
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Becker AD, Zhou SH,
Wesolowski A, Grenfell BT. 2020 Coexisting

attractors in the context of cross-scale

population dynamics: measles in London as a

case study. Proc. R. Soc. B 287: 20191510.
http://dx.doi.org/10.1098/rspb.2019.1510
Received: 26 June 2019

Accepted: 30 March 2020
Subject Category:
Ecology

Subject Areas:
computational biology, ecology, health and

disease and epidemiology

Keywords:
measles, spatial epidemics, infectious disease

dynamics, population dynamics, cross-scale

dynamics
Author for correspondence:
Alexander D. Becker

e-mail: adbecker@princeton.edu
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4938057.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Coexisting attractors in the context of
cross-scale population dynamics: measles
in London as a case study

Alexander D. Becker1, Susan H. Zhou1, Amy Wesolowski2

and Bryan T. Grenfell1,3,4

1Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
3Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
4Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA

ADB, 0000-0001-6524-0513; AW, 0000-0001-6320-3575

Patterns of measles infection in large urban populations have long been
considered the paradigm of synchronized nonlinear dynamics. Indeed,
recurrent epidemics appear approximately mass-action despite underlying
heterogeneity. However, using a subset of rich, newly digitized mortality
data (1897–1906), we challenge that proposition. We find that sub-regions of
London exhibited a mixture of simultaneous annual and biennial dynamics,
while the aggregate city-level dynamics appears firmly annual. Using a
simple stochastic epidemic model and maximum-likelihood inference
methods, we show that we can capture this observed variation in periodicity.
We identify agreement between theory and data, indicating that both changes
in periodicity and epidemic coupling between regions can follow relatively
simple rules; in particular we find local variation in seasonality drives period-
icity. Our analysis underlines that multiple attractors can coexist in a strongly
mixed population and follow theoretical predictions.
1. Introduction
A central question in ecology is how simple, often periodic, effectively mass-
action dynamics can emerge at the aggregate population level despite potentially
complicated mechanisms, heterogeneities and interactions at finer spatial scales
[1–3]. Dynamics of oscillatory host–natural enemy interactions are one such cano-
nical example. Childhood infectious diseases have proven to be an excellent
testbed to examine how finer-scale processes relate to, and inform, macro-scale
dynamics [4–6]. In particular, measles, due to its simple natural history and
long-time series of data of the pre-vaccination incidence from the US and UK,
has provided a rich source to understand how dynamical patterns aggregate at
various spatial scales [7–9].

An array of dynamics ranging from regular multiannual infection patterns to
deterministic chaos have been disentangled using well-mixed epidemic models
[8–11]. Birth rate and seasonality in transmission in particular have been shown
to be major drivers of periodicity at the large city level of epidemics [7,9,11–15].
Seasonality in measles appears to arise from the aggregation of human popu-
lations. In the US and UK, seasonal transmission patterns have typically
mirrored school calendars, with increases in transmission at the start of school
terms [9,10,16,17]; other movement-related drivers have been implicated in
sub-Saharan Africa [11]. In a US city-level analysis, [9] subtle changes in contact
structure led todrastic differences in periodicity, suggesting that regional variation
may be important. Despite this rich heterogeneity in observed dynamics, analyses
have often focused on urban populations in relative isolation at, or above, the criti-
cal community size (CCS; the population size required to maintain endemic

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.1510&domain=pdf&date_stamp=2020-04-22
mailto:adbecker@princeton.edu
https://doi.org/10.6084/m9.figshare.c.4938057
https://doi.org/10.6084/m9.figshare.c.4938057
http://orcid.org/
http://orcid.org/0000-0001-6524-0513
http://orcid.org/0000-0001-6320-3575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20191510

2
transmission) of approximately 200 000 due to themeasles pat-
terns observed and their associated predictability [10,18,19].
These analyses typically assume that epidemic differences
may be insignificant between sub-populations, instead suppos-
ing that multiple interactions at finer spatial scales can be well
approximated by the dominant periodicity of the overall
population. Epidemic coupling between urban populations
has been studied both theoretically and via rich metapopula-
tion datasets, captured by gravity models [4]. These studies
emphasize how changes in coupling rates can produce an
array of in- and out-of-phase dynamics, and seasonal forcing
can helpmaintain (a)synchrony [20,21]. However, few analyses
have examined questions of synchrony and the presence of
coexisting attractors at the within city scale; this gap arises lar-
gely from a lack of data. In this paper, we use a set of recently
digitized data from London to identify evidence of dynamic
heterogeneity across multiple spatial and population scales.

Analysing borough-specific measles mortality records from
pre-vaccination London (1897–1906), we find that, although
homogeneous mixing produces dynamics consistent with the
annual patterns seen at the aggregate level, clear annual and
biennial cycles can be observed when examining the finer-scale
data. Epidemiologist John Brownlee first noticed this pattern in
1917, postulating that ‘varying local conditions in different
parts of the citymaybe sufficient’ to produce the arrayofperiod-
icities found in the London regions [22]. Although Dr Brownlee
analysed the cross-scale London data using periodograms
(a method still crucial in the field [23]), his approach, based on
a pathogen’s time-varying infectivity, differed from themechan-
istic framework now commonly used in the modern era [24,25]
and necessary to estimate seasonal transmission parameters
and test the role of demography on epidemic dynamic.

We use recently developed statistical methods combined
with a stochastic epidemicmodel to determine both the drivers
of varying periodicity and the coexistence ofmultiple attractors
in the same system.We uncover key differences in regional sea-
sonality correlating with underlying periodic dynamic theory
as well as pairwise coupling, allowing for accurate predictions
of epidemic timing and periodicity. These results provide new
evidence for how relatively simple patterns can emerge, and
coexist, in nonlinear ecological dynamics.
2. Methods: data, mechanistic model, inference
framework and underlying theory

We analysedmeaslesmortality records across the five inner and
an approximate four outer regions (e.g. the Outer Ring) of
London from 1897 to 1906 (figure 1). Although the Outer Ring
of London was not formally divided into regions, we grouped
them as outer East, West, North and South, based on their pre-
sent-day geographic coordinates and nearest inner region.
Weekly mortality records in which the cause of death is listed
asmeasles, annual population counts and yearly birth estimates
per region were digitized from the Registrar General’s reports
[26]. The mortality data were aggregated to an approximately
monthly (i.e. four weeks) scale in order to amplify the periodic
signal. Yearlybirth andpopulationdatawere interpolated to the
monthly scale to smooth parameter estimates. Measles period-
icity was quantified by taking the nearest-integer period
corresponding to the maximum peak in the spectral density
[23]. The time series data for each location are included in the
electronic supplementary material.
We used a stochastic susceptible–exposed–infected–
recovered (SEIR)modelwith a sinusoidal seasonal transmission
rate, b(t) ¼ b ð1þ a sin (2ptþ f)Þ, where b is the average
transmission rate, α and ϕ the seasonal amplitude and phase,
to analyse deviations in periodicity between regions. To esti-
mate the time-invariant case fatality rate (CFR) [27], we
assumed perfect reporting of measles mortality, hence this is
somewhat of a relative metric in the case of imperfect measure-
ment. Additionally, we estimated amean importation rate, i, for
each region to prevent stochastic extinction in the model. To
avoid overfitting to the monthly data (approx. 125 data
points), we fixed the infectious and latent periods at 5 and 8
days, respectively [28]. Using the iterated filtering algorithm,
we fit the stochastic SEIR model to each region using an obser-
vation process that allows for measurement error per [13].
Briefly, the iterated filtering method aims to maximize likeli-
hood by allowing all parameters of interest to take random
walks in tandem. The variance of thesewalks is slowly reduced,
enabling the algorithm to both overcome any local valleys in the
likelihood surface, and converge to the optimal value. This pro-
cess is repeated many times (here, we used 400 unique
parameter sets) to acquire estimates of the likelihood for each
parameter set, as well as fully explore the multi-dimensional
parameter space for 60 iterations for each parameter set.
A full discussion of the algorithm, and numerical implementa-
tion, can be found in [29,30] with more details in the electronic
supplementarymaterial. Once parameters are obtained, we for-
ward simulated our fitted model to compare against the data
both visually and in terms of power spectra.

To provide a theoretical basis for how variation in
seasonality affects periodicity, we performed a simulation
study. Using the same seasonal transmission function,
b(t) ¼ �b ð1þ a sin (2ptþ f)Þ, we fixed �b equal to the mean
inferred transmission rate for the nine regions. Using a range
of amplitude (range: 0.03–0.35) and phase values (range: 0–2,
corresponding to a maximum lag of approximately four
months), we numerically integrated a deterministic SEIR
model (equations shown in the electronic supplementary
material) for each set of parameter values to produce a set of
theoretical predictions (figure 3b). For each simulation, we
quantified the periodicity by taking the nearest-integer period
corresponding to the maximum power via spectra analysis.

To investigate how variation in regional periodicity
impacts the spatial spread of infection within London, and
the role of any potential regional coupling on periodicity,
we constructed a stochastic two patch SEIR metapopulation
model. While we analysed each region in isolation above,
we relaxed this assumption and allowed an interaction
between two locations. For each location, we modulated the
force of infection to include a coupling parameter related to
the number of infected in the other location (b(I þ i)=N
to b(ðIX þ ixÞ(1� s)þ IYs)=Nx for population X coupled
with population Y, where ix refers to the importation rate
into population X). This coupling parameter, σ, represents the
strength of coupling or the relative contribution between the
two populations [21]. For example, a coupling rate of 0.01
between locations X and Y is equivalent to assuming that the
infected population in Y contributes 1% of the new infections,
albeit scaled by β/N, in populationX. To parameterize the two-
region model, we used the parameters inferred from the
region-specific monthly data (e.g. seasonal transmission
values) with the goal of estimating pairwise regional coupling.
In order to simplify the analysis, we used the West region as a
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Figure 1. Time series of measles dynamics in London. (a) Monthly measles mortality reports from the five inner and four outer regions in London, 1897–1906. Each
region is coloured by its crude birth rate (CBR) ranging from 23 (in the West) to 38 (in the outer East). (b) Monthly measles mortality reports for the aggregate city of
London (solid line) and the Outer Ring (dashed line) for the same time period. Each time series is colour coded by the region’s periodicity. (Online version in colour.)
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case study due to the region’s firmly biennial pattern (the same
analysis for the annual East region is shown in the electronic
supplementary material). Assuming local parameters such as
seasonality, importation rate and initial conditions can be
inherited from the regional analysis above, we then estimated
a coupling value by profiling over the range of plausible
values (zero, indicating completely separate populations
to 0.5, indicating equal mixing) and selecting the maximum-
likelihood value, again using the iterated filtering algorithm,
for the variable periodicity North–West pair and the both bien-
nialWest–OuterWest pair.We compared the inferred coupling
rates with the observed dynamics in those regions by simulat-
ing the metapopulation model across the range of coupling to
construct probability distributions.
3. Results
From1897 to 1906, London’s populationwas 4.5millionwith an
average crude birth rate (CBR = number of births in a year ÷ the
mid-year population × 1000) of 29 (range: 28 to 30); divided
into five regions (figure 1). Outside London (i.e. the Outer
Ring), consisted of an additional 2 million individuals across
an approximate four outer regions. The most populous region
(South) had apopulation of nearly 1.7millionwhereas the smal-
lest (Central) only had a population of 270 000. Importantly, all
regions were above or near the CCS for measles (estimated at
200 000), suggesting that it was possible for measles to endemi-
cally circulate. Thiswas supported in thedata in that each region
contained few, or zero, months of no measles mortality. Crude
birth rates were also highly variable across London and the
Outer Ring, ranging from 22 to 52 across the 10 years (average
CBR for each region shown in figure 1).

Using a power spectral analysis, we found that although the
aggregate city-levelmortality datawas firmly annual, therewas
region-level heterogeneity in periodicity. The North, East and
Central regions were also annual; however, the West and
South were biennial (data shown in figure 1; power spectrum
shown in the electronic supplementary material). The Outer
Ring mimicked this pattern with outer North and East being
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annual, while outer South andWest were again biennial. How-
ever, some regions, in particular Outer South and Outer West,
were noisy, possibly due to overall lower mortality counts
and therefore potentially limiting our ability to infer estimates
of periodicity. Surprisingly, the large variation in CBR did not
correlate with the observed periodic signal.

The simple seasonally forced stochastic SEIRmodel yielded
a generally well-matched visual fit when calibrated against
the data to these heterogeneities across individual locations,
shown in figure 2 for the inner regions (fits for the Outer Ring
are shown in the electronic supplementarymaterial). In particu-
lar, we note the fitted model was able to visually capture the
periodicity, in particular the West region, and the general
shape and size of epidemics across locations, in particular the
larger 1898 outbreak. We further compared the predicted
power spectra against the data (shown in the electronic sup-
plementary material). While the majority of regions agreed
well with the observed spectra, some such as the South and
outer West departed from the observations, indicating that in
those regions not all stochastic realizations of the fitted model
were biennial. In addition to visual fit, the model captured key
biological parameters. Forexample, our estimatedCFR (ranging
from 0.9% to 1.7%) comparedwell with ameta-analysis by [27],
in which the observed nationally representative CFRs fell
between 0.23 and 1.51%. Early 1900s estimates of CFR for
London are challenging to assess as measles cases were not yet
notifiable and therefore the incidence reporting rate is unknown
for this era; however, the reported CFR for Paddington from
1904 to 1906 was 2.7%–4.3% [31]. Crudely applying the inci-
dence reporting rate of approximately 50% in the later era [13]
yields anapproximateCFRof 1.35%–2.15%, in linewith ouresti-
mates here. However, we assumed complete reporting accuracy
in both our model and historical rate correction. In the case of
imperfect reporting, the estimated CFR would probably
increase. All parameter estimates, as well as population sizes,
are shown in the electronic supplementary material.

As hypothesized a century ago [22], local variation in sea-
sonal transmission patterns appears to have been the main
driver of measles periodicity within London; both seasonal
amplitude, α, and phase, ϕ, are well captured by the models.
In particular, the biennial regions (e.g. West and South) exhib-
ited lower amplitudes, while also showing greater phases, than
their annual counterparts (North, East, Central and London
aggregate), as shown in figure 3a, colour coded and grouped
by periodicity, with the seasonality of each sub-region shown
as a point, and the group mean (+/− standard error) shown
as a line. The aggregate seasonality patterns are shown
as squares in figure 3a and b and not included in the mean
seasonality curves. Analysing this pattern further, we con-
structed a dynamic diagram based on these two-dimensional
transmission parameters while using the mean inferred trans-
mission value across the nine sub-regions as a baseline (mean
R0 = 22, range 19–25). Numerically integrating the determinis-
tic SEIRmodel over a range of amplitudes andphases as part of
a qualitative analysis, we found basins of both annual and
biennial dynamics (figure 3b). In the low-amplitude regime,
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we observed biennial patterns. Moving into a moderately
forced regime (0.1–0.2), annual dynamics began to dominate.
When forcing becomes greater than 0.2, we observe an array
of dynamics, where 1-, 2- and >2-year cycles are possible. Over-
laying the inferred amplitude and phase seasonality patterns
(values shown as points in figure 3b), we found a qualitative
agreement between the data and theoretical forecasts. Gener-
ally, the inner and outer regions fall into their predicted
attractor basins, as do the aggregate city data (shown as a
square point), yielding a plausible explanation for how season-
ality patterns drive periodicity even among spatial
heterogeneity. Indeed, although birth rate is not unimportant,
we found seasonal amplitude and phase to both better explain
the observed variation in periodicity (principal components
analysis shown in the electronic supplementary material).

Thus far we’ve analysed local dynamics to gain insight into
the drivers of region-specific measles periodicity; we now turn
to the potential role of population coupling on producing
metapopulation dynamics of the same periodicity between
two regions. At first sight, the relatively strong coupling in
cities would promote each region producing the same periodic
signal; however, a body of theoretical work has emphasized
that seasonal forcing can maintain variable periodic signals
and asynchronized dynamics at even high coupling rates
[20,21]. Here, we explore this tension between coupling
and local heterogeneity through a novel data-driven approach.
We hypothesize that the observed regional differences in
seasonality may allow attractors to remain in differing period-
icities, possibly due tomodulating the effectiveR0 at the start of
each year. To test this hypothesis, we examined a two-patch
model using West London as a case study. West London
(biennial dynamics) was chosen because of its close geographic
proximity to the North region (annual) and Outer West
(biennial), two neighbouring regions with different dynamics.
For each pair,we simulated the two-patch epidemicmodel over
the full range of potential coupling values (ranging from zero,
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corresponding to complete isolation up to 0.5, corresponding
to a well-mixed population). For each simulation, we quanti-
fied the periodicity in each in silico region. For the annual
North and biennial West pair, we found low regional coupling
explained the observed difference in periodicity (figure 4c). By
contrast, most values of coupling gave a greater than 50%
chance of the West–Outer West pair producing dynamics of
the same periodicity (figure 4d), indicating similar dynamics
between regions across any range of population coupling.

To confirm these theoretical results, we then estimated the
coupling rate using our epidemic model. For the annual
North–biennial West pair, the estimated coupling rate (95%
CI: 0–0.01) corresponds to approximately a 25% chance of
dynamics of the same periodicity, matching well with the
observed data (figure 4a). Indeed, this parameter is well ident-
ified both in terms of fitted parameters and resulting epidemic
periodicity as outside of the estimated confidence interval, the
chance of equal periodicity dynamics rises quickly above 50%.
For the biennial West–biennial Outer West pair, the estimated
coupling rate (95% CI: 0–0.03) denotes an approximately 50%
chance of equal periodicity dynamics. The same set of analysis
for the East region is shown in the electronic supplementary
material. In general, coupling rates across the 14 pairwise
regions were low, with the highest rates generally occurring
between an inner and outer region (electronic supplementary
material). An additional theoretical, deterministic analysis of
the role of epidemic coupling on periodic synchrony is shown
in the electronic supplementary material. These results add
data-driven support to previous theoretical results, and provide
evidence for predictability even among rich heterogeneity at
spatial subscales.
4. Discussion
A prominent question in ecology and epidemiology is how
relatively simple dynamics emerge at the aggregate in
spite of potentially unsynchronized or variable periodi-
city dynamics at subscales. However, analyses of such
meso-scale events are rare due to the demanding temporal
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and spatial grain needed in the data. With their rich datasets
and relatively simple clockwork, the dynamics of childhood
epidemics provide a powerful testbed for these ideas.
Previous work has generally analysed dynamics at the aggre-
gate city-level primarily due to data availability. Indeed,
endemic pre-vaccination data at the regional level will
likely only be found in a handful of cities. In this light,
the 1897–1906 London regional data are unique in both
their existence and observed heterogeneity.

The close visual fits to the data shown in figure 2 inspire
confidence in the inferred model’s ability to accurately
describe the underlying dynamics, thus allowing us to
perform detailed comparison with theory. Similar to [9], we
find that subtle differences in seasonal transmission structure
can lead to different periodicities. Using a dynamic grid
based on this variation in seasonal amplitude and phase,
we provide a plausible explanation for the array of observed
data based on measurable differences in seasonality. While
long-term deterministic dynamics become invariant to seaso-
nal phase, shorter-term, non-equilibrium dynamics display
rich heterogeneity as exhibited in figure 3b. As seasonal
phase was identified as a key parameter in a PCA analysis,
we chose to model this likely transient-driven dynamic.
Future work aims to quantify and better understand these
ecological transients sensu [32]. What is most surprising,
however, is that these periodicities can coexist and remain
constant in such close proximity. This was explored using a
pairwise coupling analysis, finding agreement, in particular
in the North–West pair, between observed dynamics and esti-
mated coefficients. Although the pairwise analysis provides a
plausible and computationally tractable explanation for
the observed heterogeneity, it may not discount more com-
plex, higher-order interactions. Additionally, although we
assumed a constant importation rate in our local analysis,
including a fraction of infected individuals in other popu-
lations (i.e. a full metapopulation model) could provide an
alternative approach that would allow for the disentangle-
ment of internal coupling and external importations. These
processes, and their associated spatial models, are an area
for future research.

Our results prompt the general question: what socio-
demographic forces drive heterogeneities in epidemiologi-
cally relevant mixing? Although the shape of the estimated
seasonal transmission explains variation in periodicity
between regions, we were unable to find historical documen-
tation, such as regional school calendars, indicating
explanatory differences. However, since each inferred season-
ality approximately aligns with the school calendar (e.g.
peaking in February–March and September–October, with
the lowest values in the summer months), we can speculate
that regional variation in school may be the underlying mech-
anism. An obvious driver would be population density [28];
however, we did not find any simple scaling. We did, how-
ever, find records documenting more challenging living
conditions in the West [33], perhaps indicating that fewer
children attended school in this region, therefore impacting
the estimated seasonality. However, the similar inferred
CFR between regions suggests the model may be unable to
distinguish these socio-economic differences. Additionally,
the inferred CFRs may be an underestimation given the
immunosuppressive nature of measles infection [34]. Like-
wise, differences in socio-economic conditions may have
manifested themselves in the substantial range of crude
birth rates observed across the nine regions spanning 10
years (22 to 52); however, this variation, while still important
to the overall dynamics, was not identified as a primary
driver of periodicity. Further, although the monthly region-
level incidence data analysed in this manuscript generally
exhibit clear periodicities, albeit some exceptions in the
outer regions, mortality data may lag slightly behind the
true incidence counts [35], leading to potential biases in esti-
mates of seasonal phase. However, these potential biases are
likely to be consistent across locations. Additionally, by
assuming a constant CFR we are effectively treating the mor-
tality data as scaled incidence data, although lower count
regions, such as the Outer Ring, may present challenges in
inferring periodicity from the fitted model (see electronic sup-
plementary material). Combining and analysing tandem case
and death data is a future area of research likely to yield
novel insights into time-varying case fatality rates as well
as potential statistical biases in methodology. Additionally,
although the dynamic diagram produced using the mean
approximation of transmission yielded a plausible, qualitat-
ive explanation of the data, such averages may impact
periodicities in subtle ways as well, and more systematic,
and higher-order, dynamics should be explored in the
future. Finally, it is also worth noting that the much-analysed
London dynamics following World War II are strongly syn-
chronized with the same periodicity throughout the city
[36]; this may imply an increase in population coupling
between regions.

The accelerating interest in digitizing historical medical
records has reenergized the use of childhood diseases as a
testbed for both theoretical and data-driven analysis
[16,37,38]. In addition, recent statistical advances now allow
for confronting complex models with data. Future work
will aim to examine spatial coupling for polymicrobial infec-
tions. Generally, our results indicate that while aggregate-
level patterns of transmission may be readily analysed by
assuming homogeneity, extensive heterogeneity may exist at
subscales. By disentangling cross-scale spatial epidemic
data with mathematical models, we have shown that the
diversity of observed patterns can be explained using
simple underlying theory, furthering our ability to under-
stand drivers of periodicity in ecological metapopulations.
Finally, as global and regional populations become even
more connected in the modern era [39], our study lends
itself to the importance of understanding the role of spatial
coupling in epidemic dynamics.
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