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Abstract. Hepatocellular carcinoma (HCC) is the fifth most 
common cancer in the world, with the second highest mortality 
rate among all cancer types. Growing evidence has demon‑
strated the notable effects of intratumor heterogeneity (ITH) 
and tumor immune microenvironment heterogeneity (TIMH) 
on the biological processes involved in HCC. However, the 
interactive mechanisms between ITH and TIMH is still 
unclear. The present study systematically screened the mRNA 
expression, simple nucleotide variation data and clinical data 
of samples from The Cancer Genome Atlas (TCGA). The 
mutant‑allele tumor heterogeneity (MATH) score was used to 
represent ITH, and TCGA cohort was divided into two groups 
according to the MATH score. Next, different immune‑related 
signaling pathways and enriched immune‑related genes were 
identified using Gene Set Enrichment Analysis of these two 
groups, and the results revealed that interleukin‑1α (IL1A) 
and serine/threonine‑protein kinase PAK4 were associated 
with prognosis. Furthermore, CIBERSORT was utilized to 
calculate the fractions of 22 types of leukocytes to represent 
TIMH, and the fractions of M1 and M2 macrophages were 

confirmed to be associated with prognosis. Therefore, PAK4, 
interleukin‑1α  (IL1A), and M1/M2 ratio were selected as 
the key factors involved in the interaction between ITH and 
TIMH. Afterwards, microRNAs (miRNAs) that were linearly 
related to the M1/M2 ratio and the potential target genes of 
the miRNAs were screened. Finally, the regulatory network 
between PAK4, IL1A, and the M1/M2 ratio was established, 
bridged by the above miRNAs and the target genes. In addi‑
tion, PAK4, heat shock protein 105 kDa and miRNA‑1911 were 
demonstrated to be a key factor involved in immune response 
via Weighted Correlation Network Analysis in HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common 
cancer in the world, with the second highest mortality rate 
among cancers (1). In HCC treatment, systemic treatment is 
mostly indispensable, and molecular targeted therapy is an 
important part  (2). Targeted drugs, such as sorafenib, can 
effectively prolong the survival of patients for several months; 
however, occasional treatment resistance can still bring about 
tumor recurrence or progression (3). In addition, immuno‑
therapy has played a key role in the treatment of tumors, such 
as melanoma and non‑small‑cell lung cancer, and has achieved 
initial success in the treatment of HCC  (4,5). Increasing 
evidence indicates that treatment resistance and tumor 
response to anti‑programmed cell death protein are highly 
dependent on tumor heterogeneity, immunogenicity and the 
lymphocyte infiltration in immune microenvironment (6‑8).

Intratumor heterogeneity (ITH), the result of tumor cell 
mutation, is closely associated with neoantigen generation and 
tumor immunogenicity (9). The interaction between tumor 
cells and the immune microenvironment is also a reason for 
ITH (10). Since ITH represents the cell division and prolifera‑
tion of tumor cells, it is also considered a biological process 
in tumor progression and is one of the characteristics of 
malignant tumors (11). Clinical studies have also shown that 
ITH has been linked to cancer progression and affects the 
tumor immune response and tumor immune escape (12,13). 

The modulation relationship of genomic pattern of 
intratumor heterogeneity and immunity microenvironment 

heterogeneity in hepatocellular carcinoma
LIU‑BO LI1,  LU YANG2,  GUO‑QUN XIE1,  XIAO‑CUI ZHOU1,  XU‑BO SHEN1,  

QIU‑LIN XU1,  ZHENG‑YUAN MA2  and  XIAO‑DONG GUO1

1Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine 
Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080;  

2Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, 
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China

Received January 16, 2020;  Accepted July 15, 2020

DOI: 10.3892/ol.2020.12096

Correspondence to: Professor Xiao‑Dong Guo, Department of 
Oncology, Yueyang Hospital of Integrated Traditional Chinese and 
Western Medicine Affiliated to Shanghai University of Traditional 
Chinese Medicine, 110 Ganhe Road, Shanghai 200080, P.R. China
E‑mail: gxd1996@shutcm.edu.cn

Professor Zheng‑Yuan Ma, Shanghai Information Center for Life 
Sciences, Shanghai Institute of Nutrition and Health, University 
of Chinese Academy of Sciences, Chinese Academy of Sciences, 
319 Yueyang Road, Shanghai 200031, P.R. China
E‑mail: zyma@sibs.ac.cn

Key words: immunity microenvironment, intratumor heterogeneity, 
hepatocellular carcinoma, tumor‑infiltrating lymphocytes, The 
Cancer Genome Atlas



LI et al:  THE MODULATION RELATIONSHIP BETWEEN ITH AND TIMH IN HCC2

Mutant‑allele tumor heterogeneity (MATH) is an algorithm 
for quantifying ITH that was deduced from whole‑exome 
sequencing data (7). Mroz and Rocco (14) first applied the 
MATH algorithm to quantify ITH and reported that the prog‑
nosis of neck squamous cell carcinoma is related to the MATH 
score. Subsequent studies have calculated the MATH score 
in other tumors, and the results verified the clinical outcome 
and demonstrated that the MATH score is a useful biomarker 
for the metastasis of cancer, such as colon cancer (15). In a 
study of breast cancer, Ma et al (6) reported that a high MATH 
score corresponds with a worse prognosis. Wang et al (16) 
evaluated ITH in diffuse large B‑cell lymphoma using MATH 
and demonstrated that a higher MATH score indicated an 
increased risk of progression. Therefore, the MATH score of 
ITH is a potentially quantitative indicator for various tumors.

Moreover, the occurrence and development of HCC is also 
closely related to tumor immune microenvironment heteroge‑
neity (TIMH), which is created by the interaction of immune 
cells, fibroblasts, endothelial cells, mesenchymal stem cells and 
pericytes with tumor cells (17). In TIMH, cytokines, chemo‑
kines and pro‑angiogenic and anti‑inflammatory mediators 
produced in lymphocytes or tumor cells play a key role in the 
tumor immune response (18,19). On the other hand, the recruit‑
ment and localization of lymphocytes in the tumor stroma 
affects the production of cytokines and immune factors, which 
can be used to predict prognosis (20). TIMH is associated with 
the type and proportion of lymphocytes in the tumor microen‑
vironment (21). The CIBERSORT method (https://cibersort.
stanford.edu/) is an algorithm used to evaluate gene expression 
data from tumor RNA sequences and analyze the distribution 
of various types of immune cells inside the sample (22). Based 
on previous studies (23,24), the CIBERSORT method was 
used to research TIMH in the present study.

To date, the mechanism between ITH and TIMH remains 
unclear, and to the best of our knowledge there have been 
no reports as to whether the MATH score can be used as a 
biomarker in HCC research. Therefore, the present study used 
the MATH score to represent ITH and utilized CIBERSORT 
to calculate the fractions of 22 types of leukocytes in tumor 
tissues to analyze the intrinsic relationship between ITH and 
TIMH.

Materials and methods

Data acquisition and calculation of MATH score. The 
TCGA‑LIHC (Liver hepatocellular carcinoma) multi‑data were 
downloaded from The Cancer Genome Atlas (TCGA) website 
(https://portal.gdc.cancer.gov/) (accessed on June 20, 2019). 
From these data, 424 files of RNA‑sequencing (RNA‑seq) 
were obtained, of which 50 were paracancerous samples and 
374 were HCC samples. Next, the gene expression matrix was 
extracted through R version 3.5.1 (https://www.r‑project.org/). 
Then, gene symbols were acquired by matching the Ensembl ID 
from the Ensembl dataset (http://asia.ensembl.org/index.html). 
The simple nucleotide variation (SNV) data of the 374 patients 
were obtained from TCGA as Mutation Annotation Forma 
(MAF) files, and the clinical data were acquired as BCR XML 
files. Here, ‘maftools’ packages of R were applied to analyze 
the MAF files and to calculate the MATH score. In this MATH 
algorithm, a clustering analysis algorithm was added, and 

some outliers on the variant allele frequency were removed 
based on the conventional algorithm to increase the accuracy 
of the algorithm. Finally, the RNA expression matrix, clinical 
data and all cohort MATH scores were acquired.

Exploring oncological features and tumor immunology. Based 
on the MATH score, cohort samples were divided into low 
and high MATH score groups and the cut‑off value was set 
as 19.39. Kaplan‑Meier survival analysis was used to explore 
the relationship between MATH score and clinical prognosis, 
and the optimal cut‑off value (set as 19.39) was calculated by 
the ‘survminer’ package.

To explore the oncological features and gene sets 
enriched in these two groups, Gene Set Enrichment Analysis 
(GSEA) was performed to resolve the underlying molecular 
mechanisms and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways of enriched gene sets. GSEA was used to 
investigate the potential mechanisms involving the Molecular 
Signatures Database gene sets c2 (c2.cp.kegg.v6.1.symbols 
and c2.cp.biocarta.v6.1.symbols) and c5 (c5.bp.v6.1.symbols) 
using the JAVA program (http://software.broad institute. 
org/gsea/index.jsp) (25). One thousand random sample permu‑
tations were performed, and the significance threshold was 
set at P<0.05. After GSEA, the immune‑related signaling 
pathways were selected from the differential signaling path‑
ways. Next, immune‑related genes were extracted from those 
immune‑related pathways to explore tumor immunology.

In addition, some immunosuppression‑related genes 
(indoleamine 2,3‑dioxygenase interleukin‑10, programmed 
cell death 1 ligand 1 and transforming growth factor‑β) were 
subjected to Kaplan‑Meier survival analysis and Pearson's 
correlation analysis in the group with more immune‑related 
pathways to observe whether those genes affect prognosis.

Selection of immune‑ and survival‑related (IS) genes. First, IS 
genes were selected using Kaplan‑Meier and Cox multivariate 
regression analysis using the ‘survival’ and ‘survimer’ pack‑
ages of R software, in which the significance threshold was 
set at P<0.05.

Second, coexpression analysis, cluster analysis and 
Pearson's correlation coefficient analysis of immune check‑
points and IS genes were implemented to analyze the positive 
and negative regulation of these genes in tumor‑associated 
immunity based on ITH.

Analysis of TIMH. In this part, Genotype‑Tissue Expression 
(GTEx) data was downloaded to integrate analysis with TCGA 
data via UCSC dataset (http://hgdownload.soe.ucsc.edu/down‑
loads.html). Gene expression arrays were mined through 
CIBERSORT to estimate the fractions of 22 types of leukocyte 
infiltrates in all samples, and the algorithm was run with 800 
permutations. By analyzing the difference in the percentage of 
immune cells between the paracancerous and tumor tissues, 
the characteristics of tumor‑infiltrating lymphocytes in HCC 
tissue can be evaluated (21). Pearson's correlation coefficient 
analysis and coexpression analysis of these immune cells were 
performed to determine the interaction of these lymphocytes. 
In addition, through Kaplan‑Meier and Cox multivariate 
regression analyses, the relationship between TIMH and prog‑
nosis was explored. Then, the immune cells associated with 
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overall survival (OS) time were selected for the next step 
(P<0.05).

Construction of the immune‑related prognostic model. By 
incorporating IS genes and immune cells into Cox multivariate 
regression analysis, an immune‑related model was established, 
and the impact of host immunity on OS was further analyzed. 
In addition, the receiver operating characteristic (ROC) curve 
and the area under the ROC curve (AUC) were used to evaluate 
the performance of this model.

The regulatory network of immune‑related genes and immune 
cells. In the aforementioned steps, IS genes were selected by 
analyzing ITH, and immune‑related lymphocytes were chosen 
by calculating the TIMH. To further investigate the regulatory 
relationship between these, a regulatory network was estab‑
lished linked by miRNAs and their target genes.

First, the HCC miRNA dataset was downloaded from 
TCGA, extracted and organized into a miRNA expression 
matrix. Through univariate linear regression analysis, miRNAs 
that were highly related to immune cell infiltration were selected 
(P<0.05). Second, utilizing miRbase (http://www.mirbase.
org), the target genes of these miRNAs were identified, and 
low‑correlation target genes were filtered out. The Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
version 6.8 (https://david.ncifcrf.gov/) was used to analyze the 
enrichment of the target genes in terms of KEGG pathway 
and Gene Ontology (GO) annotation and functional classifica‑
tion. The high‑correlation target genes and the corresponding 
miRNAs were used for further analysis.

Finally, the regulatory networks between target genes, 
miRNAs, immune‑related cells and genes were established 
by Cystoscope software version 3.7.1 (26), and the correlation 
coefficient map was constructed using R software.

Construction of the network of weighted coexpressed genes 
and their associations with potential molecules. To further 
analyze the regulatory mechanisms of these potential molecules 

(including target genes and miRNAs) in the tumor microenvi‑
ronment and the signaling pathways involved, the Weighted 
Correlation Network Analysis Model (WGCNA)  (27), a 
systematic biological method describing the gene correlation 
pattern between different samples, was constructed. The 
molecular mechanism, signaling pathways and cell functions 
were elucidated by analyzing the gene modules corresponding 
to these potential molecules through WGCNA.

Statistical analysis. Categorized variables were described by 
proportion (%) and χ2 tests were used to compare proportions of 
lymphocytes between normal and tumor tissues. Associations 
between characteristics and overall survival time were 
evaluated by Cox proportional hazard models. Kaplan‑Meier 
survival curves and the log‑rank test were used to compare 
overall survival between the high and low MATH score 
groups. A weighted log‑rank test (Renyi test) was performed 
to generate the P‑values when survival curves crossed over. 
Mantel test was used to measure the correlation between key 
genes and the matrix of miRNAs and target gene, in which 
coefficient of correlation (r) described the linear relationship 
between the two variables. The ratio of lymphocytes between 
normal and tumor tissue were compared using Wilcoxon rank 
sum test. The AUC was calculated to assess the predictive 
ability of the immune‑related model.

All statistical analyses were performed using R software 
(https://www.r‑project.org/) and Bioconductor (https://ww 
w.bioconductor.org/). All statistical tests were two‑tailed 
P<0.05 was consider to indicate a statistically significant 
difference.

Results

The MATH score and GSEA. In the present study, the MATH 
score was a risk factor related to prognosis, and the patients 
had a poor prognosis in the MATH‑low group (MATH score 
<19.39) (Fig. 1A). Although the prognosis was improved in 
the high MATH score group compared with the low MATH 

Figure 1. Survival analysis of MATH score and IL10. (A) Survival analysis of OS based on the MATH score. The red line represents the group of high MATH 
score, and the blue line represents the group of low MATH score, P=2.7x10‑4. (B) Survival analysis of OS based on the expression of IL10 in high‑score MATH 
group. P=4.71x10‑3. The red line represents the group of high expression of IL10, and the blue line represents the low expression of IL10. OS, overall survival; 
MATH, mutant‑allele tumor heterogeneity; IL10, interleukin 10.
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score group (Fig.  1A), the immunosuppression pathways 
involved, such as ‘primary immunodeficiency’, are detri‑
mental to prognosis  (28). Hence, the immunosuppressive 
factors in the high‑score group were analyzed and it was 
confirmed that high IL‑10 expression was associated with a 
worse prognosis (P=0.00471; Fig. 1B). In the GSEA, various 
gene sets were related to the major nutrients, and the bile acid 
metabolism gene sets were enriched in the low MATH score 
group (Table SI). In contrast, seven KEGG signaling pathways 
associated with immune responses were found in the high 
MATH score group, including ‘allograft rejection’, ‘B receptor 
signaling pathway’, ‘antigen processing and presentation’, ‘FC 
gamma R‑mediated phagocytosis’, ‘natural killer cell medi‑
ated cytotoxicity’, ‘primary immunodeficiency’ and ‘T cell 
receptor signaling’ (Fig. 2). 

Survival and coexpression analysis of immune‑related genes. 
CD4, CD80, interleukin‑1α (IL1A), integrin β‑1  (ITGB2), 
KRAS and PAK4, which were enriched in these seven immune 
pathways, were associated with OS. The relationship between 
these genes and the enriched KEGG pathways is shown in 
Fig. 3A. ITGB2, IL1A and CD80 were enriched in the primary 
immunodeficiency pathway. CD4 was enriched in the gene 
set associated with the primary immunodeficiency pathway, 
as well as in the T  cell receptor and antigen processing 
cell‑related gene sets.

Coexpression, correlation and cluster analysis for those 
genes and immune checkpoints were implemented to further 
study the characteristics of tumor‑related immune responses. In 
the coexpression study, the expression of ITGB2 was positively 
correlated with PD‑L1 and CD4, and the expression of PAK4 

was negatively correlated with C8A (P<0.005; Fig. 3C‑E). 
The correlation between these immune‑related genes and the 
immune checkpoints ranged from weak to moderate, and they 
were roughly clustered into four categories by correlation and 
cluster analysis (Fig. 3B). These immune‑related genes may 
participate in the regulation of tumor immune checkpoints. 
In the multivariate Cox regression analysis, IL1A and PAK4 
were demonstrated to be strong independent risk factors 
affecting overall survival (P=0.00083 and 0.01257, respec‑
tively; Fig. 4B).

Analysis of immune cells in the tumor immune microenviron‑
ment. Considering that the TCGA‑LIHC cohort contains only 
50 tumor‑adjacent tissues, integrated analysis of TCGA data 
and Genotype‑Tissue Expression (GTEx) data was applied 
to enhance the accuracy of the conclusion. The integrated 
samples included GTEx normal liver samples and paracan‑
cerous samples. Using CIBERSORT, the composition ratio 
of 22 immune cell types in the HCC samples was calculated. 
Accordingly, the difference in the infiltrating immune cell 
types between integrated samples and tumor tissue was 
estimated. In each tumor tissue, the proportion of different 
immune cells varied, indicating TIMH. The proportion of M0 
macrophages was higher in the tumor tissue compared with 
integrated samples, and the proportion of M2 macrophages 
was lower in the tumor tissue compared with in the integrated 
samples (Fig. 5A).

The correlation matrix of all 22 lymphocyte types showed 
their correlation from weak to moderate (Fig. 5B). Univariate 
and multivariate Cox analyses of these 22 immune cell types 
were employed to analyze the relationship between TIMH and 

Figure 2. Significant enrichment of the immune‑related KEGG pathway in GSEA. (A) KEGG T cell receptor signaling pathway (NES=‑1.75; P=2.13x10‑12; 
FDR q‑value=6x10‑3). (B) KEGG B cell receptor signaling pathway (NES=‑1.61; P=1x10‑3). (C) KEGG allograft rejection (NES=‑1.63; P=2.0x10‑3). (D) KEGG 
natural killer cell mediated cytotoxicity (NES=‑1.59; P=1.46x10‑19; FDR q‑value= 2.3x10‑3). (E) KEGG primary immunodeficiency (NES=‑1.96; P=3.19x10‑21; 
FDR q‑value=1.67x10‑20). (F) KEGG antigen processing and presentation (NES=‑1.58, P=7.3x10‑21; FDR q‑value=2.6x10‑3). (G) KEGG FC GAMMA R medi‑
ated phagocytosis (NES=‑1.89; P=5.92x10‑19; FDR q‑value=2.81x10‑18). KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, normalized enrichment 
score; FDR, false discovery rate.
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prognosis. Based on the survival analyses of these immune 
cells, OS time was extended when the proportion of M1 

macrophages was higher but shortened if the proportion of 
M2 macrophages was higher in the tumor tissues. Then, the 

Figure 3. KEGG pathway, correlation and co‑expression analysis of immune genes. (A) Circular plot of immune related pathways enriched for the immune 
genes. (B) Correlation matrix of all immune‑related genes and immune checkpoints, and correlation varies from weak to strong. (C‑E) Co‑expression analysis 
between immune related genes and immune checkpoints. (C) Co‑expression analysis of ITGB2 and CD274 (coefficient=0.568; P=1.98x10‑25). (D) Co‑expression 
analysis of ITGB2 and CD4 (coefficient=0.599; P=5.39x10‑29). (E) Co‑expression analysis of C8A and PAK4 (coefficient=0.469; P=2.53x10‑19). ITGB2; inte‑
grin β‑1; PAK4, serine/threonine p21‑activated kinase 4; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4. Survival analysis of PAK4 and IL1A. (A) The survival analysis of the expression of PAK4. The red line represents high expression of PAK4, and the 
blue line represents the low expression of PAK4. (B) The survival analysis of the expression of IL1A. The red line represents high expression of IL1A, and the 
blue line represents low expression of IL1A. (C) The survival analysis of the expression of PAK4 and IL1A. The red line represents high expression of PAK4 and 
IL1A. The purple line represents low expression of PAK4 and low expression of IL1A. The green line represents low expression of PAK4 and high expression of 
IL1A, and the blue line represents low expression of PAK4 and high expression of IL1A. PAK4, serine/threonine p21‑activated kinase 4; IL1A, interleukin 1‑α. 
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phenotype of macrophage polarization was assessed with the 
ratio of M1/M2 set as the biomarker (the cut‑off value was 
set as 0.7284), and the results showed that the ratio was better 
at predicting survival compared with the proportion of M1 or 
M2 macrophages alone (Fig. 6A, B and F). The percentages 
of NK‑activated cells and Tregs were 4.84 and 6.26%, respec‑
tively, among all lymphocytes. In addition, a high proportion 
of NK activated cells and regulatory T cells worsened the 
prognosis of HCC (Fig. 6C and D). Thus, in the Cox multi‑
variate analysis, the M1/M2 ratio was confirmed as a strong 
independent risk factor for prognosis, and OS was prolonged 
when the proportion was above 72.83% (Fig. 6F).

Establishing the immune‑related prognosis model. 
Furthermore, the immune‑related prognosis model in the 
present study was used to indirectly investigate the effects of 
ITH and TIMH on prognosis after integrating IL1A, PAK4 
and M1/M2 ratio into the Cox multivariate regression analysis 
(Fig. 6E and F). After forward stepwise regression, the M1/M2 
ratio and IL1A were retained in the model. The model yielded 
an AUC of 0.7 in the prediction of 3‑year survival, which 
was higher compared with that of the IL1A/PAK4 model 
(AUC=0.6) and the M1/M2 ratio model (AUC=0.651). In the 
present model, the ability to predict 5‑year survival was even 
better, with a higher AUC (0.9) (Fig. 7) compared with the 
IL1A/PAK4 model and the M1/M2 ratio model.

The interaction and regulation between ITH and TIMH. The 
link between the M1/M2 ratio and immune‑related genes 
was investigated through examining miRNAs and their 
corresponding target genes to study the molecular regulation 
mechanisms of macrophage polarization and establish a regu‑
latory network between IL1A, PAK4 and the M1/M2 ratio. 
The miRNA expression matrix was extracted and subjected 
to regression analysis with the M1/M2 ratio. In the present 
study, 19 related miRNAs were obtained. After excluding the 
miRNAs with very low expression levels, the eligible miRNAs 
that remained were miRNA‑191, ‑6798, ‑1269 and ‑4661. Then, 

1,174 target genes of these miRNAs were identified using the 
miRBase database, and a target gene expression matrix was 
established. In the gene expression matrix, 92 target genes had 
a strong linear relationship with the M1/M2 ratio, and KEGG 
enrichment analysis of these 92 target genes was performed 
using the DAVID dataset. The main enriched KEGG pathways 
were as follows: ‘MicroRNAs in cancer’; ‘thyroid hormone 
signaling’; ‘renal cell carcinoma’; ‘tight junctions’; ‘herpes 
simplex infection’ and ‘ErbB signaling’ (Table SII).

Among the microRNAs in the cancer pathway, PAK4 
and CAT‑1 participate in the transformation of normal hepa‑
tocytes to HCC. In the ErbB signaling pathway, PAK4 and 
JNK participate in tumor angiogenesis, which is associated 
with macrophage polarization (29). Inhibitor of nuclear factor 
κ‑B kinase (ΙΚΚΒ), inhibitor of nuclear factor κ‑B kinase α 
(IKKA) and interferon α‑2 are enriched in the ‘herpes simplex 
infection pathway’, which suggests that these genes promote 
macrophage polarization. In addition, ZO‑1 and tight junc‑
tion‑associated protein 1 were enriched in the ‘cell polarity’, 
and ZO‑1 and ZONAB were enriched in the ‘cell differen‑
tiation’ and ‘reduced cell proliferation’  (Table SII). These 
KEGG pathways may be related to macrophage polarization. 
In the 92 target genes, seven genes linear to their corre‑
sponding miRNAs were selected as follows: Angiotensin Ⅱ 
type 1 receptor (AGTR1), calbindin (CALB1), double cortin 
domain‑containing protein 1 (DCDC1), glycosaminoglycan 
xylosylkinase (FAM20B), neuromodulin (GAP43), heat shock 
protein 105 kDa (HSPH1) and serine/threonine p21‑activated 
kinases 4 (PAK4). Finally, the correlation matrix map of the 
seven target genes and four miRNAs linked with the M1/M2 
ratio, IL1A and PAK4 was plotted to show their correlations, 
which ranged from weak to strong. The relationship between 
M1/M2 ratio, IL1A, PAK4, miRNAs and the target genes is 
shown in Fig. 8A.

In the final modulation network  (Fig.  8B), three pairs 
of miRNAs and target genes with linear correlations were 
obtained as follows: MiRNA‑1269b with GAP43; miR‑4661 
with HSPH1 and miRNA‑6798 with PAK4. In addition, PAK4 

Figure 5. Violin plot and correlation map of immune‑infiltrating lymphocytes. (A) Violin plot of immune‑infiltrating lymphocytes between tumor tissue and 
integrated samples (paracancer and healthy liver tissues), in which the red represents tumor samples, and the blue represents integrated samples. (B) The 
correlation matrix of all 22 lymphocytes. Their correlation varies from weak to strong. NK, natural killer.
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is not only an immune‑related gene but is also a target gene of 
miRNA‑6798. In the regulation network and correlation coef‑
ficient map, it was demonstrated that miRNA‑6798 positively 
regulates the polarization of macrophages and governs the 
expression of PAK4. IL1A is coexpressed with CALB1, GAP43 
and HSPH1. Therefore, IL1A and PAK4 indirectly govern the 
differentiation of macrophages by coexpression with HSPH1. 
Finally, coexpression analysis was applied again to verify the 
linear correlation between the expression of PAK4, HSPH1 
and MATH scores (correlation value of PAK4=0.268; P<0.05), 
which may indicate the key role of PAK4 in tumor cell differ‑
entiation (Fig. S1).

Then, all these coexpressed genes were analyzed with 
respect to the expression of those molecules. The yellow 

consensus module showed the most significant correla‑
tion with the expression of PAK4 (correlation value=0.8; 
P<0.001; Fig. 9C). The brown consensus module showed 
the most significant correlation with the expression of 
HSPH1 (correlation value=0.51; P<0.001; Fig.  9C). The 
turquoise consensus module showed the most significant 
correlation with the expression of miRNA‑1911 (correla‑
tion value=0.39; P<0.001; Fig. 9C). GO analysis indicated 
enrichment of mRNA processing in gene sets related to 
PAK4, cell‑substrate adhesion, cell‑substrate junction and 
cell adhesion binding in gene sets related to HSPH1, and 
chromosome segregation, nuclear division and nuclear chro‑
mosome segregation in gene sets related to miRNA‑1911 
(Figs.  10C,  11C  and  12C, respectively). KEGG pathway 

Figure 6. Survival analysis of M1, M2 macrophages and the immune model. (A‑D) The survival analysis of different proportion of M1 macrophages, 
M2 macrophages, activated NK cell and Tregs. The red line represents high proportion of those lymphocytes and the blue line represents low proportion of those 
lymphocytes (A) P=0.042, (B) P=0.037, (C) P=0.00058 and (D) P<0.0001). (E) Risk score distribution of the M1/M2 ratio and IL1A signature. (F) Kaplan‑Meier 
analysis of the immune model (M1/M2 ratio and IL1A). The red line represents high risk score and the blue line represents low risk score, P=4.0x10‑3). 
NK, natural killer; Tregs, regulatory T cells; IL1A, interleukin 1‑α.

Figure 7. Survival risk prediction of immune‑related model in (A) 3‑years and (B) 5‑years. ROC, receiver operating characteristic; AUC, area under the curve.
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analysis showed the association of ‘herpes simplex virus 
1 infection’ with PAK4; ‘human papillomavirus infec‑
tion’ with HSPH1 and the ‘Fanconi anemia pathway’ with 
miRNA‑1911 (Figs. 10B, 11B and 12B).

Discussion

The occurrence of non‑synonymous mutations in HCC is 
a condition for the production of new antigens that have not 
previously been detected by the immune system (30). ITH 
stems from the production of neoantigens, which can induce 
immune surveillance and immune responses (31). Moreover, 
the development of HCC is thought to be associated with the 

immune response and the immune microenvironment (18). The 
immune microenvironment is often accompanied by chronic 
liver inflammation in the occurrence of HCC. The differences 
in immune cells, immunoregulatory factors and their gene 
and protein profiles in the microenvironment of liver cancer 
reflect the heterogeneity of the tumor immune microenviron‑
ment and are associated with prognosis, immune response and 
drug resistance (22). The present study applied the MATH 
algorithm and CIBERSORT method to evaluate the ITH and 
TMH. By evaluating the MATH score, it was reported that 
there was no difference in OS when grouped by the median 
score. However, when using 19.39 as the optimal cutoff value, 
the overall survival in the low MATH score group was lower 

Figure 8. Map of correlation and regulatory network between biomarkers. (A) The relationships between M1/M2 ratio, IL1A, PAK4, miRNAs and target genes. 
Mantel test was applied using ‘vegan’ R package. Mantel's r (coefficient of correlation) represents the correlation, in which thickness of the line represents the 
level of correlation and the color of the lines represents the P‑value. (B) The regulatory topology network of immune‑related genes, M1/M2 ratio, miRNAs and 
target genes. Blue triangles represent key genes (IL1A and PAK4); yellow circles represent miRNAs; green squares represent target genes; the parallelogram 
represents M1/M2 ratio and lines illustrates their linear relationship. IL1A, interleukin 1‑α; PAK4, serine/threonine p21‑activated kinases 4; miRNA, microRNA.

Figure 9. Network construction of the weighted co‑expressed genes and their associations with potential molecules (PAK4, HSPH1 and miRNA‑1911). 
(A) Dendrogram produced by average linkage hierarchical clustering of the identified co‑expression modules. (B) Scale free topology model fit. (C) Module‑trait 
relationships between the identified modules and potential molecules. The numbers represent Pearson's correlation between the clinical traits and modules. The 
numbers in the parentheses correspond to the P‑values. The background colors of the numbers represent the strength of the correlation. PAK4, serine/threonine 
p21‑activated kinase 4; HSPH1, heat shock protein 105 kDa; miRNA, microRNA.
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compared with that of the high MATH score group, which was 
different from previous reports which demonstrated that high 
MATH scores indicate poor prognosis in colon cancer and 
diffuse large B‑cell lymphoma (15,16). The low MATH score 
group accounted for only 13% of the cohort; however, it is still 
necessary to resolve the reasons for the differences observed.

In the GSEA, three major nutrient metabolism pathways 
and the bile acid metabolism pathway were enriched in the 

low MATH score group, while seven immune‑related gene 
sets were enriched in the high MATH score group. Therefore, 
it can be concluded that extremely low ITH indicates lower 
tumor immunogenicity, which protects tumor cells from being 
recognized by the immune system and avoids the activation of 
anticancer immunity (30). This also explains the poor prog‑
nosis phenomenon in the low MATH score group. However, 
compared with the overall survival of the total study cohort, 

Figure 10. Scatterplots of PAK4 and KEGG and GO analysis. (A) Scatterplots of gene significance for the expression of PAK4. (B) Bubble chart of the enrich‑
ment Kyoto Encyclopedia of Genes and Genomes pathways for the gene sets of PAK4. The cut‑off criterion was P<0.05. (C) Bubble chart of significant Gene 
Ontology terms of the gene sets of PAK4. The cut‑off criterion was P<0.05. PAK4, serine/threonine p21‑activated kinase 4.

Figure 12. Scatterplots of miRNA‑1911, KEGG and GO analysis. (A) Scatterplots of gene significance for the expression of miRNA‑1911. (B) Bubble chart of 
the enrichment Kyoto Encyclopedia of Genes and Genomes pathways for the gene sets of miRNA‑1911. The cut‑off criterion was P<0.05. (C) Bubble chart of 
significant Gene Ontology terms of the gene sets miRNA‑1911. The cut‑off criterion was P<0.05. miRNA, microRNA; KEGG, Kyoto Encyclopedia of Genes 
and Genome; GO, Gene Ontology.

Figure 11. Scatterplots of HSPH1, KEGG and GO analysis. (A) Scatterplots of gene significance for the expression of HSPH1. (B) Bubble chart of the enrich‑
ment KEGG pathways for the gene sets of HSPH1. The cut‑off criterion was P<0.05. (C) Bubble chart of significant GO terms of the gene sets of HSPH1. The 
cut‑off criterion was P<0.05. HSPH1, heat shock protein 105 kDa; KEGG, Kyoto Encyclopedia of Genes and Genome; GO, Gene Ontology.
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there was no difference in the overall survival of the high 
MATH score group. As shown in the results, the enriched 
immunosuppressive pathway may influence prognosis in the 
high MATH score group. The overexpression of the immu‑
nosuppressive factor IL10 indicated shortened survival time 
in the high MATH score group. The aforementioned results 
indicated the paradoxical role of cytokines in tumor immunity. 
The tumor immune response is highly related to a complex 
regulatory process of ITH (32,33).

Next, the genes enriched in the immune‑related pathway 
were identified in the high MATH score group and confirmed 
to be associated with OS. ITGB2 was positively correlated 
with CD4 and PD‑L1, and when ITGB2 was upregulated, 
the survival time is shortened. The correlation between these 
genes and immune checkpoints ranged from weak to moderate. 
IL1A and PAK4 were also found to be strongly indepen‑
dent risk factors for survival through multivariate analysis. 
IL1A was enriched in the ‘primary immunodeficiency’ and 
‘allograft rejection’ pathways, and PAK4 was also enriched in 
the ‘T cell receptor signaling pathway’. The IL1A cytokine is 
produced by macrophages and monocytes and is involved in 
various immune responses and inflammatory processes, such 
as stimulated the production of chemokines resulting in the 
infiltration of neutrophils (34). IL1A affects various stages 
of carcinogenesis, tumor growth and tumor cell invasiveness 
and also the pattern of interactions between tumor cells, the 
host immune system and the immune microenvironment, in 
which IL‑1 may also enhance the invasiveness of tumor cells 
by the induction of heparanase, chemokines or integrins on 
the malignant cells or endothelial cells (35). PAK4 is upregu‑
lated in tumor tissue, especially pancreatic cancer and oral 
squamous cell carcinoma. The amplification of PAK4 plays 
an important role in tumor invasion associated with poor 
prognosis (36). It has been reported that the growth of breast 
cancer is suppressed when the PAK4 pathway is inhibited in 
in vitro experiments (37). In addition, miRNA‑199a‑regulated 
PAK4 promotes HCC occurrence, and PAK4‑regulated TP53 
promotes HCC progression in in vivo experiments (38). In the 
T cell receptor signaling pathway, PAK4 acts as an inhibitor of 
the regulation of the actin cytoskeleton and effectively protects 
T cells from the host immune response (39).

The CIBERSORT algorithm was employed to deter‑
mine the percentage of lymphocytes in a bulk of tumor 
transcriptomes to explore the tumor immune mechanism 
and TIMH from leukocyte infiltration in the HCC immune 
microenvironment. Previous studies have conducted a 
similar analysis of immune cell infiltration in HCC tissues 
and the impact of immune cells, such as macrophages and 
Tregs on prognosis (40,41). One of the studies concluded that 
a higher ratio of M1 macrophages indicates an improved 
prognosis (40), while another study illustrates that the total 
number of macrophages was negatively correlated with 
OS (41). To gain more insight into the relationship between 
the ratio of different types of macrophages and prognosis, the 
present study analyzed the relationship between the content 
of three types of macrophages and prognosis separately and 
also clarified the effect of the M1/M2 ratio on prognosis. The 
percentage of M0 macrophages in tumor tissues was higher 
compared with that in normal tissues. Tumor‑associated 
macrophages are important components of the HCC 

immune microenvironment (42). In the present study, among 
the 22  types of infiltrating lymphocyte, M0, M1 and M2 
accounted for 20.05, 7.76 and 13.24%, respectively. In the 
HCC microenvironment, M2 macrophages are the charac‑
teristic phenotype of tumor‑associated macrophages, which 
promote angiogenesis to support tumor cell invasion and 
metastasis (43,44). Based on previous research, M2 macro‑
phages are associated with poor clinical prognosis, while M1 
macrophages are considered to inhibit tumors growth and 
are tumoricidal (45). However, studies have also shown that 
M1 macrophages can induce epithelial stromal cell transfor‑
mation of pancreatic ductal adenocarcinoma (46), activate 
hepatoma cells (47) and induce PD‑L1 expression (42). In 
the present study, the survival time was prolonged when 
the M1 percentage was high, while the survival time was 
shortened when the M2 percentage was high. The cut‑off 
value for the M1/M2 ratio was set as 0.7284, and the HCC 
cohort was divided into high‑risk and a low‑risk groups. 
The survival of the two groups was significantly different 
(P=0.004), which further indicated that the polarization of 
macrophages into M1 can bring about good prognosis, while 
M2 usually predicts a poor prognosis. The balance of M1‑M2 
macrophages is related to various cancer and inflammatory 
diseases, such as melanoma, lung cancer and asthma (48‑50), 
and the ratio of M1/M2 also serves as a risk factor for 
survival in the present study. Furthermore, the proportion 
of NK‑activated cells and Tregs cells was also associated 
with clinical prognosis. The percentages of NK‑activated 
cells and Tregs were 4.84 and 6.26%, respectively, among 
all lymphocytes. This was consistent with a previous study 
that demonstrated that tumor‑infiltrating NK‑activated cells 
play a role in immune surveillance and killing tumor cells 
by natural cytotoxicity (51). In multivariate Cox regression 
analysis, the M1/M2 ratio acted as the best biomarker for 
survival prediction. Next, IL1A and the M1/M2 ratio were 
integrated into the final model by multivariate Cox regression 
analysis. The predictive ability of the model was judged by 
the AUC value, wherein the 3‑year prediction accuracy was 
0.651 and the 5‑year prediction accuracy was higher with an 
average value of 0.9. Moreover, the heat map of the risk score 
for immune cells and the gene model showed that the ratio 
of the M1/M2 ratio was notably different in the high‑ and 
low‑risk groups compared with the IL1A group. Therefore, 
the M1/M2 ratio is a critical factor in the model risk score.

In a previous study, macrophage polarization modulated 
by miRNAs has been studied (48). In the present study, the 
expression of miRNA‑1269b, ‑6798, ‑191 and ‑4661 was 
linearly related to the M1/M2 ratio, indicating that these 
miRNAs affect macrophage polarization. It has also been 
demonstrated that miRNA‑4661 can regulate the immune 
response through the expression of IL10 (52), and miRNA‑191 
is highly expressed in HCC and involved in promoting the 
cell cycle and tumor cell proliferation (53). Activation of the 
NF‑κB pathway promotes the expression of miRNA‑1269b, 
inducing the development of liver cancer  (54). The seven 
target genes (AGTR1, HSPH1, CALB1, GAP43, FAM20B, 
DCDC1 and PAK4) were also related to the M1/M2 ratio. 
Furthermore, IL1A was highly correlated with HSPH1, 
CALB1, miRNA‑191 and GAP43. PAK4 was highly correlated 
with HSPH1. The relationship network of these miRNAs, 
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target genes, immune‑related genes and the M1/M2 ratio 
underpin the regulatory relationship between IL1A and 
PAK4 and the M1/M2 ratio. As shown in the results, both 
IL1A and PAK4 regulate macrophage polarization through 
HSPH1, which may indicate that HSPH1 is an essential factor 
in macrophage polarization regulation and in the immune 
microenvironment of liver cancer. In the colon cancer 
immune response, HSPH1 modulates macrophage polariza‑
tion (55) and is associated with chemotherapy sensitivity (56) 
and immunogenicity (57). The present study also indicated 
that HSPH1 may play a role in regulating macrophage 
polarization and tumor immune response in liver cancer. By 
establishing the regulatory network of IL1A, PAK4, HSPH1 
and M1/M2 ratio, it was clarified how the tumor immune 
response mediated by ITH alters tumor‑infiltrating immune 
cells and thus affects TIMH in HCC. On the other hand, 
PAK4 not only plays a regulatory role in the development of 
HCC but also plays a marked role in mutation, neoantigen 
production and regulation of tumor immunity. Moreover, 
HSPH1 is a mediator in the network that regulates ITH and 
TIMH in HCC. In the WGCNA, the gene sets were enriched 
in ‘herpes simplex virus 1 infection’, ‘human papillomavirus 
infection’ and ‘Fanconi anemia’, which were in turn related 
to immune responses and macrophage differentiation (58) 
illustrating the potential of these molecules to regulate the 
tumor immune microenvironment. It has been reported that 
DNA‑dependent protein kinase/Akt‑mTORC1, Toll‑like 
receptor/nitric oxide and DNA‑dependent protein kinase 
(DNA‑PK) /Rac1 signaling pathways are associated with the 
immune‑related KEGG pathway, therefore these may have a 
role in the altered microenvironment of HCC (59‑61).

Overall, the present study explored the potential rela‑
tionship between HCC ITH and TIMH via bioinformatics 
analysis. According to the multi‑omics analysis, IL1A, 
PAK4 and HSPH1 may be key genes in tumor evolution, and 
liver cancer immune‑related signaling pathways were iden‑
tified. Furthermore, miRNA‑1269b, ‑6798, ‑191 and ‑4661 
are involved in the regulation of the tumor microenviron‑
ment and may play an important role in cross‑talk between 
tumor cells and immune cells. Owing to the experimental 
limitation, the majority of the present study focused on 
multi‑omics analysis of bioinformatics, whereas discussion 
on other tumor immune microenvironment factors, such 
as fibroblasts, transforming growth factors, chemokines 
were not included. Considering that the immune micro‑
environment of liver cancer is extremely complex, further 
exploration is needed in future studies, such as the effect of 
glycolytic metabolites on the polarization of macrophages 
and the molecular interaction mechanism between immune 
cells and tumor cells.
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