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Wound healing and fibrosis following myocardial infarction (MI) is a dynamic process

involving many cell types, extracellular matrix (ECM), and inflammatory cues. As

both incidence and survival rates for MI increase, management of post-MI recovery

and associated complications are an increasingly important focus. Complexity of the

wound healing process and the need for improved therapeutics necessitate a better

understanding of the biochemical cues that drive fibrosis. To study the progression

of cardiac fibrosis across spatial and temporal scales, we developed a novel hybrid

multiscale model that couples a logic-based differential equation (LDE) model of the

fibroblast intracellular signaling network with an agent-based model (ABM) of multi-

cellular tissue remodeling. The ABM computes information about cytokine and growth

factor levels in the environment including TGFβ, TNFα, IL-1β, and IL-6, which are passed

as inputs to the LDE model. The LDE model then computes the network signaling state

of individual cardiac fibroblasts within the ABM. Based on the current network state,

fibroblasts make decisions regarding cytokine secretion and deposition and degradation

of collagen. Simulated fibroblasts respond dynamically to rapidly changing extracellular

environments and contribute to spatial heterogeneity in model predicted fibrosis, which is

governed by many parameters including cell density, cell migration speeds, and cytokine

levels. Verification tests confirmed that predictions of the coupled model and network

model alone were consistent in response to constant cytokine inputs and furthermore, a

subset of coupled model predictions were validated with in vitro experiments with human

cardiac fibroblasts. This multiscale framework for cardiac fibrosis will allow for systematic

screening of the effects of molecular perturbations in fibroblast signaling on tissue-scale

extracellular matrix composition and organization.
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INTRODUCTION

Approximately 605,000 Americans experience their first
myocardial infarction (MI) each year, and another 200,000
experience a recurrentMI (Benjamin et al., 2018). Approximately
82% of males and 77% of females survive at least 1 year following
their MI (Benjamin et al., 2018), making management of post-MI
recovery an increasingly important topic.

Wound healing and scar remodeling following MI is a
dynamic process involving many cell types, extracellular matrix,
and inflammatory cues. Myocyte death due to prolonged
ischemia initiates an inflammatory response led by cytokines
such as IL-1β and TNFα (Frantz et al., 2009). Neutrophils and
macrophages are recruited to the wound site within 24 h and
begin to phagocytose debris and propagate the inflammatory
response. Inflammatory cells peak within the first week of
wound healing and then begin to subside as the proliferative
phase begins (Czubryt, 2012). Inflammatorymacrophages secrete
TGFβ, which stimulates fibroblast recruitment and proliferation
(Lambert et al., 2008). The release of TGFβ may also contribute
to the conversion of macrophages to a more anti-inflammatory
phenotype (Lambert et al., 2008). The proliferative phase may
last for days to weeks and is marked by the proliferation of
fibroblasts and transition to a myofibroblast phenotype, along
with synthesis of many ECM components including collagen
(Czubryt, 2012). ECM deposition produces a scar in the infarct
region that contributes to its structural stability during wound
healing. This proliferative phase is followed by weeks to months
of scar remodeling and significant ECM turnover.

Post-MI cardiac wound healing is a complex and dynamic
process with many overlapping phases. The cardiac fibroblast
is the key effector cell throughout the phases of wound
healing that creates and remodels scar tissue (Spinale et al.,
2016; Mouton et al., 2019). However, fibroblasts are a highly
dynamic and plastic cell type that can transition from a pro-
inflammatory phenotype in the early phases of wound healing
to an anti-inflammatory and pro-fibrotic phenotype later in
the wound healing cascade (Chen and Frangogiannis, 2013;
Mouton et al., 2019). Fibroblast response to single cytokine
inputs are well-documented (Fredj et al., 2005; Fix et al., 2011;
Turner, 2014), but fibroblast activation and cytokine secretion
in response to multiple cytokines and other stimuli in vivo
that shift over the time course of MI wound healing are not
well-described (Ma et al., 2017). This lack of understanding
of activation shifts over the time course of healing is at the
core of the failure of many attempts to improve post-MI
wound healing by modulating scar formation (Clarke et al.,
2016). Inhibition of inflammation too early in the wound
healing cascade can lead to thinning of the LV wall and scar
rupture (Brown et al., 1983; Hammerman et al., 1983a,b).
Aberrant fibrosis can lead to LV dilation and heart failure. This
inherent complexity of the biological phenomenon necessitates
the development of computational models to design and test
therapeutic interventions that potentially have opposite effects
at different phases throughout the wound healing cascade.
Previous computational models have extensively characterized
cardiac fibroblast signaling pathways and expression profiles
to provide information about fibroblast activation and kinetics

(Nim et al., 2015; Zeigler et al., 2016a,b), but fibroblast activation
has generally been studied in response to single stimuli in vitro.
Other researchers in the field have noted the need to understand
fibroblast activation in response to mixed stimuli, and have called
for the development of computational models that can integrate
the effects of spatial and temporal shifts in fibroblast activation,
with the cell-cell interactions and cell-matrix interactions that
coordinate the short and long-term remodeling of scar tissue
(Ma et al., 2017). A multiscale model that can translate cardiac
fibroblast gene and protein expression to tissue level functional
remodeling with spatial and temporal precision could provide an
invaluable platform for identifying, testing, and validating new
therapeutic interventions for inducing functional regeneration
and mitigating fibrosis.

Our group has recently developed computational models to
study distinct scales of cardiac wound healing, including a logic-
based differential equation (LDE)model of intracellular signaling
in individual cardiac fibroblasts and an agent-based model
(ABM) of collagen remodeling by multiple cells in the infarct
(Rouillard and Holmes, 2012; Zeigler et al., 2016a). Each model
represents a different spatial and temporal scale of the wound
healing process. The LDE model provides detailed information
about the network state of 91 different signaling nodes in an
individual fibroblast, while the ABM predicts fibroblast number,
collagen area fraction, and collagen alignment at the tissue
level. In the work presented here, we couple these LDE and
ABM models in order to capture the dynamic interplay between
fibroblast intracellular signaling and spatially heterogeneous
extracellular cues such as cytokines and ECM composition, which
themselves are modulated by individual fibroblast behaviors.
Verification tests confirmed that the coupled model and network
model alone exhibit consistent behavior in response to constant
cytokine and growth factor inputs, allowing for the establishment
of a framework that can readily incorporate updates from either
the network model or ABM without affecting the integrity
of the individual model predictions. Furthermore, a subset of
coupled model predictions was validated by comparison to
measurements of pro-collagen 1, αSMA, and F-actin expression
in human cardiac fibroblasts treated with combinations of
cytokines and growth factors in vitro. We believe this work
demonstrates the first coupling of a large-scale network model
to predict tissue-level changes in ECM composition in the
setting of fibrosis with feedback from environmental cues (e.g.,
diffusible cytokines) to regulate the signaling of individual cells.
Predictions about cytokine and growth factor production from
fibroblasts are computed in physical units, which were not
previously possible with a logic-based network model alone. This
coupled model provides a platform for systematically testing
molecular interventions with the ability to measure their effects
on single cell signaling and ECM composition with detailed
spatial resolution.

MATERIALS AND METHODS

Description of Individual Models
Agent-Based Model
An agent-based model (ABM) is comprised of value layers and
agents (An et al., 2009). The value layers in this two-dimensional
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ABM represent features of the extracellular space, including
collagen, latent TGFβ, active TGFβ, IL-1β, IL-6, and TNFα. All
cytokines are stored as concentrations in pg/mL, and collagen
is quantified as an area fraction. The value layers are divided
into a 10 × 10 grid, where each individual grid space measures
10 × 10µm. A volume for each grid space is approximated
based on cell culture conditions in a 96 well-plate, which is the
primary source of experimental data used to inform this model.
For soluble cytokines (active TGFβ, IL-1β, IL-6, and TNFα), it
is assumed that these cytokines are uniformly distributed in the
media above each cell, resulting in a compartment of 10 × 10 ×
3125µm (3.125e-7mL). Latent TGFβ binds to the extracellular
matrix (Horiguchi et al., 2012), and is thus assumed to occupy
the space immediately surrounding the cell, or 10× 10× 10µm
(1e-9mL). The individual grid space approximates the footprint
of a single fibroblast, allowing the model to simulate a maximum
of 100 fibroblasts simultaneously. The total number of fibroblasts
is kept relatively low to allow for calculation of the entire network
state of each fibroblast while minimizing computational time
for the purposes of method development. Value layers store
a unique quantity in each grid space that can be modulated
by parameters including degradation rates, activation rates, and
the agents that move over them. The agents in this model
represent cardiac fibroblasts that migrate and modulate their
extracellular space by depositing and degrading collagen, and
secreting cytokines.

Logic-Based Network Model
The logic-based differential equation (LDE) network model
is a previously published (Zeigler et al., 2016a) model of
cardiac fibroblast signaling that integrates 10 signaling pathways
with 11 biochemical or mechanical stimuli that are important
for myofibroblast activation and ECM remodeling. These
stimuli include IL-1 (interleukin 1), IL-6 (interleukin 6), TNFα
(tissue necrosis factor α), NE (norepinephrine), NP (natriuretic
peptide), β-integrins, TGFβ (tissue growth factor β), angiotensin
II, PDGF (platelet derived growth factor), ET1 (endothelin 1),
mechanical stimulation, and forskolin. The network includes 91
nodes connected by 142 reactions, which are supported by in
vitro data collected from cardiac fibroblasts. The network was
constructed using a logic-based ordinary differential equation
modeling approach, where the activity of each node is modeled
using a normalized Hill ODE with default parameters and logic
gating. Default reaction parameters include weight (0.9), Hill
coefficient (1.4), and EC50 (0.6), and species parameters include
yinit(0), ymax(1), and τ . The τ parameter (time constant) was
scaled according to the type of reaction: 6min for signaling
reactions, 1 h for transcription reactions, and 10 h for translation
reactions. The baseline level of input is defined as 25% activity
for all input nodes. The system of ODEs is generated using the
Netflux software available at: https://github.com/saucermanlab/
Netflux, and implemented in MATLAB.

Coupled Model
Interactions That Drive the Coupled Model
Figure 1 provides an overview of the components and
interactions between the LDE network model and ABM. The

FIGURE 1 | Components of individual ABM and network models. The ABM is

comprised of agents that store information about attributes and perform

methods. Value layers can be modified independently by defined parameters

or by the activity of agents. Individual agents store a network state, which is

updated by the fibroblast network model.

ABM contains the value layers that represent the extracellular
space and the cardiac fibroblasts that migrate over and interact
with these value layers. The time step for this coupled model
is 1 h, representing the approximate timescale for a change
in input to the cell signaling network to affect production of
cytokines and ECM proteins that will be deposited in the ABM
(Enríquez-de-Salamanca et al., 2008; Azghani et al., 2014).
Agents execute a series of methods at each time step: receive
input from value layers, update network state, secrete latent
TGFβ and IL-6, deposit collagen, migrate. Migration occurs
randomly for all simulations, and cell proliferation and death
are not simulated. One agent is allowed to occupy an individual
grid space, and agent migration is confined to the borders of the
simulation space. This series of methods is repeated for 1,008
time steps (6 weeks).

Interactions between the network model and ABM are
described by Equations (1–10). These equations are used to
define the behavior at the interface of the two models and are
distinct from the equations that define the network model alone.
The network model operates using normalized values between
0 and 1, whereas the ABM stores values in terms of physical
concentrations. This set of equations act as a translator between
these two systems. Figure 2 describes how these equations
interact with components of each model and the order in which
these methods are executed.

Network Model Inputs
Equations (1–4) are used to translate the cytokine levels stored
as concentrations in the value layers of the ABM into inputs for
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FIGURE 2 | Coupled model process diagram. A detailed process diagram illustrates the methods and order in which they occur at each time step (1 h), and

components of the ABM and network model that interact. Boxed numbers refer to the equation number which describes that process.

the network model. Input weights for the network model range
from 0 to 1, representing receptor activation between 0 and 100%.
These weights are determined using the quantitative dissociation
constants (Table 1) for the inputs of interest (IL-6, IL-1β, TNFα,
and TGFβ). The dissociation constant is the concentration of
ligand at which approximately half of the free ligand is bound
to receptor at equilibrium. Receptor activity is described by a
Hill equation, where a concentration of ligand equal to the Kd

is considered 50% activation of the input node. Values for each of
these dissociation constants are listed in Table 1.

wIL-6 =
[IL-6ABM]

[IL-6ABM]+ Kd,IL-6
(1)

wIL-1β =
[IL-1βABM]

[IL-1βABM]+ Kd,IL-1β
(2)
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TABLE 1 | Dissociation constants.

Parameter Description Equation # Value Unit Value Unit Citation

Kd,IL−6 Dissociation constant for IL-6 1 22 nM 462,000 pg/mL Baran et al., 2018

Kd,IL−1β Dissociation constant for IL-1β 2 500 pM 8,750 pg/mL Dower et al., 1985; Issafras et al., 2014

Kd,TNFα Dissociation constant for TNFα 3 19 pM 323 pg/mL Grell et al., 1998; Fallahi-Sichani et al., 2010

Kd,TGFβ Dissociation constant for TGFβ 4 28 pM 700 pg/mL Wakefield et al., 1987

wTNFα =
[TNFαABM]

[TNFαABM]+ Kd,TNFα

(3)

wTGFβ =
[TGFβABM]

[TGFβABM]+ Kd,TGFβ

(4)

Active TGFβ and Latent TGFβ

Equation (5) describes the production of latent TGFβ from
sources other than fibroblasts (kgen), secretion of latent TGFβ
from fibroblasts (ksec) based on the network activity of latent
TGFβ (latentTGFβnet), degradation of latent TGFβ (kdeg), and
activation of latent TGFβ (kact) based on the concentration of
latent TGFβ in the ABM (latentTGFβABM). The generation rate
(kgen) describes the production of latent TGFβ from sources that
are not currently represented in this model (e.g., macrophages,
neutrophils, etc.) and is used to maintain the gradient setup
as described below under Initial Conditions. The secretion rate
(ksec) describes the maximum physiological secretion of latent
TGFβ from fibroblasts under stimulated conditions and this rate
is scaled based on the network activity level (0–1) of latent TGFβ
for each fibroblast. The degradation rate is a first-order rate based
on the stability of latent TGFβ in vitro, and the activation rate
describes the proportion of latent TGFβ that is converted to
active TGFβ. Based on literature review, we chose a value for
kact,latentTGFb that maintains active TGFβ at 4–5% of total TGFβ,
which is consistent with values measured in both in vitro and
in vivo studies (Maeda et al., 2002; Hawinkels et al., 2007). In
Equation (6), we use a rapid equilibrium assumption for active
TGFβ concentration because the degradation rate of active TGFβ
is on the order of minutes, much faster than our model time
step of 1 h. Thus, we assume that the kinetics of active TGFβ are
rate limited by the kinetics of latent TGFβ and come to a rapid
quasi-equilibrium based on current latent TGFβ concentrations.
Parameter values for Equations (5) and (6) can be found in
Table 2.

∂ latentTGFβABM

∂t
= kgen, latentTGFβ + k

sec,latentTGFβ

∗latentTGFβnet

− kdeg, latentTGFβ∗latentTGFβABM

− kact, latentTGFβ∗latentTGFβABM (5)

TGFβABM(t) = kact, latentTGFβ∗latentTGFβABM(t) (6)

Inflammatory Cytokines
Equations (7–9) describe the production and degradation of
IL-1β, IL-6, and TNFα. IL-1β and TNFα are not secreted by
the current fibroblast network model, so these equations simply
consist of a generation rate and first-order degradation rate. The

generation rates are selected to maintain prescribed cytokine
gradients as described below under Initial Conditions. The
equation for IL-6 kinetics simply has the addition of a secretion
rate that represents the maximum physiological secretion of IL-6
from fibroblasts under stimulated conditions and is scaled based
on the network activity level (0–1) of IL-6 for each fibroblast.
Parameter values for Equations (7–9) can be found in Table 3.

∂IL-1βABM

∂t
= kgen, IL-1β − kdeg, IL-1β∗IL-1βABM (7)

∂IL-6ABM

∂t
= kgen, IL-6 + ksec, IL6∗IL-6net −

kdeg, IL6∗IL-6ABM (8)

∂TNFαABM

∂t
= kgen, TNFα − kdeg, TNFα∗TNFαABM (9)

Collagen
Equation (10) describes the deposition and degradation of
collagen in the ABM based on the collagen I and III mRNA nodes
in the network model. Deposition of collagen occurs only where
a fibroblast is present and is based on the value of the collagen I
and III mRNA nodes in the network model for each fibroblast.
Degradation is modeled as a first-order process based on the
current collagen concentration in the ABM and thus occurs at
every grid location, regardless of the presence of a fibroblast.
This assumes evenly distributed MMP activity since we are not
explicitly representing MMP production in this model.

These two parameters (Table 4) were fit based on previously
published data in a rat model of MI (Fomovsky and Holmes,
2010). Baseline collagen area fraction was considered to be 4%,
based on typical measurements from a healthy rat prior to an
infarction (MacKenna et al., 1994). Collagen I and III mRNA
activity levels from the networkmodel run at a baseline condition
for 6 weeks (0.25 for all input nodes) were used to fit the
baseline experimental data. This was done by analytically solving
equation 10 for the ratio of kdep/kdeg that produces a steady state
collagen area fraction of 4%. Then, the network model was run
for 6 weeks to simulate a stimulated condition (0.5 input for
TGFβ, IL-1β, IL-6, and TNFα network nodes) and used to fit the
infarct experimental data. This was accomplished by performing
a parameter sweep of values for kdep while constraining kdeg
to satisfy the ratio determined previously and minimizing the
sum of squared error (SSE) between the model fit and infarct
experimental data.

∂CollagenABM
∂t

= kdep, Collagen
(

ColIRNAnet + ColIIIRNAnet

)

−kdeg, Collagen∗CollagenABM (10)
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TABLE 2 | Parameters for active and latent TGFβ kinetics.

Parameter Description Equation # Value Unit Citation

kgen,latentTGFβ Generation rate of latent TGFβ required to create gradient 5 530,000 pg/mL*hr Mass balance constraint

ksec,latentTGFβ Latent TGFβ secreted by fibroblasts 5 23,700 pg/mL*hr Wakefield et al., 1987; Campbell and

Katwa, 1997; Campaner et al., 2006;

Cartledge et al., 2015; Bolívar et al.,

2017

kdeg,latentTGFβ First-order degradation rate for latent TGFβ 5 0.0096 /hr Rollins et al., 1989

kact,latentTGFβ Activation rate of latent TGFβ to active TGFβ 5 & 6 0.045 Maeda et al., 2002; Hawinkels et al.,

2007

TABLE 3 | Parameters for inflammatory cytokine kinetics.

Parameter Description Equation # Value Unit Citation

kgen,IL−1β Generation rate of IL-1β required to create gradient 7 4,847 pg/mL*hr Mass balance constraint

kdeg,IL−1β First-order degradation rate for latent IL-1β 7 0.277 /hr Hazuda et al., 1988; Friedman and

Siewe, 2018

kgen,IL−6 Generation rate of IL-6 required to create gradient 8 256,000 pg/mL*hr Mass balance constraint

ksec,IL−6 IL-6 secreted by fibroblasts 8 79,360 pg/mL*hr Ancey et al., 2002; Fredj et al., 2005;

Turner et al., 2007, 2009

kdeg,IL−6 First-order degradation rate for IL-6 8 0.277 /hr Gerhartz et al., 1994

kgen,TNFα Generation rate of TNFα required to create gradient 9 895.4 pg/mL*hr Mass balance constraint

kdeg,TNFα First-order degradation rate for TNFα 9 1.386 /hr Zahn and Greischel, 1989

TABLE 4 | Parameters for collagen deposition and degradation.

Parameter Description Equation # Value Unit Citation

kconv,Collagen Coefficient of collagen deposition 10 0.0056 Area fraction Fit to exp. data

kdeg,Collagen Coefficient of collagen degradation 10 0.0035 Area fraction Fit to exp. data

Initial Conditions
To evaluate the effects of spatial gradients in fibrotic and
inflammatory cues, the value layers are initialized with a gradient
of TGFβ increasing from bottom to top, and a gradient of
inflammatory cytokines (IL-1β, IL-6, and TNFα) increasing
from left to right. Thus, each individual grid space contains a
unique combination of fibrotic and inflammatory cues. Cytokine
gradients were specified by scaling the generation rate (kgen)
along the x or y axis to result in concentrations ranging up to
twice the dissociation constant for that particular cytokine or
growth factor, corresponding to receptor activation rates between
∼16 and 67% (Figures 3A–C). The purpose is 2-fold: to explore
a dynamic range of inputs to the network model and to create an
environment where fibroblasts migrate through spatially varying
environmental cues.

Parameter Estimation and Fitting
A total of 17 parameters are defined in this set of 10 equations.
Of these parameters, 11 are based on literature and 6 are
estimated, or fit to experimental data, as noted in Tables 1–4.
The dissociation constants, degradation rates, and production
rates from fibroblasts are based on literature. The generation rates
are estimated based on a mass balance constraint in order to

create the specified initial gradient, which are ultimately based
on the dissociation constants found in literature. Coefficients
for collagen deposition and degradation are fit based on
experimental data.

Sensitivity Analysis
A sensitivity analysis of all 17 model parameters was
conducted. Each parameter was decreased individually by
an order of magnitude (0.1×) and compared to the results
of a model run with all parameters at baseline values. A
sensitivity coefficient was calculated using Equation (11),
where yo and yi are the measured state variable when
parameters are at baseline or perturbed, respectively, and
po and pi are the values of the baseline parameter and
perturbed parameter.

S =
yi − yo

pi − po
∗
po

yo
(11)

The state variables measured in the sensitivity analysis are
the total collagen content, global semivariance (rxy), and
semivariance in either the x (rx) or y (ry) dimension. Collagen
content is measured by summing collagen area fraction across all

Frontiers in Physiology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 1481

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rikard et al. Multiscale Model of Cardiac Fibrosis

FIGURE 3 | Agent-based model is initialized with cytokine gradients. (A) Four phenotypic regions are created by a combination of fibrotic and inflammatory cues.

(B) TGFβ is initialized with an increasing gradient from bottom to top. (C) IL-1β, IL-6, and TNFα are initialized with an increasing gradient from left to right.

individual grid spaces. Global semivariance is (rxy) defined as:

rxy =
1

2s0

∑

i

∑

j

Wij(xi − xj)
2 (12)

s0 =
∑

i

∑

j

Wij

where xi is an observed data point, xj is an adjacent observation,
Wij is a matrix of spatial weights, and s0 is the sum of all Wij.
If two data points are immediate neighbors, Wij is assigned as
1, otherwise Wij is set to 0 (Lee et al., 2019). Semivariance in
the x dimension is calculated by assigning 1 to Wij for adjacent
observations in the x direction and 0 otherwise, and vice versa
for the y dimension.

Model Implementation
This model was implemented using Repast Simphony 2.6 with
a java engine to connect to MATLAB R2018b, which was used
to run the network model and perform all data analysis. All
simulations here were performed on a single CPU (Intel R©

Xeon R© E5-2640 v4@2.4GHz). The approximate runtime to
simulate 100 fibroblasts for a period of 6 weeks is 1 h and 17 min.

Cardiac Fibroblast in vitro Experiments
Primary human ventricular cardiac fibroblasts were purchased
from PromoCell (PromoCell C-12375; PromoCell GmbH,
Germany). Cells were cultured in DMEM containing 10% FBS
and 1% Pen/Strep, and were kept in an incubator maintained
at 5% CO2. Cells were plated in a 96-well plate at 5,000
cells/well and then grown in 10% FBS for 24 h, serum starved
for 24 h, and then treated with the following conditions for
96 h: 0%FBS control media, 0%FBS media with 20 ng/mL TGFβ1
(Cell Signaling Technology, 8915LC), and 0% FBS media with
10 ng/mL human IL1β (Cell Signaling Technology, 8900SC).
Cells were then fixed in 4% PFA in PBS for 30min, permeabilized
and blocked for 1 h in a solution containing 3% BSA and
0.2% Triton, and then stained overnight at 4◦C with a 1:500
primary Anti-Collagen I antibody (Abcam, ab34710). After an

overnight incubation, cells were washed 3× in PBS and stained
with 1:5,000 Dapi, 1:1,000 Phalloidin CruzFluor 647 stain (Santa
Cruz Biotechnology, sc-363797), 1:250 α-Smooth Muscle Actin
preconjugated antibody (Sigma-Aldrich, C6198), and 1:1000
Goat-anti-Rabbit (secondary for Anti-Collagen I) (ThermoFisher
Scientific, A-11034).

Microscopy and Image Analysis
96-well-plates we imaged using the Operetta CLS High-Content
Analysis Systemwith confocal view, andDapi, Alexa 488, TRITC,
and Alexa 647 imaging channels (Perkin Elmer). Three wells
for each condition were imaged and quantified. To identify
individual cells, an automated image analysis pipeline was
employed in CellProfiler (Carpenter et al., 2006). Fibroblast
nuclei were identified by DAPI signal, and fibroblast boundaries
corresponding to each nuclei were segmented based on collagen
and phalloidin (actin) signals using the “propagate” algorithm.
αSMA, pro-collagen I, and phalloidin signals were integrated
within each cell’s boundary to determine fluorescence per cell.
To reduce error from edge effects, only cells in the center tile of
each well were measured. The median fluorescence for all cells
in a given well was reported (n = 3 replicate wells per treatment
group, 250–450 cells per well were imaged). Significance between
groups was determined by one-way ANOVA with Tukey HSD
post-hoc test, p ≤ 0.05 considered significant. Data are provided
in Supplemental Table 1.

RESULTS

Coupled Model Can Reproduce
Predictions Made by Network Model Alone
Verification tests were performed to evaluate whether coupling of
LDE and ABMmodels affected results obtained from each model
individually. This was accomplished by seeding one fibroblast
in each grid space with no migration and simulating either an
unstimulated condition (0.25 input for all nodes) or stimulated
condition (0.5 input for TGFβ, IL-1β, IL-6, and TNFα). We
compared the activity level of all 91 nodes of the fibroblast
network state at steady state for each condition and calculated
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the sum of squared error (SSE) between the network-only and
coupled models. The SSE for the unstimulated condition is
3.865e-7 (Figure 4A) and 1.168e-6 for the stimulated condition
(Figure 4B). We next examined the SSE between the network
states of the coupled model and network model alone for all
100 combinations of cytokine inputs from Figure 3, resulting in
SSEs in the range of [2.07e-8–8.88e-5]. Thus, the network-only
and coupled models produce equivalent network states for non-
migrating fibroblasts when cytokine inputs are maintained at a
constant level for individual cells.

Coupled Model Predicts That Inflammatory
Cytokines Antagonize TGFβ-Induced
Collagen Accumulation
Model parameters for collagen deposition and degradation were
fit to match experimental data obtained previously from a
rat model of MI (Fomovsky and Holmes, 2010). For these
simulations, a single fibroblast was placed in every grid space
and not allowed to migrate. Model simulations were initialized
to match the measured rise in collagen area fraction in healing
infarcts when fibrotic and inflammatory inputs to the coupled
model (TGFβ, IL-1β, IL-6, and TNFα) were maintained at an
elevated level of 0.5, and to match the normal myocardial
collagen area fraction when the same inputs were maintained
at their baseline values of 0.25 (Figure 5A). Expanding to a
broader range of cytokine combinations (100 combinations of
fibrotic vs. inflammatory cytokines), the coupledmodel predicted
biologically plausible variations in steady-state collagen content.
As shown in Figure 5B, collagen content is highest in areas with
high TGFβ input and low inflammatory input, and is reduced
as inflammatory input increases for the same magnitude of
TGFβ input.

Crosstalk Between TGFβ and Inflammatory
Extracellular Cues Produces Complex
Signaling Behaviors
The fibroblast network model exhibits complex behaviors due
to its integration of 10 interdependent signaling pathways.
Figure 6 illustrates representative nodes in the fibroblast network
and their activity level under conditions of constant cytokine
inputs for many combinations of inflammatory and fibrotic
inputs, as described previously. Network receptors display a
range of activation patterns based on their extracellular cues
(Figures 6A–C). IL-1β receptor activation closely follows the
gradient created by the initial conditions. In contrast, TGFβR1
and endothelin-1 (ET-1) are influenced by autocrine feedback
loops. Inflammatory cytokines cause inhibition of TGFβR1 that
increases along the x-axis as the concentration of inflammatory
cytokines increase. TGFβR1 activation is also influenced by the
rate of latent TGFβ activation, which occurs in the ABM value
layers. Fibroblasts secrete latent TGFβ, which is then activated to
active TGFβ. But as noted in Figure 6G there is minimal latent
TGFβ produced in environments of low TGFβ and inflammatory
input. As a result, there is decreased TGFβR1 activation in this
quadrant. In contrast to the gradual applied input gradients,
ET-1 receptor displays switch-like activation, due to autocrine

feedback of activator protein 1 (AP1) downstream of both TGFβ
and IL-1β.

Some nodes downstream of each of these inputs display
similar activation patterns (Figures 6D–F), while others integrate
multiple unique upstream inputs. Smad7, which is immediately
downstream of STAT and IL-1β receptor, displays an activity
pattern similar to the IL-1β receptor. Smad3 is downstream
of TGFβR1, and it regulates many network outputs including
collagen mRNA, fibronectin, periostin, and αSMA. NF-κB
activity is regulated by many inputs, including IL-1βR, ERK, p38,
and AKT. But ERK and p38 (which are immediately downstream
of the ET-1 receptor) dominate the response of NF-κB, so it
displays an activation pattern most similar to ET-1 receptor.
NF-κB contributes to the expression of MMPs, fibronectin, and
provides feedback to IL-6 input.

Network outputs represent the integration of many upstream
inputs (Figures 6G–I). Latent TGFβ expression is primarily
influenced by AP1 transcriptional activity, which itself is
regulated by ERK and JNK. The model predicts that IL-1β
antagonizes TGFβ-induced collagen I mRNA and αSMAmRNA,
which is validated by experimental studies in lung and dermal
fibroblasts (Mia et al., 2014). Expression of collagen I mRNA
is predicted to be a product of input from Smad3, SRF (serum
response factor), and CBP (CREB binding protein). proMMP 1
expression is a prime example of integration ofmultiple upstream
inputs that each exhibit distinct activation patterns including
AP1, Smad3, and NF-κB. Visualization of how this combination
of transcription factors regulates proMMP 1 expression is
shown in Supplementary Figure 1. In summary, the coupled
model provides a platform to investigate how combinations of
dynamic inputs affect downstream intermediate network nodes
and network outputs.

Key Parameters Affect Spatial Gradient of
Collagen Deposition
A sensitivity analysis was conducted to determine the relative
influence of decreasing the values of parameters associated
with ABM-network coupling on overall collagen content
(area fraction) and collagen heterogeneity (semivariance, either
globally, or in the x or y dimension). Parameters were
individually decreased by an order of magnitude (0.1×), and
normalized sensitivity coefficients were computed, in which
positive coefficients indicate positive correlation of the parameter
with the output measured (see Equation 11). Parameters were
ranked by their positive influence on collagen area fraction
(Figure 7A). Parameters related to TGFβ production, activation,
and degradation are the most influential in determining
collagen content, because TGFβ input is important in altering
downstream collagen I and III mRNA activity in the fibroblast
signaling network. As expected, the coupled model is also highly
sensitive to the two parameters in Equation (10) that govern
deposition and degradation in the collagen layer. In terms of
inflammatory inputs, this analysis reveals that IL-1β and IL-6
are more influential in determining the collagen profile than
TNFα input. This is likely because IL-6 has a downstream effect
on Smad3, which promotes collagen mRNA activity, and IL-1β
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FIGURE 4 | Verification tests confirm that coupled model and network model produce equivalent fibroblast network states. (A) In an unstimulated condition (0.25

input for all nodes), and a (B) stimulated condition (0.5 input for TGFβ, TNFα, IL-1β, and IL-6 nodes), the network state of a fibroblast using the coupled model or

network model alone are comparable with a SSE of 3.865e-7 (A) and 1.168e-6 (B).

FIGURE 5 | Coupled model predicts collagen profile over a range of physiological conditions. (A) Collagen area fraction for an unstimulated condition (0.25 input for

all nodes) is compared to baseline collagen area fraction (4%) in a healthy rat. Model predictions for a stimulated condition (0.5 input for TGFβ, TNFα, IL-1β, and IL-6

nodes) are compared to results from a rat model of myocardial infarction up to 6 weeks post-MI. Error bars = SEM. (B) Collagen area fraction predictions at 6 weeks

from a model simulation with gradient initial conditions and a fibroblast in each grid space (n = 100).

upregulates NF-κB, which has a positive feedback on IL-6. TNFα
has a smaller effect on NF-κB signaling and no direct connection
to Smad3 signaling. It is also noted that the two parameters
related to secretion of latent TGFβ and IL-6 (ksec,latentTGFβ and
ksec,IL−6) from the fibroblast have little effect on the overall
collagen profile, yet TGFβ and IL-6 inputs themselves seem to
be very influential. This is likely because the production rates

from fibroblasts are not high enough to significantly impact the
gradients that are created in the initial conditions.

Interestingly, some parameters may have different effects
on overall collagen content and collagen spatial heterogeneity.
Decreasing parameters such as the Kd of TGFβ for its receptor,
increase both collagen content and collagen heterogeneity
(Figures 7A,D), compared to a collagen profile at 6 weeks when
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FIGURE 6 | Signaling network exhibits a range of activation patterns in response to extracellular cues. Node activity level of individual network nodes for each

fibroblast at steady state (6 weeks). Model simulation with gradient initial conditions and a fibroblast in each grid space (n = 100). Heat maps show network states for

input receptors (A–C), intermediate network nodes (D–F), and network outputs (G–I).

all parameters are at baseline values (Figure 7B). Decreasing
parameters associated with synthesis of latent TGFβ or collagen,
or degradation of IL-6, cause a decrease in both collagen content
and heterogeneity in both dimensions. In contrast, decreasing
the IL-1 generation term (kgen,IL−1) has little effect on the
total collagen content, but has opposite effects on collagen
heterogeneity in the x and y dimension, as measured by
semivariance in either direction (Figure 7C).

Single Cell Dynamics in Response to a
Changing Extracellular Environment
To test the role of fibroblast migration on collagen remodeling,
fibroblasts were seeded sparsely in the coupled model and
allowed to migrate stochastically at a rate of one grid space
per hour. Fibroblasts were seeded at moderate density (20
fibroblasts) within the fibrotic vs. inflammatory cytokine grid

and responses simulated for 6 weeks. Fibroblasts experience
changes in their extracellular environment as they migrate,
which causes their intracellular signaling network state and
rate of collagen deposition to change accordingly. Figure 8

illustrates single cell migration trajectories (panels A and C),
local cytokine inputs, and gene expression (panels B and
D) for two representative fibroblasts migrating within the
cytokine gradient environment. The fibroblast shown in panels
A and B remains in areas with high to moderate TGFβ
levels and with increasing levels of inflammatory cytokines.
Correspondingly, this fibroblast exhibited relatively high levels
of collagen mRNA expression that mirrored the level of TGFβ
input. As this fibroblast migrated to regions of increasing
IL-6, there was a delayed but then rapid increase in MMP
mRNA expression, consistent with switch-like responses seen in
Figure 6I.
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FIGURE 7 | Key parameters affect spatial gradient of collagen deposition. (A) Sensitivity coefficients calculated based on Equation (11) with individual parameter

perturbations of 0.1×. State variable outputs include total collagen area fraction, global semivariance, semivariance in the x direction, and semivariance in the y

direction. Collagen area fraction heat maps at 6 weeks with (B) all parameters at baseline, (C) kgen,IL−1β parameter multiplied by 0.1, and (D) Kd,TGFβ parameter

multiplied by 0.1.

Figures 8C,D track a separate fibroblast that remains in areas
of low to moderate TGFβ levels, but migrates from a region of
high to low inflammatory inputs. This simulation shows similarly
that collagen mRNA expression closely follows TGFβ inputs.
Interestingly, it also demonstrates that exposure to high IL-6
levels triggers a rapid and sustained increase in MMP mRNA
expression, which persists well after the cell migrates to a region
with lower levels of inflammatory cytokines. Thus, some network
nodes respond with close coordination to particular cytokine
inputs, whereas other nodes may be activated in a switch-like
manner consistent with the activation patterns seen in Figure 6.
Supplementary Videos 1, 2 offer a visual of how the entire
network state changes over time for the individual fibroblasts
presented in Figure 8.

Fibroblast Migration Speed and Density
Affect Collagen Spatial Heterogeneity
Under normal conditions, fibroblasts migrate at a speed of
∼10 µm/h, but this can vary significantly in the presence
of growth factors and cytokines (Ware et al., 1998; Pérez-
Rodríguez et al., 2018). As noted above, individual grid spaces
are 10 × 10µm, so the baseline migration speed was set at 1
grid space per hour. To test the impact of altered migration
speed, migration speeds were set to default values (1 grid/h),

decreased (1 grid space/10 h) or increased (10 grid spaces/h).
Slower migration speed resulted in greater heterogeneity in
the collagen profile, while faster migration speed resulted in a
more homogenous collagen profile (Figures 9A–C). In contrast,
overall collagen content was linearly dependent on fibroblast
density, but not migration speed or initial cell location (n
= 10 simulations per condition) (Figure 9D). As with the
sensitivity analyses, heterogeneity in collagen was quantified by
global, x-direction, or y-direction semivariance (see Equation
12). Consistent with qualitative observations from Figures 9A–C,
decreasing the migration speed enhanced both the average
magnitude and run-to-run variance in collagen heterogeneity
(Figure 9E). Faster migration decreased collagen heterogeneity
globally and in the y dimension, but not in the x dimension.
The coupled model predicts that fibroblast migration can have a
substantial impact on the spatial heterogeneity and stochasticity
of collagen deposition.

A Subset of Coupled Model Predictions
Was Validated by Comparison to in vitro

Experiments
In order to perform experimental validation of our coupled
model predictions, we ran a series of simulations wherein
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FIGURE 8 | Individual fibroblasts respond dynamically to extracellular environment. (A,C) Fibroblast migration path for a single fibroblast over a period of 50 h.

Fibroblast starting location indicated by filled black triangle and end location indicated by open white triangle. (B,D) Corresponding TGFβ and IL-6 inputs for the

fibroblasts tracked in (A,C), and their respective collagen and MMP mRNA activity over the time course of 50 h.

input cytokine (IL-1β) and growth factor (TGFβ1) levels were
varied from baseline to simulate those tested with in vitro
experiments using primary human cardiac fibroblasts (HCFs).
HCFs were treated with either TGFβ1 (20 ng/mL), IL-1β
(10 ng/mL), or TGFβ1 (20 ng/mL) + IL-1β (10 ng/mL), and
compared to a control condition in media without FBS (since
this is also a source of TGFβ1). Pro-collagen I, αSMA, and F-
actin expression were quantified using immunocytochemistry
and image processing to quantify the median fluorescence in
each of these experimental conditions (Figure 10A). Treatment
with TGFβ1 significantly increased expression of pro-collagen
I, αSMA, and F-actin compared to the control condition,
while IL-1β treatment alone had no significant effect on pro-
collagen I, αSMA, or F-actin expression when compared to
the control condition. The combination of TGFβ1 and IL-1β
treatment decreased expression of pro-collagen I, αSMA, and
F-actin when compared to TGFβ1-only treatment, and was
statistically significant in the cases of pro-collagen I and F-actin.
Representative images of pro-collagen 1 (green), αSMA (orange),
and F-actin (blue) expression in HCFs for each of these treatment

conditions indicate the trends described above (Figure 10C).
These experimental measurements were compared to in silico
predictions that simulated the addition of these factors at the
same concentrations tested experimentally: TGFβ1 (20 ng/mL),
IL-1β (10 ng/mL), or TGFβ1 (20 ng/mL) + IL-1β (10 ng/mL). As
with the experimental results, predictions were compared to a
control simulation in which all parameters were set to baseline
levels (Figure 10B). Most model predictions qualitatively agreed
with the trends observed with in vitro experiments. For example,
network expression of collagen I mRNA, αSMA, and F-actin were
increased relative to the control simulation in response to TGFβ1
stimulation. Similar to observed experimental results, IL-1β
treatment alone had no effect on collagen I mRNA, αSMA, or F-
actin network expression compared to the control simulation, but
the combination of TGFβ1 and IL-1β treatment was predicted
to decrease the expression of collagen I mRNA and αSMA
when compared to TGFβ1 only treatment. Unlike experimental
results, however, simulating this combined treatment predicted
no change in F-actin network expression when compared to
simulating TGFβ1 only treatment. These model predictions were
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FIGURE 9 | Fibroblast migration speed and density affect spatial heterogeneity of collagen. Collagen area fraction heat map at 6 weeks for simulations with 20

randomly migrating fibroblasts with a migration speed of (A) 1 grid/10 h, (B) 1 grid/h, and (C) 10 grids/h. (D) Average collagen area fraction at 6 weeks for each

migration speed and simulations with 20, 40, 60, 80, or 100 fibroblasts. Mean reported for 5 runs. Error bars = standard deviation. (E) Semivariance calculated

globally, in the x direction, and y direction for each migration speed. Mean reported for 10 runs. Error bars = standard deviation. *p < 0.05.

further validated by published experimental studies wherein
IL-1β attenuated TGFβ1-induced collagen I synthesis and αSMA
expression of lung and dermal fibroblasts (Mia et al., 2014).

DISCUSSION

A Novel Hybrid Multiscale Model of Tissue
Fibrosis
Here we present a novel hybrid multiscale model of tissue fibrosis
that couples a LDE model of cardiac fibroblast intracellular
signaling with an ABM of multi-cellular tissue remodeling.
Prescribed gradients of inflammatory cues (IL-1β, IL-6, and
TNFα) and fibrotic cues (TGFβ) stimulate migrating fibroblasts
to respond dynamically to their locally varying extracellular
environment. Under conditions with no fibroblast migration and
constant cytokine input levels, the coupled model was verified
to exhibit consistent network states predicted by the network
model alone (Figure 4). In contrast, the addition of fibroblast
migration across a gradient of cytokine inputs demonstrated
that fibroblasts respond dynamically to both their local cytokine

environment and their previous history of cytokine exposure.
Spatial heterogeneity of collagen was dependent on the speed
of fibroblast migration and key parameters (e.g., Il-1β synthesis
rate) identified in a sensitivity analysis as having distinct effects
on semivariance in the x or y dimension. Additionally, several
parameters were identified to be influential in contributing to the
overall amount of collagen deposition, including cell density and
model parameters related to TGFβ production and activation.

The effects of pro-fibrotic stimuli (TGFβ) on increasing
collagen expression and other myofibroblast markers is well-
established (Reed et al., 1994; Chen et al., 2000; Thannickal
et al., 2003). However, the crosstalk of IL-1β with other fibrotic
signaling pathways is not as well-described. This coupled model
provides a framework for investigating the effects of combined
inflammatory and pro-fibrotic cues on spatial fibroblast activity
and ECM composition. A subset of coupled model predictions
was validated by comparison to experiments with human
cardiac fibroblasts treated with combinations of TGFβ1 and IL-
1β in vitro. The model accurately predicted TGFβ1-enhanced
expression pro-collagen I, αSMA, and F-actin, as well as negative
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FIGURE 10 | Coupled model predictions were compared to independent in vitro experiments using human cardiac fibroblasts treated with TGFβ1 and/or IL-1β.

(A) Pro-collagen 1, αSMA, and F-actin expression from in vitro experiments with human cardiac fibroblasts were quantified by image analysis to measure the median

fluorescence for all individual cells in each well (n = 3). Treatment conditions included control, TGFβ1 (20 ng/mL), IL-1β (10 ng/mL), and TGFβ1 (20 ng/mL) + IL-1β

(10 ng/mL). Error bars = standard deviation. *p < 0.05 with reference to control condition. ∧p < 0.05 with reference to TGFβ1 condition. (B) Coupled model predicts

network expression of collagen I mRNA, αSMA, and F-actin when simulating the addition of TGFβ1 (20 ng/mL), IL-1β (10 ng/mL), and TGFβ1 (20 ng/mL) + IL-1β

(10 ng/mL), compared to a simulation with all parameters at baseline. (C) Representative images of human cardiac fibroblast expression of pro-collagen 1 (green),

αSMA (orange), and F-actin (purple) when treated with TGFβ1 (20 ng/mL), IL-1β (10 ng/mL), and TGFβ1 (20 ng/mL) +IL-1β (10 ng/mL), compared to control. Nuclei are

stained with DAPI (blue). Scale bar = 500 microns.

crosstalk on pro-collagen I and αSMA by IL-1β. However, the
model did not predict the experimentally-observed attenuation
of TGFβ1-enhanced F-actin expression by IL-1β, suggesting that
additional cross-talk mechanisms may need to be explored in
future experiments and model revisions.

Previous mathematical models of fibrosis have used
deterministic, continuum methods to holistically represent
the complex processes of fibrosis (Hao et al., 2015; Friedman
and Hao, 2017). For example, Hao et al., describe a model of
liver fibrosis using a system of 24 partial differential equations
(PDEs) that represent many different cell types, cytokines
and growth factors, and interactions between cells, and then
use this model to interrogate different treatment options
(Friedman and Hao, 2017). Other continuum-based models
have focused more on specific mechanisms that contribute
to the progression of fibrosis, such as macrophage activation
and polarization (Jin et al., 2011; Wang et al., 2012). A model
developed by Wang et al., for example, explores how the timing
of monocyte recruitment and macrophage differentiation affects
left ventricular remodeling following MI (Wang et al., 2012).
However, an interesting study by Figueredo et al. suggested
that stochastic differential equation approaches that assume
continuous space and time could not capture the individual
variability and spatial heterogeneity predicted by an agent-based
modeling approach applied to the same biological case study,
and that emergent behavior of the ABM contributed additional
insight about the system (Figueredo et al., 2014).

An increasing number of hybrid models couple continuum
with discrete approaches. These hybrid models typically couple
ABMs, which use a discrete representation of 2D space or
3D volumes, with continuum based approaches that represent
cytokine gradients and/or receptor-ligand kinetics (Warsinske
et al., 2016, 2017; Virgilio et al., 2018). For example, Warsinske
et al. simulated granuloma-associated fibrosis by incorporating
a system of ODEs and PDEs that describe molecular level
diffusion of chemokines (TGFβ and prostaglandin) and receptor
ligand signaling, coupled with discrete cellular agents whose
behaviors were defined by a set of rules that related receptor
activation levels to cell proliferation, differentiation, chemotaxis,
and secretion of ECM proteins. In these hybrid continuum-
ABM models, outcomes at the tissue scale are the emergent
product of actions of the individual agents governed by rules
that are informed bymolecular scale interactions simulated using
continuum assumptions (Warsinske et al., 2017).

The hybrid multiscale model presented here represents the
coupling of a large-scale intracellular network model, comprising
10 cytokine/neurohormonal inputs and 134 reactions, with an
ABM that maps physiologically relevant in vitro concentrations
of cytokines and ECM components to normalized network
activity levels and vice versa. We believe that this represents
the first coupling of a large-scale network model to make
predictions about tissue-level changes in extracellular matrix
composition in the setting of fibrosis. This coupled model
and its use of concentration scaling between the logic-based
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model and physical units enables the quantitative prediction of
fibroblast production of cytokines and growth factors and spatial
gradients of cytokine concentrations, which was not previously
possible with the network model alone. This coupled model
framework will ultimately enable quantitative comparisons
of model predictions to in vivo experimental data such as
measurements of multiple cytokine concentrations over time,
spatial profiles and gradients of ECM components, cell densities,
and single cell mRNA expression.

Impact of Spatially Varying Environmental
Cues on Fibroblast Signaling
The response of a complex signaling network to multiple
simultaneous cues is rarely intuitive, and we have demonstrated
that individual nodes of the signaling network respond with
distinct patterns of activation (Figure 6). Some receptors respond
in sync with their input, such as IL-1βR, whose activity level
mimics the gradient initial conditions of IL-1β input. Meanwhile
other receptors, such as TGFβR1, display a more complex pattern
of activation reflecting not only the gradient initial conditions but
also feedback from latent TGFβ activation and inhibition by IL-
1 activity. Intermediate nodes often display a similar pattern of
activation to their immediate upstream receptors (e.g., Smad7
and IL-1βR, Smad3 and TGFβR1, NF-κB and Endothelin1-R),
while network outputs integrate the effects of many upstream
network nodes that represent a combination of stimulatory and
inhibitory inputs. MMP1, for example, is upregulated by NF-
κB and AP1 (activator protein 1) activity, and inhibited by
Smad3 activity. Tracking the response of individual fibroblasts
moving through varying levels of inflammatory and fibrotic
inputs revealed a complex kinetic relationship between the
locally sensed extracellular environment and network state of a
migrating fibroblast (Figure 8 and Supplementary Videos 1, 2).
For example, a fibroblast that experiences a high inflammatory
context will upregulate its MMP activity, which remains elevated
even if the fibroblast moves to an environment with low
inflammatory and fibrotic inputs. The fibroblast’s network state
is highly dependent on the current extracellular environment
in some cases (e.g., collagen mRNA expression in response
to TGFβ input) but displays history-dependence of previous
environments in other cases.

Processes That Contribute to Spatial
Heterogeneity of Collagen Deposition
The artificially prescribed cytokine gradient environment
employed in these simulations (Figure 3) was not intended to
represent a particular in vivo situation, but was used to evaluate
the ability of the coupled signaling and multicellular model
to predict the progression of fibrosis across a wide range of
signaling contexts. Thus, changes in heterogeneity discussed here
reflect the range of responses a population of fibroblasts would
be expected to generate across those varied signaling contexts
(Figure 5B). For example, we found fibroblast migration speed
to be an important determinant of collagen heterogeneity in our
simulations (Figure 9). Slower migration speed leads to pockets
of high collagen deposition and overall higher heterogeneity.

Faster migration produces a more uniform collagen distribution.
In healing wounds where cytokine concentrations vary in both
space and time, we expect that high migration speeds could
similarly blur the effects of variable cytokine levels while slow
migration speeds could accentuate them. In contrast, migration
speed did not substantially affect average collagen accumulation
across the entire simulated range of cytokine combinations.
Rather, overall collagen accumulation was strongly dependent
on fibroblast density. In addition to fibroblast density, model
parameters related to TGFβ production, activation, and
degradation are among the most important model parameters
in determining total collagen content as well as the gradient of
collagen deposition in either dimension (Figure 7), which agrees
with the findings from similar models of fibrosis (Warsinske
et al., 2016). Other parameters such as the degradation or
synthesis of IL-1β had opposite effects on collagen heterogeneity
in two dimensions. One advantage of coupling an ABM is that
it produces stochastic predictions as a result of individual-based
rule sets and a spatial context (Supplementary Figure 2).
Repeated runs of the coupled model may help to capture
individual variability of spatial fibrosis seen in animal models.

Computational Requirements for Scaling
Up
Simulations were performed on a single CPU (Intel R© Xeon R© E5-
2640 v4 2.4GHz). The runtime for 100 fibroblasts for a period
of 6 weeks with access to 10 cores is 1 h and 17min. This model
is structured such that parallel computing can be implemented
across multiple CPUs to reduce simulation runtime. The limit
of computational efficiency is reached when the number of
cores is equal to the number of fibroblasts in a simulation,
allowing the network state of each fibroblast to be updated
simultaneously at each time step. We anticipate that with access
to 100 cores, this model with 100 fibroblasts for 6 weeks of
simulated time would be computed in ∼8min. Simulation on
a high-performance computing system with thousands of cores
is expected to enable simulation of up to 100,000 fibroblasts
(comparable to a myocardial infarct).

Limitations and Sources of Error
The prescribed input cytokine gradients employed here were
used to explore the dynamic range of the network model
and create an environment where fibroblasts migrate through
a rapidly changing extracellular environment. However, this
environment is not representative of a specific physiological
environment. Cytokine diffusion was not enabled in the current
simulations, in order to maintain the prescribed cytokine input
gradients over small spatial area (100 × 100 µm). Furthermore,
the current model did not include proliferation and apoptosis,
which have been simulated in previous work (Warsinske
et al., 2016, 2017). Future applications will incorporate cell
migration and proliferation rates that are driven by the dynamic
network state of individual fibroblasts (Bailey et al., 2007, 2009).
Additionally, this model focused specifically on the contributions
of fibroblasts in the progression of fibrosis, through the coupling
of a fibroblast signaling network, but future work will incorporate
inflammatory cells that serve as local sources of many of the
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inflammatory cytokines that affect fibroblast signaling (Virgilio
et al., 2018).

State of the Multiscale Modeling Field and
Contributions of This Multiscale Model
A primary focus of the computational modeling community
is to develop methods for integrating biological data across
spatial, temporal, and functional scales (Walpole et al., 2013).
Continued advancements in the capabilities and availability of
high-performance computing has allowed models to tackle more
complex problems with greater resolution. Perturbations to fine-
grained parameters, such as protein or gene expression data,
can predict observable changes to coarse-grained parameters
(e.g., cell distributions, tissue patterning) (Stern et al., 2012;
Walpole et al., 2017; Warsinske et al., 2017). Furthermore,
the use of multiscale models allows for in silico predictions
for a wide range of parameter values in a high-throughput
manner that would otherwise not be feasible with experimental
assays, either due to time or cost constraints, or lack of the
appropriate technology. For example, the multiscale model
presented here allows for real time tracking of individual
fibroblasts and continuous measurements of their network states,
which would not be feasible in vivo. While models cannot
fully replace experimental studies, they can offer insight into
unexpected predictions that can then be experimentally tested
or lead to new hypotheses entirely, as demonstrated by Martin
et al., who predicted a new therapeutic approach as a result
of their in silico experiments of muscle regeneration following
injury (Martin et al., 2017).

In summary, we have contributed a hybrid multiscale
model of tissue fibrosis by coupling models across spatial
and temporal scales. This represents the coupling of a large-
scale network model with an ABM to make predictions about
fibroblast production of cytokines and growth factors and
tissue-level changes in ECM composition. This coupled model
makes predictions about fibroblast production of cytokines
and growth factors in physical units, which was not possible
previously with the logic-based model alone. Verification
tests confirmed that the model coupling did not disrupt the
behavior of the individual models, allowing for future model
revisions or software implementations of individual modules.
Application of this coupled model in the context of post-
MI wound healing will allow for further investigation and
validation of cytokine concentrations, collagen content and
heterogeneity, and cell behaviors with both fine spatial and
temporal resolution. Experimental studies suggest that collagen
density alone may have effects on fibroblast behavior, including
adhesion, migration, and gene expression (Loftis et al., 2003),
and that furthermore, collagen density and fibroblast density
play an important role in the mechanical properties of the
myocardium (Fomovsky et al., 2012; van Spreeuwel et al.,
2017). This multiscale model framework allows for further
investigation and understanding of emergent phenomena that
result from the dynamic interplay between molecular signaling,

cell behavior, ECM composition, and tissue mechanics. For
example, previous computational models have demonstrated
that simultaneous targeting of multiple cells types rather than
fibroblasts alone can enhance the efficacy of therapies for
pulmonary fibrosis (Warsinske et al., 2016). Inflammatory cells,
including macrophages and neutrophils, will be incorporated
into a model of post-MI wound healing as the primary
source and modulators of inflammatory cytokines and TGFβ
input, as has been demonstrated previously in simulations
of skeletal muscle and lung fibrosis (Martin et al., 2016;
Warsinske et al., 2016; Virgilio et al., 2018). This will add
another layer of complexity to the spatial heterogeneity of
the coupled model by representing cytokine production from
individual cells, diffusion of soluble cytokines and growth
factors, and migration that is driven by chemokine gradients.
Our goal is to develop a hybrid multiscale model that can
systematically screen the effect of therapeutic interventions on
the progression of cardiac fibrosis, from the level cell signaling
to a tissue level of ECM remodeling, with both spatial and
temporal resolution.
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