.

Results obtained from our various model formulations are analogous to the findings of (Hilker & Liz, 2013) and
(Weide & Hilker, 2019) which are situated in the context of population ecology. In (Hilker & Liz, 2013), Hilker and Liz
investigate whether hydra effect, the unusual increase in a species' population size in response to an increase in its
mortality rate, is impacted by the timing of harvesting and reproduction in discrete-time models of standard harvesting
strategies. Through rigorous mathematical proofs, they find no qualitative distinctions between two models that differ in
the ordering of harvesting and reproduction because the models essentially describe the same process (harvesting,
reproduction, harvesting, reproduction, etc.). This result is further echoed in the predator-prey models of (Weide &
Hilker, 2019), where switching the order of density-dependent prey regulation and predation results in identical
qualitative conclusions. In our study, we also find that when the general order of events is preserved between models, as
seen in SEQ1 and SEQ3, which simply take census at different points in the process, there is no difference in the BRN or
IRN of the models. However, differences become apparent when we consider the SEQ2 model which describes a
completely different order than SEQ1 and SEQ3. This illustrates that the order of events in discrete-time models matters
when more than two interacting events are involved, as altering the order of a subset of events can result in distinct
disease cycles.

Our application of the different formulations of the discrete-time coinfection model to RSV and RV co-circulation provides
a concrete illustration of the wide array of results that can be obtained from these models. Under certain assumptions, only
the SEQ1 and SEQ3 models show the potential for the presence of RSV to protect a population from invasion of RV. This
conclusion, however, changes with the order of each pathogen, indicating that the protective ability of RSV is only observed
when it is given the advantage of infecting the population first since infection with pathogen 2 is then applied to a less
receptive population. This conclusion stresses the importance of the biological assumptions embedded in mathematical
models.

While this current work provides valuable insight into the dynamics of various formulations of discrete-time coinfection
models, we acknowledge that the model that we propose is simplistic in nature. In reality, the dynamics of co-circulating
pathogen strains can lead to complex mathematical systems, some examples of which are described in (Crawford & Kribs-
Zaleta, 2009; Kribs-Zaleta & Mubayi, 2012; Qiu et al., 2013). In our future work, we will extend this discrete-time coinfec-
tion model to incorporate various transmission routes, such as vector-borne transmission, so that it can be applicable to a
wider range of diseases. We hope that this initial exploration of IRNs in discrete-time systems, and the simultaneous
formulation of such systems, will serve as a catalyst for other researchers to contribute to the study of multiple-pathogen
discrete-time models, paying careful attention to how model assumptions on the order of events (or the lack thereof)
affect key epidemiological conclusions.
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Appendix A. Formulation of SEQ1 Model

For the SEQ1model, let t1, t2, t3, and t4 ¼ t þ 1 represent the timewhen infectionwith pathogen 1, infectionwith pathogen
2, recovery from pathogen 1, and recovery from pathogen 2 occur respectively, with t < t1 < t2 < t3 < t4. In addition, let yðtiÞ ¼
I2ðtiÞþI12ðtiÞ

N . The system of difference equations obtained after infection with pathogen 1 is

Sðt1Þ ¼ SðtÞbxðtÞ1

I1ðt1Þ ¼ SðtÞ
�
1� bxðtÞ1

�
þ I1ðtÞ

I2ðt1Þ ¼ I2ðtÞbk1xðtÞ1

I12ðt1Þ ¼ I2ðtÞ
�
1� bk1xðtÞ1

�
þ I12ðtÞ:
After infection with pathogen 2 we have,

Sðt2Þ ¼ Sðt1Þbyðt1Þ2

I1ðt2Þ ¼ I1ðt1Þbk2yðt1Þ2

I2ðt2Þ ¼ I2ðt1Þ þ Sðt1Þ
�
1� byðt1Þ2

�
I12ðt2Þ ¼ I12ðt1Þ þ I1ðt1Þ

�
1� bk2yðt1Þ2

�
:

After recovery from pathogen 1, we obtain

Sðt3Þ ¼ Sðt2Þ þ I1ðt2Þð1� g1Þ
I1ðt3Þ ¼ I1ðt2Þg1
I2ðt3Þ ¼ I2ðt2Þ þ I12ðt2Þð1� g1Þ
I12ðt3Þ ¼ I12ðt2Þg1:
After recovery from pathogen 2, we have

Sðt4Þ ¼ Sðt3Þ þ I2ðt3Þð1� g2Þ
I1ðt4Þ ¼ I1ðt3Þ þ I12ðt3Þð1� g2Þ
I2ðt4Þ ¼ I2ðt3Þg2
I12ðt4Þ ¼ I12ðt3Þg2:
Since yðt1Þ ¼ yðtÞ, the system of equations for the SEQ1 model can be written as

Sðt þ 1Þ ¼ Sðt3ÞbxðtÞ1 byðtÞ2 þ
�
I1ðtÞ þ SðtÞ

�
1� bxðtÞ1

��
bk2yðtÞ2 ð1� g1Þ

þ
h
I2ðtÞbk1xðtÞ1 þ SðtÞbxðtÞ1 ð1� byðtÞ2 Þ þ ðI12ðtÞ þ I2ðtÞ

�
1� bk1xðtÞ1

�
þ
�
I1ðtÞ þ SðtÞð1� bxðtÞ1 ÞÞð1� bk2yðtÞ2 Þ

�

I
�
t þ 1Þ ¼

�
I ðtÞ þ SðtÞ

�
1� bxðtÞ

��
bk2yðtÞg
1 1 1 2 1

þ
h�

I12ðtÞ þ I2ðtÞ
�
1� bk1xðtÞ1

�
þ
�
I1ðtÞ þ SðtÞ

�
1� bxðtÞ1

���
1� bk2yðtÞ2

��
g1
i
ð1� g2Þ

I
�
t þ 1Þ ¼

h
I ðtÞbk1xðtÞ þ SðtÞbxðtÞ

�
1� byðtÞ

�
þ ðI ðtÞ þ I ðtÞ

�
1� bk1xðtÞ

�

2 2 1 1 2 12 2 1

þ
�
I1ðtÞ þ SðtÞ

�
1� bxðtÞ1

���
1� bk2yðtÞ2 Þ

�
I ðt þ 1Þ ¼

h�
I ðtÞ þ I ðtÞ

�
1� bk1xðtÞ

�
þ
�
I ðtÞ þ SðtÞ

�
1� bxðtÞ

���
1� bk2yðtÞ

��i
g g : (16)
12 12 2 1 1 1 2 1 2
The systems of difference equations for the SEQ2 and SEQ3 models can be obtained step-by-step in a similar fashion.
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Appendix B. SEQ1 & SEQ2 ~R2 Threshold Curve

To prove that ~R22
> ~R21

iff (if and only if) k2 <1, notice the following sequence of inequalities which follow iff the previous
inequality is satisfied:

~R22
> ~R21

R21
> ~R21

R21
� ~R21

>0
R21

� R21
½ð1� x�Þb1x�ð1� k2Þ þ k2�>0

R21
½ð1� k2Þ � ð1� x�Þb1x�ð1� k2Þ�>0

R21
½ð1� k2Þð1� ð1� x�Þb1x��>0

1� k2 >0
k2 <1:

~ ~
A similar proof can be given to show R22
<R21

iff k2 >1.

Appendix C. SEQ1 & SEQ3 IRN Expressions

Since R11
¼ R13

, we will prove that the SEQ1 and SEQ3 ~R1 equations are identical by showing that y�1 ¼ y�3g2, where y�12

ð0;1Þ is the unique root of y

 
1þ ð1�g2Þ

ð1�by2Þg2

!
¼ 1 and y�32ð0;1Þ is the unique root of y

 
1þ ð1�g2Þbyg22

ð1�b
yg2
2 Þ

!
¼ 1 (uniqueness of these

roots is discussed in Appendix B).
To see this, note that

1 ¼ y�3

0@1þ ð1� g2Þby
�
3g2

2�
1� b

y�3g2
2

�
1A

¼ y�3

0@
�
1� b

y�3g2
2 g2

�
�
1� b

y�3g2
2

�
1A

¼ y�3

0@
�
g2 � b

y�3g2
2 g2 þ 1� g2

�
�
1� b

y�3g2
2

�
1A

¼ y�3

0@g2 þ
ð1� g2Þ�
1� b

y�3g2
2

�
1A

¼ y�3g2

0@1þ 1� g2�
1� b

y�3g2
2

�
g2

1A:

0 1

This shows that y�3g2 is a root of f ðyÞ ¼ y@1þ 1�g2

ð1�by21 Þg2
A ¼ 1. Since y�1 is the unique root of f ðyÞ, we have y�1 ¼ y�3g2.

An analogous proof showing that x�1 ¼ x�3g1 , where x�12ð0;1Þ is the unique root of x
 
1þ ð1�g1Þ

ð1�bx
1Þg1

!
¼ 1 and x�32ð0;1Þ is the

unique root of x

 
1þ ð1�g1Þbxg1

1

ð1�b
xg1
1 Þ

!
¼ 1, can be used to show that the two models' ~R2 equations are identical.
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