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Abstract: A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. 
Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohis-
tochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature 
on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the 
analytical techniques currently being used to evaluate PTMs.
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Introduction
Viable cells maintain membrane integrity, cyto-
skeleton morphology and proliferation status based 
on changes in protein structure and function. The 
complexity of regulation of so many different 
biomolecules goes beyond the “central dogma” of 
biochemistry, which implies that one gene encodes 
for one protein. This complexity of regulation not 
only results from variable mRNA splicing and DNA 
transcription, such that one gene can produce many 
mRNA and protein sequences, but also because one 
protein sequence can have multiple functions as 
a result of covalent modifications after synthesis. 
These post-translational modifications (PTMs) include 
phosphorylation, methylation, glycosylation, acyla-
tion, oxidation and ubiquitinylation. During cancer 
progression, many PTMs contribute to abnormal cel-
lular proliferation, adhesion characteristics and mor-
phology.1–4 In breast cancer, recent studies suggest 
that PTM profiles can be used as “biochemical foot-
prints” for tracking and verifying the function and 
activity of key cellular signaling pathways.5–7 This 
conclusion suggests that, for early detection, PTMs 
may be useful biomarkers.

Breast cancer is the second most common type of 
cancer (after lung cancer), and the fifth most common 
cause of cancer death. According to the American 
Cancer Society, in 2008, an estimated 182,460 new 
cases of invasive breast cancer were diagnosed among 
US women. Approximately 40,480 of these women 
are expected to die from this disease (http://www.
cancer.org/downloads/STT/2008CAFFfinalsecured.
pdf). Like many other cancers, breast cancer is 
the result of multiple environmental and heredi-
tary factors. Although risk factors such as lesions 
to DNA, failure of immune surveillance, abnormal 
growth factor signaling, and inherited or somatic 
genetic defects (e.g. in p53, BRCA1, BRCA2 genes) 
are associated with breast cancer development, the 
cause of any individual breast cancer case is typically 
unknown. As many studies have suggested, changes 
in gene expression levels for breast cancer may not 
fully reflect the true state of cancer progression or 
development.5,8,9 This conclusion suggests that many 
of the differences between normal and cancer tissue 
may be caused by PTMs.1,3,5,6,8–10

This review mainly focuses on the most recent 
publications on PTMs (especially oxidation and 

glycosylation) discovered in blood or tissue 
from breast cancer patients or from breast cancer cell 
lines. For more general reviews of PTMs, see prior 
reviews.1–4,7,11

Enzymatic PTMs
Covalent modification of one or more amino acids of 
a given protein can dramatically alter the biological 
function of that protein. The likelihood that a particular 
reactive protein residue will undergo a modification 
reaction is influenced by the spatial orientation of that 
amino acid residue(s) in the protein, and is influenced 
by the adjacent amino acids, which can alter reactivity 
of the susceptible amino acid by influencing its 
electrophilic nature. Specific enzymes commonly cat-
alyze these reactions. For example phosphorylation 
(phosphokinase), methylation (methylase), acetyla-
tion (acetyltransferase), and glycosylation (glyco-
syltransferases) are PTMs that are mediated by the 
indicated enzyme.1–4,7,11 Many PTMs also result from 
spontaneous reaction of susceptible residues with 
certain reactive chemical agents. For example, gly-
cation (commonly called advanced glycation end 
product, or AGE) is the result of an activated sugar 
molecule, such as fructose or glucose, bonding to a 
protein without direct enzymatic involvement.12 For 
other PTMs, although enzymes may play an important 
role in producing the reactive molecule that results in 
the protein modification, the covalent modification 
occurs spontaneously without enzymatic activity. For 
the purposes of this review, we define these PTMs as 
non-enzymatic if an enzyme is not required for the 
actual protein modification. For example, peroxynitrite 
directly reacts with proteins to form nitrotyrosine.13–15 
Although peroxynitrite formation appears to require 
enzymatic production of reactive precursors, its bind-
ing to proteins is non-enzymatic, and therefore we 
consider nitrotyrosine to be a non-enzymatic PTM.

Phosphorylation
Phosphorylation is well recognized as a key regulator 
of enzyme activity. As the extensive research in protein 
phosphorylation has been carefully reviewed by 
others,16–18 we only briefly cover this topic here. Abnor-
mal phosphorylation of defined signal transduction 
pathways can alter the growth properties of breast 
tumors. With the use of sequence-specific antibodies 
against phosphorylation sites, analysis of protein 
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phosphorylation profiles allows one to determine 
the activation status of signaling pathways, which 
can provide valuable prognostic insights.19–21 Atsriku 
et al undertook a systematic mapping of PTMs in the 
human estrogen receptor alpha (ER-α) in the MCF7 
breast cancer cell line. They applied HPLC-ESI and 
MALDI-MS techniques to identify the phosphorylation 
sites on the estrogen receptors in these cells.22 Several 
novel phosphorylated serine residues were identified. 
The use of both HPLC-ESI and MALDI gave higher 
sequence coverage than either approach alone. 
Nine phosphorylated serine residues were identified, 
three of which were previously unreported.22

Acetylation
Histone acetyltransferases and histone deacetylases 
modify histones by adding or removing an acetyl group 
from the ε-amino group of lysines within a conserved 
lysine motif. Histone acetylation results in changes in 
chromatin structure in response to specific endocrine 
signaling in several cancers, including breast cancer. 
Recent studies found that acetylation of the ER is 
mediated by histone acetylases.23–25 The acetylation 
of ER-α alters its function in estrogen-dependent 
signaling.23,24 The regulation of ER by deacetylation 
provides a direct link between intracellular metabo-
lism and hormone signaling.25,26 Wang et al27 showed 
that the acetylation of ER-α alters its function in 
vitro and in vivo. These researchers also found that 
p300 selectively and directly acetylated the ER-α at 
lysine residues within the ER-α hinge/ligand-binding 
domain. Substitution of these residues with charged or 
polar residues dramatically enhanced ER-α hormone 
sensitivity without affecting induction by MAPK 
signaling.27 These results suggest that ER-α acetyla-
tion normally suppresses ligand sensitivity.

Glycosylation
Cancer cells commonly have unusually high levels 
of certain types of tumor-associated glycans.28 Spe-
cific antibodies are available for these unusual carbo-
hydrate residues, and there is considerable evidence 
that these glycans are increased in breast cancer.12,29,30 
Differences in protein glycosylation commonly 
result from differences in the activities and subcel-
lular (primarily Golgi and endoplasmic reticulum) 
localization of glycosyltransferases that determine the 
amounts of specific glycans.31–33 Several glycosylation 

modifications, such as TF and Tn antigens, certain 
Lewis antigens and Globe H (summarized in Table 1), 
are commonly associated with a variety of different 
cancers, including breast cancer. Glycoprotein analy-
sis by mass spectrometry (MS) of biological samples, 
such as blood serum, is hampered by glycan com-
plexity and the low concentrations of the potentially 
informative glycopeptides and proteins. Most MS-
based studies have limited their analysis to glycosyl-
ation residues after cleavage of the glycans from the 
proteins. As such, these studies can identify global 
changes in glycosylation, but do not provide informa-
tion on which proteins are modified.

Changes in glycosylation for cancer cells include 
both reductions and increases in naturally occur-
ring glycans, as well as increases in glycans pri-
marily restricted to embryonic tissues.34,35 One of 
the most common changes is an increase in the side 
branching of N-linked glycans.36 This increased 
branching is often attributed to increased activity 
of N-acetylglucosaminyltransferase V (GlcNAc-T V, 
also known as MGAT5; the enzyme that leads to 
β1,6GlcNAc branching).37–40 The increased branch-
ing creates additional sites for terminal sialic acid 
residues, which, in combination with up-regulation 
of sialyltransferases, leads to an increase in global 
sialylation.41

In addition to changes in glycan core structures, 
altered terminal structures are commonly associated 
with malignant breast cancer.42–47 Glycosyltransferses 
(e.g. sialyltransferases and fucosyltransferases) 
involved in adding terminating residues to glycans 
tend to be over-expressed in breast cancer tissue.29,30,48–66 
The increase in activity of these glycosyltransferases, 
in turn, leads to an increase of certain terminal glycans. 
Glycan residues commonly found on transformed 
cells include sialyl Lewis x, sialyl Tn, Globo H, 
Lewis y and polysialic acid. Many of these glycans 
are observed in malignant breast tissues (summarized 
in Table 1).

Non-Enzymatic PTMs
Oxidation
It has been hypothesized that cancer development 
is a process that is similar to “wounds that never 
heal”.67–70 Various studies have suggested that inflam-
mation, which increases oxidative stress, is associ-
ated with cancer development or metastasis.67,71–74 
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Both mouse models and human-pathology studies 
suggest that there is a strong immune response in the 
early stages of breast cancer that disappears in more 
advanced disease.72,75 Consistent with this observa-
tion, tumor levels of nitrotyrosine (nTyr), which 
are believed to be indicative of NO and superoxide 
levels, have been reported to be increased in the early 
breast cancer, but not in more advanced disease.72,75 
The NO and superoxide may be produced by acti-
vated macrophages. Therefore, localized oxidative 
stress associated with the immune response to breast 
cancer might result in modifications of proteins 
secreted by the breast cancer cells that could be used 
to detect early disease. Reactive oxygen species 
(ROS) also regulate the synthesis and secretion 
of many receptor ligands (e.g. growth factors and 
chemokines).76–78 These factors regulate important 
processes in epithelial cancers, including the ligand-
dependent activation of the proliferation (MAPK/
Erk) and anti-apoptosis (PI3K/Akt) pathways.79–81 
Therefore, proteins modified by ROS may be useful 
biomarkers that can provide insight into molecular 
processes occurring in tumors. The oxidative stress 
associated with the immune response results in 
protein modifications that may be useful in detecting 
early breast cancer.

An increase in 4-hydroxynonenal (4-HNE) adducts 
has also been reported in early breast cancer.82,83 
4-HNE is a non-enzymatic byproduct of lipid perox-
ides.71 Lipid peroxidation and HNE adducts may result 
from oxidative stress associated with the immune 
response.71,72 There is, however, also evidence that the 

intracellular redox environment is altered in breast 
cancer,84–87 potentially leading to a variety of PTMs. 
Notably, levels of reduced glutathione (GSH) have 
been reported to be altered in breast cancer tissue.88–91 
The literature on oxidative modifications (i.e. on 4-HNE, 
nTyr and GSH adducts) is summarized in Table 2. 
Each of these oxidative modifications represents a 
different cellular process; that is, 4-HNE adducts are 
a byproduct of lipid peroxidation, nTyr commonly 
results from an increase in NO (produced by either 
macrophages or breast epithelial cells) and GSH 
protein adducts can be indicative of intracellu-
lar oxidative stress, especially in the endoplasmic 
reticulum.71,72,88–92

Advanced Glycation End
Oxidative and carbonyl stress may contribute to 
the progression of cancer; on the other hand, these 
modifications may have some antiproliferative 
effects. Tesarova et al12 reported that serum levels of 
AGEs, carboxymethyllysine and advanced oxidation 
protein products (AOPP) in 86 patients with breast 
cancer and in 14 healthy age-matched control women 
could be subdivided based on the clinical stage, 
histological grading, and expression of hormone and 
Her2 receptors. Breast cancer patients had higher 
serum concentrations of AGEs even in the early 
stages of this disease; patients with advanced breast 
cancer (stages III and IV) had significantly higher 
AGE levels, not only compared to controls, but also 
compared to stages I and II breast cancer cases.12,70,93 
Serum levels of AOPP were higher in patients having 

Table 1. Summary of recent glycosylation PTMs in breast cancer studies.

Cancer glycan Targets Methods References
Sialyl Lewis a (sLea) E-cadherin, CatD IHC 45,123
Sialyl Lewis x (sLex) Serum protein

C2GnT1
Mucin glcNac beta1–6 galNac alpha core

IHC
MS

42–47

Sialyl Tn (sTn) St6GalNac-I sialyltransferase IHC, FACS, MS 48–53
Thomsen-Friedenreich (TF) Muc1 secretory/shed

Serum proteins
MS
IHC

29,54–59

Lewis y (Ley) Not known IHC 60–62
Globo H Fucosyl transferase 1,2 Microarray 30,63–66
Polysialic acid Alpha 2,8-polysialylated glycoprotein IHC 124
Fucosyl GM1 Blood group-related antigens IHC 125
GM2 Malignancy tissue IHC 28

Abbreviations: MS, mass spectroscopy; IHC, immunohistochemistry; GlcNAc, N-acetylglucosamine; GM, genetically modified sugar; CatD, Cathepsin D.
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only weakly positive expression of Her2 compared 
to controls and in patients having the highest Her2 
expression.12 These authors concluded that breast 
cancer patients had an early increase of AGEs 
(a marker of the carbonyl stress) followed by further 
increase of AGEs and elevation of AOPP (a marker 
of oxidative stress) in more advanced disease. As the 
clinical significance of these observations is currently 
uncertain, further studies are needed to validate these 
results in terms of the usefulness of AGE in the early 
detection of breast cancer.

Methods for PTM Discovery 
and Analysis
Mass-spectrometry-based proteomics
Given the complexity and low abundance of the 
PTM samples, PTM analysis is still an analytical 
challenge. Various mass spectrometry (MS) tech-
nologies, including ion trap, time-of-flight (TOF), 
Orbitrap, and Fourier transform ion cyclotron 
resonance (FTICR), as well as hybrid configura-
tions coupled with MALDI have been used for 
PTM detection in breast cancer studies (Table 1). 
Recent applications commonly include multi-stage 
separation, purification and enrichment of the 
PTM-containing peptides or proteins.7,94–98 The most 

frequently used proteomics approaches for PTM 
analysis may be MALDI TOF, electrospray ionization 
tandem MS that uses LTQ–Orbitrap instrumentation, 
and surface-enhanced laser desorption/ionization 
(SELDI)-MS.99–104 For the MALDI and SELDI 
approaches, the profile of peak intensities in case and 
control samples are typically compared with the goal 
of defining a pattern that can segregate the sample 
types. Many analyses of PTMs in serum samples 
from breast cancer patients have been recently 
reported (Tables 1–3).

Most PTMs are present at low levels in cells and 
tissues, and are therefore difficult to detect by MS. 
For this reason, modification-specific analytical 
strategies that are designed to improve sensitivity 
and specificity have been employed to enrich and 
concentrate a specific class of PTM in complex 
biological samples. PTM peptide enrichment can 
employ either affinity105 or chemical methods.12,106–110 
During the MS analysis, multi-stage MS techniques 
that further fragment suspected PTM peptides111 
can improved confidence in peptide identification. 
Identification of PTMs commonly requires special-
ized bioinformatics tools, the validation of results 
by replicate analyses42–47 and follow-up biological 
experiments.112 Such PTM-specific methods can be 
combined with semi-quantitative techniques, including 

Table 2. Summary of recent oxidation PTMs in breast cancer studies.

Oxidation PTMs Targets Methods References
Total Oxidation Blood, NAF proteins; 

Cytochrome P450
MS, IHC 12,85,106–110,126,127

Nitrotyrosine VEGF-C IHC 128,129
Nitrotyrosine NF-κB Gel shift 130
Nitrotyrosine CXCR4, hyaluronan 

Serum proteins
IHC 72,75,114,128,129

Thiobarbituric acid reactive 
substances (TBARS)

Lipid HPLC 88,89,131

Conjugated dienes (CD) Serum proteins HPLC 88,89
Glutathione (GSH) Serum proteins Enzymatic 

measurements
88,90,91,132,133

4-hydroxy-2-nonenal (4HNE) p53 MS, Immunoassay 82,83
3-Chloro Tyrosine* Chronic rhinosinusitis MS 134
3-Bromo Tyrosine* Chronic rhinosinusitis MS 134
Advanced Glycation End (AGE) 
product

sRAGE glyoxalase I IHC 12,70,93

*Not from breast cancer studies.
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stable-isotope labeling and peptide-intensity profiling. 
PTM-targeted methods have also been combined with 
subcellular fractionation to obtain biological insights 
about in the roles of specific organelles.113–117

ELISA Microarray
The microarray sandwich ELISA is an exceptionally 
sensitive analytical technique that can accurately 
measure individual protein concentrations down to 
the low or sub-pg/ml range.115,117–120 Adapted from the 
conventional sandwich ELISA, the ELISA microarray 
commonly uses complementary pairs of capture and 
detection antibodies (or, for glycan analysis, lectins) 
to measure trace antigens in complex biological 
fluids. The microarray technique is also suited for 
targeted discovery research because of its ability to 
simultaneously conduct multiple assays. At the same 
time, this multiplex analysis requires very little sample 
(20 µl, or less, of diluted sample per multiplexed 
analysis, after at least a 5-fold dilution), thereby allow-
ing the screening of many PTMs using very small 
sample volumes. Even so, there are several challenges 
for ELISA microarray analysis. One challenge is the 
need for highly specific antibodies. There is limited 
commercial availability of good antibodies for many 
PTMs. Classical strategies of antibody generation by 
animal immunization may not result in high-quality 
antibodies for the targeted PTM. The second challenge 
is the potential for cross reactivity with nonspecific 
antigens.

Immunohistochemistry
Immunohistochemistry (IHC) has been widely used for 
evaluating PTMs in breast cancer.113,116,121 To identify 
PTMs as potential tumor markers, IHC offers a rapid 
method for comparing PTM levels in cancer tissue 
and adjacent normal tissue. Altered expression and 
PTM of several proteins using immunoblot analy-
sis and IHC have been reported by several research 
groups (Tables 1–3). For example, modification of the 
beta subunit of prolyl-4-hydroxylase and of annexin 
A2 in tumor tissues was confirmed by immunoblot 
and immunohistochemistry.122 The determination of 
nitrotyrosine levels by IHC of breast cancer carcinoma 
tissue has been reported.75 A drawback of IHC in PTM 
analysis is the difficulty in quantifying the results.

Conclusion
Plasma-, tissue- or cell-based studies for PTM bio-
markers in breast cancer have provided prom-
ising data. Several PTMs can only be readily 
detected in breast cancer tissue but not in normal 
breast. In particular, glycosylation and oxidative 
modifications appear to have potential as biomarkers. 
These results suggest that levels of certain PTMs 
may be indicative of breast cancer progression 
or development, although the data on which proteins 
are actually modified is still very limited. Once 
this deficit is addressed, we conclude that the post-
translational modifications on specific proteins may 
be useful as biomarkers for breast cancer.

Table 3. Summary of Enzymatic PTMs biomarkers in breast cancer research.

PTM Targets Methods References
Phosphorylation Nuclear receptor Mutagenesis 135
Phosphorylation Estrogen receptor (ER) Mutagenesis 136
Acetylation H4K16, histone acetyltransferase human 

MOF (hMOF)
mRNA profile 137–140

Acetylation ER-α Mutagenesis 27
Deacetylation Histone deacetylase (HDAC)3 histone H4 Small interfering RNA 131
Glycosylation N-linked glycomics, serum proteins MADLI MS 141
Glycosylation Serum glycan MALDI mass spectrometry 

(MS)-based glycomic profile
112

Glycosylation O-glycosylation TGF beta 1 Using 2-DE and MALDI-TOF-MS 142
Glycosylation Free glycan species from serum MALDI-FT-ICR MS 111
Glycosylation Glycoproteins from the sera Multilectin affinity 

chromatography (MLAC)
105
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