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Baskić D (2017) Prevalence of 

Genotypes That Determine 
Resistance of Staphylococci to 

Macrolides  
and Lincosamides in Serbia. 

Front. Public Health 5:200. 
doi: 10.3389/fpubh.2017.00200

Prevalence of genotypes That 
Determine resistance of 
staphylococci to Macrolides  
and lincosamides in serbia
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Macrolides, lincosamides, and streptogramins (MLS) resistance genes are responsible
for resistance to these antibiotics in Staphylococcus infections. The purpose of the study 
was to analyze the distribution of the MLS resistance genes in community- and hospital- 
acquired Staphylococcus isolates. The MLS resistance phenotypes [constitutive
resistance to macrolide–lincosamide–streptogramin B (cMLSb), inducible resistance to
macrolide–lincosamide–streptogramin B (iMLSb), resistance to macrolide/macrolide–
streptogramin B (M/MSb), and resistance to lincosamide–streptogramin A/streptogramin 
B (LSa/b)] were determined by double-disc diffusion method. The presence of the MLS 
resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) were determined
by end-point polymerase chain reaction in 179 isolates of staphylococci collected during 
1-year period at the Center for Microbiology of Public Health Institute in Vranje. The most 
frequent MLS phenotype among staphylococcal isolates, both community-acquired and 
hospital-acquired, was iMLSb (33.4%). The second most frequent was M/MSb (17.6%) 
with statistically significantly higher number of hospital-acquired staphylococcal isolates 
(p < 0.05). MLS resistance was mostly determined by the presence of msrA/B (35.0%) 
and ermC (20.8%) genes. Examined phenotypes were mostly determined by the pres-
ence of one gene, especially by msrA/B (26.3%) and ermC (14.5%), but 15.6% was
determined by a combination of two or more genes. M/MSb phenotype was the most
frequently encoded by msrA/B (95.6%) gene, LSa/b phenotype by lnuA (56.3%) gene,
and iMLSb phenotype by ermC (29.4%) and ermA (25.5%) genes. Although cMLSb
phenotype was mostly determined by the presence of ermC (28.9%), combinations of
two or more genes have been present too. This pattern was particularly recorded in
methicillin-resistant Staphylococcus aureus (MRSA) (58.3%) and methicillin-resistant
coagulase-negative staphylococci (MRCNS) (90.9%) isolates with cMLSB phenotype.
The msrA/B gene and M/MSb phenotype were statistically significantly higher in 
hospital-acquired than community-acquired staphylococci strains (p < 0.05). There are 

 

 
 

 

 
 
 
 
 
 
 
 
 

http://www.frontiersin.org/Public_Health
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2017.00200&domain=pdf&date_stamp=2017-08-28
http://www.frontiersin.org/Public_Health/archive
http://www.frontiersin.org/Public_Health/editorialboard
http://www.frontiersin.org/Public_Health/editorialboard
https://doi.org/10.3389/fpubh.2017.00200
http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:dejan.baskic@gmail.com
https://doi.org/10.3389/fpubh.2017.00200
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00200/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00200/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00200/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00200/abstract
http://loop.frontiersin.org/people/451339
http://loop.frontiersin.org/people/468936
http://loop.frontiersin.org/people/465305
http://loop.frontiersin.org/people/466576
http://loop.frontiersin.org/people/469120
http://loop.frontiersin.org/people/468960
http://loop.frontiersin.org/people/469135


2
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no statistically significant differences between staphylococci harboring the rest of MLS 
resistance genes acquired in community and hospital settings (p > 0.05). The prevalence 
of iMLSb phenotypes may change over time, so it is necessary to perform periodic 
survey of MLS resistance phenotypes, particularly where the D-test is not performed 
routinely.

Keywords: staphylococci, Mls resistance, resistance phenotypes, erm genes, polymerase chain reaction 
genotyping, hospital-acquired infection, community-acquired infection

inTrODUcTiOn

The Staphylococcus spp. includes at least 40 species, some of them 
may cause a wide variety of diseases in humans and animals, while 
some of them are generally non-pathogenic and considered to be 
commensal. Staphylococcus aureus is one of the most important 
bacteria that cause skin and soft tissue infections and number 
of serious other medical problems in human. Today, coagulase-
negative staphylococci (CNS), as opportunists, become one of a 
major cause of hospital acquired infection (1).

Since Staphylococcus spp. has become resistant to many impor-
tant antibiotics, the possibility that “older” compounds such as 
erythromycin and clindamycin still have ability to maintain the 
efficiency is very important to keep new resistance from develop-
ing. Over the past decade, an excessive and inappropriate use of 
antibiotics for human and animal treatment, as well as, animal 
feed supplements for growth promotion, has led to an increase 
in a number of staphylococci acquiring cross-resistance to mac-
rolides, lincosamides, and streptogramins (MLS) antibiotics.

The mechanisms of resistance to MLS antibiotics are mainly 
related to the inhibition of protein synthesis. This can be mediated 
by several mechanisms: (a) ribosomal binding site modification 
(by methylation or mutation in the 23S rRNA gene) encoded by 
erm genes (ermA, ermB, ermC, ermY, and ermF), (b) active efflux 
mediated by msrA/B gene, and (c) enzymatic modification of 
antibiotics (2).

The dimethylation of adenine A2058, at the N6 position which 
is located in the region of the peptidyl transferase loop in domain 
V of 23S rRNA in the 50S ribosomal subunit of bacteria, leads 
to cross-resistance between macrolides, lincosamides, and strep-
togramin group B (MLSb) (2). The family of genes responsible 
for this methylation is named erm (erythromycin ribosomal 
methylase) and now there are 21 different classes of identified 
erm genes (3). Since the erythromycin binding site on the 50S 
ribosome subunit overlaps the binding site of the newer MLSb, 
the modification by methylase(s) reduces the binding of all three 
classes of antibiotics, causing MLSb resistance phenotype (4). 

Abbreviations: MLS, macrolides, lincosamides, and streptogramins; Er/Cli S, 
susceptibility to erythromycin and clindamycin; cMLSb, constitutive resistance 
to macrolide–lincosamide–streptogramin B; M/MSb, resistance to macrolide/
macrolide–streptogramin B; iMLSb, inducible resistance to macrolide–lincosa-
mide–streptogramin B; LSa/b, resistance to lincosamide–streptogramin A/strep-
togramin B; MSSA, methicillin-sensitive S. aureus; MRSA, methicillin-resistant S. 
aureus; MSCNS, methicillin-sensitive coagulase-negative staphyloccoci; MRCNS, 
methicillin-resistant coagulase-negative staphylococci; PCR, polymerase chain 
reaction; CLSI, Clinical and Laboratory Standards Institute.

The expression of erm genes is manifested as either constitu-
tive or inducible macrolides, lincosamides, and streptogramin  
B phenotype [constitutive resistance to macrolide–lincosamide–
streptogramin B (cMLSb) or inducible resistance to macrolide–
lincosamide–streptogramin B (iMLSb)]. In iMLSb phenotype, 
the bacteria produce inactive methylase mRNA, which becomes 
active only in the presence of a macrolide as an inducer. In the 
presence of inducer (erythromycin) a rearrangement of the mRNA 
occurs, allowing the methylase-coding sequence translation (5). 
In contrast, in bacteria showing cMLSb resistance phenotype, 
active methylase mRNA is produced in the absence of an inducer.

The active efflux of antibiotics is the second important mecha-
nism of resistance in staphylococci. The msrA, msrB, and newly dis-
covered msrC gene encode the ATP-dependent efflux pump (ABC), 
which determines resistance to 14-membered and 15-membered 
macrolides and streptogramin type B in Staphylococcus spp. (MSb 
resistance phenotype) (6). An active efflux ABC transporter-like 
transmembrane protein is encoded by lsa genes: lsaA and lsaC. 
It belongs to mechanism of resistance mediated by active efflux 
of antibiotics, causing the resistance to lincosamides and strepto-
gramin type A phenotype (7).

In contrast to MLSb resistance phenotype, specific resistance 
to lincosamides and streptogramin type B (LSb) is mediated by 
enzymatic inactivation of the antibiotic. The most important 
enzymes that modify antibiotics are lincosamide nucleotidyl 
transferases encoded by lnu genes (formerly lin): lnuA and lnuB 
genes. In staphylococci, these enzymes are responsible for resist-
ance to lincosamides and streptogramin type B phenotype (8).

Macrolides, lincosamides, and streptogramins resistance 
genes are responsible for resistance to MLS in community- and 
hospital-acquired Staphylococcus infections. Therefore, the 
purpose of the study was to analyze the distribution of the MLS 
resistance genes in Staphylococcus isolates and their distribution 
among community- and hospital-acquired isolates.

MaTerials anD MeThODs

Bacterial strains
A total of 1,643 staphylococcus isolates collected during 1-year 
period at the Center for Microbiology of Public Health Institute 
in Vranje were obtained from various clinical specimens including 
nasal and throat swabs, purulent discharge, and genital secretions, 
originating from both outpatient and inpatient populations. 
Multiple specimens from the same patient were avoided. The 
presence of the MLS resistance genes: ermA, ermB, ermC, msrA/B, 
lnuA, lnuB, and lsaA was determined in 179 staphylococcal isolates 
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TaBle 1 | Primer sequences and PCR fragment size of tested MLS resistance 
genes.

gene Primers sequence (5′–3′) Pcr 
fragment 
size (bp)

reference

ermA F: TCTAAAAAGCATGTAAAAGAA 645 (10)
R: CTTCGATAGTTTATTAATATTAG

ermB F: GAAAAGTACTCAACCAAATA 639 (10)
R: AGTAACGGTACTTAAATTGTTTA

ermC F: TCAAAACATAATATAGATAAA 642 (10)
R: GCTAATATTGTTTAAATCGTCAAT

msrA F: GGCACAATAAGAGTGTTTAAAGG 940 (11)
R: AAGTTATATCATGAATAGATTGTCCTGTT

msrB F: TATGATATCCATAATAATTATCCAATC 595 (11)
R: AAGTTATATCATGAATAGATTGTCCTGTT

lnuA F: GGTGGCTGGGGGGTAGATGTATTAACTGG 323 (12)
R: GCTTCTTTTGAAATACATGGTATTTTTCGATC

lnuB F: CCTACCTATTGTTTGTGGAA 925 (12)
R: ATAACGTTACTCTCCTATTC

lsaA F: GGCAATCGCTTGTGTTTTAGCG 1,200 (13)
R: GTGAATCCCATGATGTTGATACC

MLS, macrolides, lincosamides, and streptogramins; PCR, polymerase chain reaction.
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by end-point polymerase chain reaction (PCR). The bacterial 
DNA extraction and amplification of the specific resistance genes 
were performed at the Center for Microbiology Institute of Public 
Health in Kragujevac, Serbia.

The local ethics committee approved the study according to 
the Declaration of Helsinki (No. 01-5072/2013). The authors 
declare that informed consent was not required.

isolation and identification
Isolation and identification of bacterial strains were performed 
using routine microbiological tests. The strains were identified 
to the species or genus level by the conventional microbiological 
methods.

Determination of resistance 
Phenotypes
All recovered isolates were tested by the double-disc diffusion 
method. The MLS resistance phenotypes: cMLSb, iMLSb, 
resistance to macrolide/macrolide–streptogramin B (M/MSb), 
and resistance to lincosamide–streptogramin A/streptogramin 
B (LSa/b) were determined by double-disc diffusion method 
according to Clinical and Laboratory Standards Institute 
recommendations (9). Erythromycin (15 µg) and clindamycin 
(2 µg) disks were placed at an edge-to-edge distance of 12 mm 
on inoculated Mueller–Hinton agar. Resistance to erythromy-
cin and clindamycin indicates a constitutive MLSb resistance 
(cMLSb). The clindamycin diffusion zone which was blunted 
proximal to the erythromycin disk or showing D shape was 
considered as inducible type of resistance (iMLSb phenotype). 
Susceptibility to clindamycin and resistance to erythromycin 
defined the M/MSb phenotype. The isolates resistant to clin-
damycin and sensitive to erythromycin were defined as LSa/b 
phenotype.

isolation of Bacterial Dna
Bacterial DNA were extracted by PrepMan Ultra sample 
Preparation Reagent (Applied Biosystems, Inc.), according to 
the manufacturer’s guidelines. All extracted DNA samples were 
stored at −70°C prior to further analysis.

identification of genes  
by Multiplex Pcr
The sequences of the primers are presented in Table 1. PCR con-
ditions for the primer sets have been as previously described by 
Rizzotti et al., Matsuoka et al., Lozano et al., and Singh and Murray 
in their studies (10–13). The final volume of each PCR reaction 
was 50 µl and contained 2 µl of genomic DNA, 1 µl of each primer 
(Invitrogen), 25 µl of Maxima® Hot Start Green PCR Master Mix 
(Fermentas), and 21 µl of DEPC H2O. Positive and negative con-
trols were included in each assay. The reactions were performed 
using the Sa Cycler-96 thermocycler (Sacace Biotechnologies 
S.r.l. Como, Italy), whereas the PCR products were detected by 
gel electrophoresis on the E-Gel iBase (Invitrogen) in 2% (w/v) 
agarose gel (E-Gel® 2%, Invitrogen) and visualized on the Gel 
Doc XR System, including an ultraviolet light transilluminator 
(Bio-Rad) (14).

statistics
Fisher’s exact test is used to compare two proportions at a sig-
nificance level of p  <  0.05. The results of the experiments are 
presented in tables and figures.

resUlTs

Among 1,643 examined isolates of staphylococci, 944 were iden-
tified as S. aureus. The rest of 699 isolates were characterized as 
CNS. Those isolates were further characterized by double-disc 
diffusion method to determine the MLS resistance phenotype. 
However, the largest number of staphylococcal isolates showed 
sensitivity to both macrolide and lincosamide (39.1%). Among 
staphylococcal isolates the most common resistance phenotype 
was iMLSb (33.4%), the second most prevalent was M/MSb 
(17.6%). cMLSb phenotype was detected in only 8.9% of staphy-
lococcal isolates, and the rarest detected resistance phenotype 
was LSa/b (1%).

Distribution of MLS resistance phenotypes by origin of the 
staphylococcal isolate (community acquired versus nosocomial) 
is presented in Table  2. The most frequent MLS phenotype 
among staphylococci isolates, both community-acquired and 
hospital-acquired, was iMLSb. There were no statistically sig-
nificant differences between community- and hospital-acquired 
staphylococci isolates showing iMLSb, cMLSb, LSa/b phenotype, 
and sensitivity to both erythromycin and clindamycin (p > 0.05). 
However, there was statistically significantly higher number of 
hospital-acquired staphylococcal isolates showing M/MSb phe-
notype (p < 0.05) (Table 2).

One hundred and 79 strains of staphylococcus isolates show-
ing different MLS phenotypes were selected for further analysis. 
End-point PCR was performed to detect clinically relevant MLS 
resistance genes. The most commonly detected MLS resistance 
genes among staphylococci isolates were msrA/B, followed by 
erm genes: ermC, ermB, and ermA. In 9.8% of staphylococcal 
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FigUre 1 | The prevalence and expression of macrolides, lincosamides, and streptogramins resistance genes and their combinations among different phenotypes 
of staphylococcal isolates: (a) resistance to macrolide/macrolide–streptogramin B; (B) resistance to lincosamide–streptogramin A/streptogramin B; (c) inducible 
resistance to macrolide–lincosamide–streptogramin B; (D) constitutive resistance to macrolide–lincosamide–streptogramin B.

TaBle 2 | Distribution of MLS resistance phenotypes by origin of the 
staphylococcal isolate (community-acquired versus hospital-acquired); 
p-value < 0.05 is considered as statistically significant.

Staphylococcus spp., n (%)

community-acquired hospital-acquired p-Value

Er/Cli S 546 (39.9) 97 (35.1) 0.16
cMLSb 128 (9.3) 19 (6.8) 0.20
M/MSb 218 (15.9) 71 (25.7) 0.0001
iMLSb 461 (33.7) 87 (31.5) 0.52
LSa/b 14 (1.0) 2 (0.7) 1.0
Total 1,367 (100.0) 276 (100.0)

Er/Cli S, susceptibility to erythromycin and clindamycin; cMLSb, constitutive resistance 
to macrolide–lincosamide–streptogramin B; M/MSb, resistance to macrolide/
macrolide–streptogramin B; iMLSb, inducible resistance to macrolide–lincosamide–
streptogramin B; LSa/b, resistance to lincosamide–streptogramin A/streptogramin B.
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determined by combinations of two or more resistance genes 
and the most common detected gene combinations were 
ermC + msrA/B, ermB + lsaA, and ermB + msrA/B.

erm A and ermC genes were the most common in methicillin-
sensitive S. aureus (MSSA) isolates, while ermB gene was the 
most frequent among methicillin-resistant coagulase-negative 
staphylococci (MRCNS). The greatest presence of lnuA genes was 
detected in methicillin-sensitive coagulase-negative staphylo-
cocci (MSCNS), whereas lsaA gene was, as a single case, detected 
only in S. aureus isolates. The highest percentage of msrA/B gene 
was identified in MSCNS. The combinations of two or more 
resistance genes were the most common in methicillin-resistant 
staphylococci isolates (Table S1 in Supplementary Material).

M/MSb resistance phenotype was mostly determined by 
msrA/B (95.6%) (Figure 1A), while LSa/b phenotype was mostly 
determined by lnuA gene (56.3%) (Figure 1B). ermC (29.4%) and 
ermA (25.5%) were the most prevalent genes determined as a single 
gene iMLSb phenotype (Figure 1C). However, ermC (28.9%) was 
the most common gene in staphylococcal isolates with cMLSb-
resistant phenotype. This phenotype was also characterized by 
the presence of great number of combinations with two or more 
resistance genes. The most common gene combinations in these 

isolates showing iMLSb, M/MSb, or LSa/b resistance phenotype, 
MLS resistance genes have not been found.

The observed MLS phenotypes of resistance were the most 
frequently determined by a single gene, and those genes mostly 
were msrA/B and ermC. However, these phenotypes were also 
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TaBle 3 | Distribution of macrolides, lincosamides, and streptogramins 
resistance genes by origin of the staphylococcal isolate (community-acquired 
versus hospital-acquired); p-value < 0.05 is considered as statistically significant.

Staphylococcus spp., n (%)

community-
acquired

hospital-
acquired

p-Value

ermA 13 (8.6) 1 (3.4) 0.47
ermB 4 (2.6) 2 (6.9) 0.25
ermC 24 (16.0) 2 (6.9) 0.26
lnuA 7 (4.6) 3 (10.3) 0.21
lsaA 2 (1.3) 0 1.00
msrA/B 34 (22.6) 13 (44.8) 0.02
ermA + ermC 1 (0.6) 0 1.00
ermA + msrA/B 2 (1.3) 0 1.0
ermB + ermC 1 (0.6) 0 1.0
ermB + lsaA 5 (3.3) 1 (3.4) 1.0
ermB + msrA/B 4 (2.6) 0 1.0
ermC + lsaA 1 (0.6) 0 1.0
ermC + msrA/B 7 (4.6) 1 (3.4) 1.0
lnuA + lnuB 1 (0.6) 0 1.0
msrA/B + lsaA 1 (0.6) 0 1.0
ermB + msrA/B + lsaA 0 1 (3.4) 0.16
ermC + msrA/B + lnuA 1 (0.6) 0 1.0
ermB + lnuA + lnuB + lsaA 1 (0.6) 0 1.0
No resistance gene 41 (27.3) 5 (17.2) 0.35
Total 150 (100) 29 (100)
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isolates were ermB + lsaA (15.8%), ermC + msrA/B (13.2%), and 
ermB + msrA/B (10.5%) (Figure 1D) (Table S2 in Supplementary 
Material). This trend was especially observed in methicillin-
resistant S. aureus (MRSA) (58.3%) and MRCNS (90.9%) strains. 
Combinations of genes predominantly determined cMLSb phe-
notype in methicillin-resistant staphylococci. In accordance with 
this observation, in one MRCNS strain the combination of four 
genes (ermB + lnuA + lnuB + lsaA) has been detected.

Distribution of MLS resistance genes and their combinations 
by origin of the staphylococcal isolate are shown in Table  3. 
The msrA/B gene was statistically significantly more common 
in hospital-acquired staphylococci isolates than in community-
acquired staphylococci strains (p < 0.05). There are no statistically 
significant differences between percentage of staphylococci har-
boring the rest of MLS resistance genes acquired in community 
and hospital settings (p > 0.05).

DiscUssiOn

Soon after penicillin was introduced, S. aureus strains resist-
ant to penicillin had been found. These penicillin-resistant  
S. aureus strains first became prevalent in health-care settings 
but then, these strains have also been spread into the community. 
Rapidly after introduction of newer antibiotics such as methicil-
lin, erythromycin, and clindamycin, S. aureus and some other 
staphylococci species have become resistant to those and other 
antibiotics. Finally, multidrug-resistant Staphylococcus strains 
have evolved, often causing infections with a fatal outcome (15). 
Multidrug-resistant S. aureus and CNS have become a common 
cause of both hospital- and community-acquired infection. 
The necessity in phenotypic and genotypic tests for discovering 

resistance in clinically relevant staphylococci has become clearer 
with the occurrence of strains having borderline minimum 
inhibitory concentrations of antibiotics. Identifying MLS resist-
ance phenotype is very important, because iMLSb phenotype 
under intensive antibiotic selective pressure converts into cMLSb 
phenotype and may lead to treatment failure in patients with 
serious staphylococcal infection (16).

In our study, the greatest number of staphylococcal isolates 
showed sensitivity to both macrolide and lincosamide and the 
most frequent phenotype of resistance was iMLSb, while cMLSb 
phenotype was almost the rarest MLS resistance phenotype. This 
pattern of MLS resistance was the same among community- and 
hospital-associated staphylococcal isolates. Different distribu-
tion of MLS resistance phenotype among methicillin-resistant 
staphylococci isolates in India has been reported by Zachariah 
et al. (16). They found that the most prevalent phenotype was 
M/MSb, and the second most prevalent phenotype was iMLSb. 
In contrast, Hamilton-Miller and Shah, Fokas et al. have found 
that iMLSb phenotype was more prevalent in relation to the 
other phenotypes (17, 18), data similar to our study. The dis-
tribution of MLS resistance phenotypes may vary depending 
on geographic area and even the type of patient. This difference 
occurs because of various prescription and consumption rates of 
macrolides and lincosamides in different geographical regions 
and even institutions in the same region because of different 
origins of the isolates (hospital- versus community-acquired) 
(19). In our study, we found that M/MSb phenotype was sig-
nificantly higher in inpatient than outpatient isolates (p < 0.05). 
Similarly, we have detected that msrA gene determining M/
MSb phenotype more frequently in hospital-acquired than in 
community-acquired staphylococcal isolates (p  <  0.05). This 
finding suggests importance of phenotypic differentiation of 
truly clindamycin sensitive from false clindamycin-sensitive 
staphylococci (iMLSb), especially for staphylococci isolates 
from hospital environments. In contrast, Lall and Sahni sug-
gested a higher prevalence of iMLSb in health care-associated 
Staphylococcus than community associated (86.5 versus 13.4%, 
respectively) (20). Yet, the implication of their study is the same 
as ours.

The molecular analysis identified the msrA gene, encod-
ing active efflux pumps in staphylococci bacterial cells, as the 
most frequent MLS resistance gene. More than half of the 
macrolide-resistant isolates of staphylococci harbored the msrA 
gene either alone or in combination with erm genes. Recent 
studies demonstrated similar results (21, 22). The ermC gene 
was the most common among all erm genes in both S. aureus 
and CNS exhibiting cMLSb or iMLSb phenotype. Similar data 
were reported by Juda et al. (23). In Brazil, Coutinho et al. (24) 
reported low frequency of the ermB gene, data which did not 
differ from our study. However, there was only a small number 
of staphylococcal isolates with the unusual LSa/b phenotype 
harboring lnuA and lsaA genes, in this study. These results are in 
line with the studies of Singh and Murray and Deng et al. (13, 25). 
The most common detected gene combinations in our study were 
ermC + msrA/B, ermB + lsaA, and ermB + msrA/B. As expected, 
we identified the greatest number of resistance gene combina-
tions in methicillin-resistant staphylococci isolates. Likewise, 
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the simultaneous presence of two or more MLS resistance genes 
in the same staphylococcal isolate has been reported previously 
for hospital-acquired MRSA and MRCNS isolates in Argentina, 
USA, and Poland, respectively (26–28). We proposed that the 
majority of isolates with simultaneous presence of two or more 
MLS resistance genes would have been found among strains iso-
lated from inpatients. Regardless of our expectation, there were 
no significant differences in number of staphylococcal isolates 
with MLS gene combinations between hospital- and community-
acquired strains (p > 0.05). 9.8% of our isolates showing iMLSb, 
M/MSb, or LSa/b resistance phenotype had no MLS resistance 
gene. Similar finding has been reported in other studies (19, 29).

In the present study, the highest percentage of msrA/B gene 
was identified in MSCNS. Macrolide resistance due to msrA 
was more prevalent in CNS than in S. aureus. Similar data were 
observed in one study (30), whereas in other studies, the presence 
of msrA/B genes has been reported in different rates (31–33).  
In our study, ermA and ermC genes were most common in 
MSSA isolates. In contrast, Westh et al. (34) detected that ermA 
gene is most common in MRSA isolates, whereas ermC gene 
was mostly found among their MRCNS isolates. We found ermB 
gene mostly among MRCNS, whereas in the study conducted 
by Bouchami et al. ermB has not been detected in staphylococci 
(35). In our study, lnuA gene was the most commonly detected 
in MSCNS and similar, almost the same, results were found in 
study by Lina et al. (36). For the first time, we detected lsaA gene 
as a single gene in S. aureus isolates. lsaA gene in enterococci 
encodes a protein, similar to ABC transporters, which export 
antimicrobials belonging to the MLS family (37). The lsaA gene 
as an intrinsic gene of Enterococcus faecalis showed a high degree 
of similarity to a novel gene encoding the ABC transporter 
(lsaE gene), which has been already detected in staphylococci. 
Transfer of resistance from enterococci to S. aureus has also been 
reported to occur for the tetracycline resistance gene tetL and 
the trimethoprim resistance gene dfrK (38). Yet, the lsaA gene, 
originating from Enterococcus spp. (39), has never been reported 
before for S. aureus.

In our study, M/MSb resistance phenotype in staphylococci 
isolates was mostly determined by msrA/B, while LSa/b pheno-
type was mostly determined by lnuA gene. ermC and ermA were 
the most prevalent single genes determining iMLSb phenotype.  
In other studies, the presence of ermC and ermA genes has been 
reported with different rates (19, 29, 33, 40, 41). However, ermC 
gene was the most common gene in staphylococcal isolates with 
cMLSb-resistant phenotype. This result is in accordance to the 
previous report (42). cMLSb phenotype was also characterized by 
the presence of great number of gene combinations: ermB + lsaA, 
ermC + msrA/B, and ermB + msrA/B. This trend was particularly 
observed in MRSA and MRCNS strains, where these combinations 
of genes predominantly determined cMLSb phenotype. In accord-
ance with this observation, in one MRCNS strain the combination 
of four genes (ermB +  lnuA +  lnuB +  lsaA) has been detected. 
Hosseini et al. have come across pattern of similar kind (43).

After all, according to all investigated staphylococci, the 
iMLSb was the most frequently occurring phenotype. The most 
frequently isolated MLS resistance genes among staphylococci 
were msrA/B and ermC. M/MSb (msrA/B), LSa/b (lnuA), and 

iMLSb (ermA/C) were dominantly determined with a single 
gene. cMLSb phenotype was mostly determined by ermC and 
combinations of genes (ermC  +  msrA/B and msrA/B  +  lsaA). 
The M/MSb phenotype and msrA/B gene that determine this 
phenotype were significantly more frequent in staphylococci 
acquired in hospital than in community. Based on these results, 
clindamycin can be used for empiric antimicrobial therapy for 
infections such as skin and soft tissue infections in inpatients, 
before the individual’s laboratory results of in  vitro antibiotic 
susceptibility testing are available.

However, the iMLSb phenotype was the most common 
in our study, either among community- or hospital-acquired 
Staphylococcus isolates. Therefore, the big concern remains for 
patients with severe staphylococcal infection treated with clinda-
mycin, they could be at risk of unsuccessful treatment and poor 
outcome if staphylococcal isolates showed inducible clindamycin 
resistance (44). The simple test like D-test on staphylococcal 
strains can separate the isolates with genetic mechanism for the 
development of clindamycin resistance during therapy from 
those that are truly susceptible to clindamycin. If we do not 
perform routinely D-test, all strains of staphylococci including 
those with iMLSb resistance phenotype will be reported as clin-
damycin sensitive. On the contrary, if all erythromycin-resistant 
staphylococcal strains are declared as a resistant to clindamycin, 
a safe and effective antibiotic will be omitted from the treat-
ment in patients infected with isolates carrying an active efflux 
mechanism that confers only resistance to macrolides (35). In our 
study, we reported that 56.7% actually (M/MSb and susceptibil-
ity to erythromycin and clindamycin) and 33.4% falsely (iMLSb) 
clindamycin-sensitive Staphylococcus spp. strains have led to such 
a small percentage of clindamycin resistance 9.9% (cMLSb and 
LSa/b) instead of 49.0% (iMLSb and cMLSb and LSa/b) among 
staphylococcal isolates. Therefore, it is necessary to monitor 
the prevalence of iMLS phenotype, especially in areas where 
the occurrence of methicillin-resistant staphylococcal strains 
resulted in empirical use of macrolides and lincosamides for the 
treatment of staphylococcal infections. The prevalence of iMLSb 
phenotypes may change over time, so it is necessary to perform 
sporadically survey of MLS resistance phenotypes, particularly 
where the D-test is not performed routinely.
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