
6 Fuzzy Decision Making in Public Health
Strategies

Making decision is one of the most fundamental activities of human beings (Klir
& Yuan, 1995; Yager & Filev, 1994; Zadeh, 1973). This is particularly true in
Public Health where decisions usually have relevance for millions of people. In
the field of vaccination strategies design, decision making concerning the target
population for the immunization program, the proportion of susceptibles to be
vaccinated, the optimal age to immunize children and the nature of the strategy,
e.g. selective or indiscriminate, are examples of the variables to be optimized,
subject to a set of constraints. As an example, we present in this chapter a fuzzy
model to decision making applied to the design of the vaccination campaign
against measles in São Paulo, Brazil (Massad et al., 1999)

Decision making comprises the study of how decisions are actually made and
how they can be made better or more successfully (Klir & Yuan, 1995). Models
of human decision making generally include the aggregation criteria or criteria of
constraints (Zimmermann, 1996). For the case that criteria and/or constraints
cannot be modeled crisply but as fuzzy sets a decision has been defined by
Bellman and Zadeh (1970) as the intersection of fuzzy sets representing either
objectives or constraints. The grade of membership of an object in the intersec-
tion of two fuzzy sets, that is, the “fuzzy set decision” was determined by the
use of both the min operator or the product operator (Zimmermann, 1996).

While decision making under conditions of risk have been modeled by prob-
abilistic decision theories and game theories, fuzzy decision theories attempt
to deal with vagueness and monospecificity inherent in human formulation of
preferences, constraints, and goals (Klir & Yuan, 1995).

In the first paper on fuzzy decision making Bellman and Zadeh (1970) sug-
gest a fuzzy model of decision making in which relevant goals and constraints
are expressed in terms of fuzzy sets, and a decision is determined by an appro-
priate aggregation of these fuzzy sets. The decision models have the following
components (Klir & Yuan, 1995):

• a set A of possible actions;
• a set of goals, Gi(i ∈ N), each of which is expressed in terms of a fuzzy set

defined on A;
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• a set of constraints, Cj(j ∈ M), each of which is also expressed in terms of a
fuzzy set defined on A.

The fuzzy set of decision, D, is that which simultaneously satisfies the given
goals Gi and constraints Cj , and is:

D(a) = min
[

inf
i∈N

Gi(a), inf
j∈M

Cj(a)
]

(6.1)

for all a ∈ A.

6.1 Designing a Vaccination Strategy

Let us assume that the objective of a vaccination campaign is the reduction
of the incidence of an infection like measles in children below 14 years of age,
the age interval where viral infections are most likely to be circulating. This
assumption is based on previous works which demonstrated that the force of
infection of the measles virus has a strong age-dependence, peaking around 2
years of age in the absence of vaccination (Anderson & May, 1991). Therefore,
in spite of the high proportion of cases in the age interval between 20 and 39
years of age, the highest incidence rate (normalized per 100,000 inhabitants)
observed during the epidemic occurred in children below 5 years old. In addition,
contact patterns suggest that adult cases are the product of infective contacts
of susceptible individuals in that age interval with children below 14 years old
(Massad et al., 1994b), the target age interval of the vaccination campaign. All
the subsequent analysis in this work are based on the assumptions above.

We begin by considering 8 possible vaccination strategies, composed by com-
binations of Selective vaccination,Si, meaning vaccinating only children without
vaccination record in the past, and Indiscriminate vaccination, Ij , that is, vacci-
nating children irrespective of previous immunization history (i and j stands for
the age intervals). Besides, we considered the use of Mobile Units, M.U., mean-
ing those vaccination sites that are not part of the Primary Care Network, as
opposed to Fixed Units, F.U., those belonging to the network. Table 6.1 shows
the various vaccination strategies considered.

The number of children, as well as the estimated proportion and number
of susceptible children (assuming the seroepidemiological profile of 1994 and the
drop in the routine measles vaccine coverage discussed above) in each age interval
of São Paulo State is shown in table 6.2.

The last column of table 6.2 is the maximum theoretical number of children to
be vaccinated in each age interval in order to stop the progression of the current
epidemics. The optimal strategy, therefore, would be that which would maximize
the number of susceptible children vaccinated in the target age interval, without
wasting resources by over-vaccinating children in any specific age interval.

The next step was to invite a number of experts from the Health Secretary
of São Paulo with great experience in vaccination campaigns in order to provide a
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Table 6.1. Possible vaccination strategies (modified from Massad et al., 1999)

Strategy Age intervals and Units
immunization history Type

1 S9m−6y and I6y−14y M.U.+F.U.
2 S9m−6y and I6y−14y F.U.
3 S9m−14y M.U.+F.U.
4 S6y−14y and I9m−6y M.U.+F.U.
5 I9m−14y M.U.+F.U.
6 S9m−6y F.U.
7 S9m−6y M.U.+F.U.
8 I9m−6y M.U.+F.U.

Table 6.2. Number, proportion of susceptible and number of susceptible children in
the target age-interval (modified from Massad el al., 1999)

Age Number of∗ Proportion of+ Number of
children susceptible susceptible

9m 49,500 0.65 32,175
10m 49,500 0.50 24,750
11m 49,500 0.50 24,750
12m 49,500 0.50 24,750
1-2y 640,609 0.10 64,061
3-5y 2,515,711 0.05 125,786
6-14y 5,920,000 0.05 296,000
Total 9,274,331 - 592,272

∗ Estimated from official data.
+ Estimated by dynamical modeling (Massad et al., 1994b).

scale of efficacy and/or constraints of each of the possible strategies considered.
The variables chosen by this experts team were:

• compliance by the population, that is, the proportion of the target population
expected to attend the campaign convocation of each possible strategy;

• human resources, a relative scale of the staff required (including the training)
for the implementation of each possible strategy;

• transportation, a relative scale of the difficulties in transport of people and
material of each possible strategy;

• communication, a relative scale of the difficulties in explain to the population
each possible campaign.

The minimum value of each of the variables will be that which determine
the success of the strategy. The result of such a consultation to the experts is
presented in table 6.3.

Values provided by the experts can be considered either as a proportion of
expected success of each strategy or as degrees of membership to the fuzzy sets of
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Table 6.3. Variables determinants of strategy success (Massad el al., 1999)

Strategy Compliance Human Transp. Communic. min
Resources

1 0.30 0.30 0.20 0.30 0.20
2 0.45 0.60 1.00 0.50 0.45
3 0.70 0.50 0.30 0.40 0.30
4 0.40 0.40 0.30 0.40 0.30
5 0.80 0.20 0.20 0.80 0.20
6 0.60 1.00 1.00 0.70 0.60
7 0.50 0.60 0.60 0.60 0.50
8 1.00 0.70 0.40 1.00 0.40

successful strategies. In both views the min operator is the one which determine
the expected results of each strategy. In addition, the max operator could be
applied in this stage of the analysis if we consider the variables presented in
table 6.3 as the only constraint of the strategies. According to this method, the
strategy which maximizes the success of the campaign would be the strategy
number 6.

The min values of the variables presented in table 6.3 allowed us to estimated
the expected number of children, in each age class, that would be vaccinated
in each of the possible strategies. So, for instance, strategy number one has as
limitation the transport of people and materials and would, therefore, cover only
20% of the target population. As that strategy proposed to vaccinate children
selectively from 9 months to 6 years of age and indiscriminately from 6 to 14
years of age, only 20% of the susceptibles below 6 years and 20% of all children
from 6 to 14 years old would receive the vaccine. The minimum square of the
difference between the number of children desired to receive the vaccine and
the number of children that the strategy would actually vaccinate in each age
class should determine the efficacy of each possible strategy, according to the
definition of optimal strategy, as presented above.

A normalized scale of the efficacy of each strategy is shown in table 6.4. This
was obtained by assuming that the most efficacious strategy is the one with
the minimum square difference, assigned value 1. The others are obtained as a
relative scale basing on multiples of the minimum square difference. Table 6.4
shows also the result of the economic costs of each strategy. This was calculated
assuming a unit cost of US$0.25 for the single measles vaccine, US$1.40 for
the measles-mumps-rubella (MMR) vaccine (applied only in children older than
one year of age) and a unit cost of US$0.75 for the application of the vaccines.
So, the economic cost of each strategy is obtained by the sum of the vaccine
and application unit costs times the total number of doses of each vaccine used
(measles and MMR).

The next step in the analysis is to compare the two constraints to the success
of each strategy, namely, those relative to the technical constraints (adhesion,
human resources, transportation and communication) and those relative to costs.
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Table 6.4. A comparative scale of relative efficacies and economic costs for each strat-
egy (Massad et al., 1999)

Strategy Number of Relative Economic Relative
vaccinated efficacy costs (US$) costs

1 1,243,254 0.049 3,178,223 0.533
2 2,797,322 0.098 5,959,168 1.000
3 177,682 1.000 414,359 0.070
4 1,095,099 0.127 2,743,384 0.460
5 1,854,866 0.045 4,730,907 0.794
6 177,763 0.770 308,758 0.052
7 148,136 0.761 370,509 0.062
8 1,341,732 0.147 3,352,374 0.563

Table 6.5. Degree of memberships of technical and costs constraints for each strategy
(Massad et al., 1999)

Strategy Technical Costs# min
constraints constraints

1 0.20 0.467 0.20
2 0.45 0.000 0.00
3 0.30 0.930 0.30
4 0.30 0.540 0.30
5 0.20 0.206 0.20
6 0.60 0.948 0.60
7 0.50 0.938 0.50
8 0.40 0.437 0.40

# Complement of column 5 (Relative costs) of table 6.4.

For this we took the minimum between the minimum of the variables presented
by the experts (last column of table 6.3) and the complement to the relative costs
scale (1-relative cost), so that both scales are in the same constraint direction,
such that their minimum values represent the maximum constraint, as shown in
table 6.5:

Now we have all the components of the decision model:

• a set A of possible actions : the eight possible strategies;
• a set of goals , Gi (i ∈ N) defined on A: the relative efficacy of each possible

strategy (third column of table 6.4) 1; and
• a set of constraints Cj (j ∈ M), defined on A: the minimum between the

technical and costs constraints (last column of table 6.5).

1 Remarking that by “goal” (this is the jargon in fuzzy optimal control theory) we
mean the achievable efficacy of each possible strategy and not the major goal of
controlling the epidemic.
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Table 6.6. Fuzzy decision setting (Massad et al., 1999)

Strategy Gi(a) Cj(a) D(a)
1 0.049 0.200 0.049
2 0.098 0.000 0.000
3 1.000 0.300 0.300
4 0.127 0.300 0.127
5 0.045 0.200 0.045
6 0.770 0.600 0.600
7 0.761 0.500 0.500
8 0.147 0.400 0.147

The fuzzy decision, D, that simultaneously satisfies the given goals Gi and
constraints Cj , is then:

D(a) = min [Gi(a), Cj(a)] (6.2)

for all a ∈ A, that is:
Therefore, the strategy that has the maximum degree of membership in the

set of decision is strategy number 6, which selectively vaccinate children aged
from 9 months to 6 years, using only Fixed Units of the health system. This
strategy was then recommended to São Paulo public health authorities.

6.2 The Measles Epidemic in São Paulo

In São Paulo State, routine measles vaccination started in 1973. In spite of this,
recurrent epidemics continue to occur until 1987, when the first mass vaccination
campaign against measles was carried out, lessening the average incidence rate
to something around 0.1 per 100,000 inhabitants.

By the end of September, 1996, the number of measles cases notified to São
Paulo health authorities started to raise, interrupting a stability verified since
the last major epidemic, in 1987. After March, 1997, the number of new cases
started an exponential trend, characterizing the beginning of a new epidemic,
which reached a total of 23,915 confirmed cases after one year, with 23 deaths.
Regarding the age profile of the epidemic, it is noteworthy that 47% of the cases
occurred in young adults, aged 20-29 years. The second age interval in number
of cases, 15%, was that of children bellow one year old. However, the highest
incidence rate, normalized per 100,000 inhabitants occurred among that latter
age class. In what follows we briefly describe this episode, presented in details
by Massad et al. (1999).

Table 6.7 describes the age profile of the epidemic, expressed as annual inci-
dence rates, normalized by 100,000 inhabitants:

As can be seen from table 6.7, the highest incidence rates occurred in infants
below one year of age, seconded by young adults in the age interval which cor-
responds to the expected age adults have greatest contact with young children.
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Table 6.7. Age-related incidence rates per 100,000 inhabitants (Massad et al., 1999)

Age São Paulo State Total
(years) city countryside

< 1 871.50 94.17 482.84
1-4 115.99 15.32 65.65
5-9 61.21 13.13 37.17

10-14 36.17 5.93 21.05
15-19 67.27 11.34 39.31
20-29 314.30 29.85 172.08
30-44 56.52 7.54 32.03

Those adults belong to the reproductive age stratus and probably represent the
parents of the children under the highest attack rates.

Figure 6.1 shows the epidemic wave in São Paulo State (bold continuous line),
in the interior of the State (broken line) and in the City of São Paulo (dashed
line), during the year of 1997.

Fig. 6.1. Epidemic wave of measles in São Paulo, Brazil, in 1997. The two vertical
doted lines mark the moments of the two campaigns (Massad et al., 1999).

6.3 The Impact of the Vaccination

Health impact assessment (HIA) is a developing approach that assesses the
health impacts of a proposal on a population, and produces a practical set of
recommendations to inform the decision-making process of the proposal. The
purpose is to influence decision makers to increase positive health impacts of a
proposal and decrease any identified negative impacts (Quigley & Taylor, 2004;
Health Development Agency - UK, 2002). It is not an academic exercise. HIA
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aims to provide a practical public health approach that can be used to address
health concerns about a proposal and to reduce health inequalities (Department
of Health - UK, 1999).

6.3.1 Forecasting and Projection Models

As mentioned in chapter 3, three major aims of mathematical models in epidemi-
ology can be identified: the first centers on the need for scientific understanding
and precision in the expression of current theories and concepts; a second aim,
linked to the first, is the role of theory in identifying areas in which better epi-
demiological data is required to refine prediction and improve understanding;
and the third, and in many instances, the most difficult objective is that of pre-
diction (Anderson, 1988). In addition to these three aims of modeling we propose
a fourth objective: the generation of testable hypotheses by providing a theo-
retical framework on which plausible scenarios can be simulated in a computer
environment (in silicon experiments).

Prediction in general science can be divided into two components: forecasting
and projections (Keyfitz, 1972). A forecast is an attempt to predict what will
happen. A projection is an attempt to describe what would happen, given certain
hypotheses (Caswell, 2000). Among the tools available to the modern epidemiol-
ogists for both forecasting and projection are the mathematical (or dynamical)
models, which, when well structured, can provide predictive capacity to the pub-
lic health professional, helping in the design, and assessment of the impact of
control strategies (Amaku et al., 2003; Burattini et al., 1998; Massad et al., 1995;
Burattini et al., 1993). For instance, by projecting what would happen with a
given population if individuals were not vaccinated, it is possible to quantify the
relative impact of a specific vaccination program.

In what follows we illustrate the application of a projective model do the
Severe Acute Respiratory Syndrome (SARS), describe in details in Massad et al.
(2005b).

Severe Acute Respiratory Syndrome (SARS) is a recently discovered infectious
disease with high potential for transmission (WER, 2003), transmitted by droplet
and direct contact and caused by a new strain of corona virus (CDC, 2003). On
5 July 2003, World Health Organization (WHO, 2003) announced that the last
known chain of human-to-human transmission of the SARS corona virus had
been broken. A cumulative number of 8422 cases have been reported worldwide
to the WHO, with 908 deaths, as of August, 2003.

In the end of 2002, reports from China suggested that a new, highly conta-
gious, and very severe atypical pneumonia of unknown cause was occurring in
the Guangdong province. As it reached southeastern Asian countries, the condi-
tion appeared to be particularly prevalent among health care workers and their
household members. In response to that threat, on March 13, 2003, WHO issued
a global alert, for the first time on more than a decade, and instituted worldwide
surveillance. On March 27, scientists in the WHO laboratory network reported
major progress in the identification of the causative agent, a new member of the
corona virus family.
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Fig. 6.2. The number of SARS real cases in Hong Kong, the model prediction and the
natural course of the epidemics (Massad et al., 2005b)

By that time, SARS has already become a global health hazard, and its high
infectivity was alarming. Early recognition, prompt isolation, and appropriate
precaution measures were considered to be key factors in combating this infection
(Lee et al., 2003). In figure 6.2 we show the simulation for the Hong Kong
community.

The model mimics real data with good accuracy when considering adoption
of control measures. The model’s prediction demonstrated an epidemic that is,
by far, milder than expected without control measures. The model projects that,
in the absence of control, the final number of cases would be 320,000 in Hong
Kong. In contrast, with control measures, which reduce the contact rate to about
25% of its initial value, the expected final number of cases is reduced to 1,778.
In fact, the stability level predicted by the model was indeed attained in Hong
Kong by the end of the outbreaks.

6.3.2 The Case of the Measles Epidemic in São Paulo

In June 21, 1997, the proposed vaccination strategy was implemented in the
State of São Paulo. A total of 213,084 doses were applied to children between
9 months and 6 years of age. This figures represents a coverage of 6.5% of the
entire population of the State of São Paulo in the target age interval. In the
Metropolitan Region of São Paulo city, 7.5% of the entire population in the target
age interval was vaccinated. In the interior of the State 5.1% of the population in
the target age interval was vaccinated. There are no official data on the efficacy
of the selection process, that is, it is not known whether the small proportion of
children vaccinated were those previously unvaccinated or not.
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Fig. 6.3. Fitting of the continuous function to the initial phase of the actual epidemic
until the last week before the first intervention (Massad et al., 1999)

In order to estimate what would be the natural course of the epidemic we first
fitted a continuous function to the initial phase of the actual epidemic until the
last week before the first intervention. As expected, it resulted in an exponential
curve, with a positive growing rate of 0.25/week. Figure 6.3 shows the result of
this fitting.

Next, we calculated the effective contact rate, β, a composite rate describing
the probability of contact between susceptible and infected individuals and the
probability that such a contact will result in a new case. This was done by
assuming that the number of new infections, y(t), increase exponentially as seen
in figure 6.3, according to:

y(t) = y(0) exp{[β
−
x −(μ + γ)]t} (6.3)

where x is the expected proportion of susceptibles, assumed to be equal to
10%; μ is the natural mortality rate of the population, assumed to be equal
to 0.0003/week and γ is the inverse of the infectiousness period of measles, as-
sumed to be equal to 1 week. The term between square brackets resulted in a
value of β equal to 12.5/week.

Those parameters then fed a dynamical system of the classical SIR type, in
order to retrieve the natural course of the epidemic in the absence of vaccination.
The model had the form:

dx(t)
dt

= μ[y(t) + z(t)] − βx(t)y(t)

dy(t)
dt

= βx(t)y(t) − (μ + γ)y(t)

dz(t)
dt

= γy(t) − μz(t)

(6.4)
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Fig. 6.4. The results of the model simulation and the actual epidemic underlying
(Massad et al., 1999)

where z (t) represents the recovered (immune) individuals. The result of the
simulation, with initial conditions x(0) = 0.1; y(0) = 10−7 and z(0) ∼= 0.9, with
the actual epidemic underlying, can be seen in figure 6.4.

As can be noted from figure 6.4, the expected number of cases simulated by
the model above would peak at around 17,500 cases at the 38th week, totalizing
almost 300,000 cases. This would represent an attack rate of around 8% of the
susceptible population, a figure which is in the lower bound of others measles
epidemic reported in the literature (Markowitz & Katz, 1994; Hutchins et al.,
1990; Weeks et al., 1992). Also noteworthy in figure 6.4 is the striking concor-
dance between the simulated curve and the actual epidemic until week 25. In this
point, there is a significant deflection of the exponential trend of the epidemic
curve, which occurred just after the first intervention.

By comparing the expected (simulated) number of cases with that seen in the
actual epidemic we may conclude that the proposed vaccination strategy (carried
out at week 25) had a significant impact on the epidemic in the city of São Paulo.
However, as can be seen from figure 6.1, the number of cases in the interior of the
State continued to raise after the first campaign, peaking around ten weeks after.
Possible causes for this shall be discussed later on. Health authorities then decided
to carry out a second campaign which differed from the first one by the virtual ab-
sence of costs constraints considerations. Strategy number eight, therefore, was
the best choice available, because it has the highest adhesion, and it was imple-
mented in August 16 (which corresponds to week 33). The total number of cases
dropped significantly in all age strata and in the whole State soon after the second
vaccination and the epidemic was then considered controlled.

In spite of a 95% efficient vaccine available for more than 25 years, measles still
remains an important public health problem, killing every year more than one
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million children in the developing regions (Murray & Lopez, 1996) and with a
Disability-Adjusted Life Years (DALY) measure of 36.5x106, which is even higher
than malaria (31.7x106) for the same regions (Murray & Lopez, 1996). As a very
transmissible infection with a Basic Reproduction Number (Anderson & May,
1991) usually above 15, it demands very high levels of vaccine coverage (above
93%) in order to be eliminated. However, these levels of coverage are rarely
maintained in the routine schemes of immunization. Therefore, it is an usual
control strategy, at least in developing countries, to carry out mass vaccination
campaigns from time to time. In fact, this occurred in the State of São Paulo in
1987 and again in 1992, with a significant impact on measles incidence.

It is common to observe a severe dropping of cases shortly after a mass vac-
cination campaign. As time passes by, however, the residual fraction of non-
responders to the vaccine and the immigration of susceptible individuals from
other areas of the country, starts to accumulate in the population. This fact
allied to the marked dropping in the coverage levels in the immunization routine
observed in the last two years in the State of São Paulo, may explain the 1997
epidemic.

A subject of hot debate among public health authors, periodic mass vaccina-
tion has been considered an effective way to control measles epidemics (Nokes &
Swinton, 1997). The design of such a vaccination strategy is based on the rate of
replenishment of susceptibles into the population that follows the vaccination.
In the case when the mass vaccination is intended to supplement an existing
routine (the case of São Paulo State), the rationale is as follows (Nokes & Swin-
ton, 1997): the replenishment of susceptibles equal the birth rate, 1/L (as in
other works, L denotes the population life expectancy), reduced by a fraction
(1−p), where p is the proportion of newborn effectively vaccinated in the routine
schedule. If we denote the proportion of children vaccinated in the campaign as
p′, then the interval, Tv, between two successive campaigns is given by:

Tv =
p′A

(1 − p)
, (6.5)

where A is the average age of the first infection.
In very populous countries like Brazil and, in particular, in regions like the

State of São Paulo, where mass vaccination campaigns are aimed to cover millions
of individuals, any reasonable estimate of the minimum number to be vaccinated
could represent savings of millions of dollars to public money.

When the São Paulo epidemic was detected and the vaccination campaign
decided, very few data was available to allow the application of dynamical mod-
eling, a more structured approach, to the design of the optimal vaccination
schedule (Massad et al., 1994b). Moreover, the dynamics of a measles epidemic
shortly after an intervention such as a mass vaccination campaign has been
poorly documented in the literature. So, it would be very difficult to predict
the impact of the intervention on the course of the epidemic. In addition, an
important constraint was imposed - the total number of doses available was
dangerously limited to 300,000. This scenario encouraged us to attempt, for the
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first time (to the best of our knowledge), the use of fuzzy logic concepts to design
the vaccination campaign.

The capacity of the fuzzy decision model in predicting the number of chil-
dren that could be reached by the vaccination strategy can be evaluated by
contrasting this number (177,763, which corresponds to 60% of the susceptibles
in the targeted population) with the actual number of children who received the
vaccine (213,084, which corresponds to 72% of the susceptibles in the targeted
population). Therefore, the fuzzy model prediction of the number of children
that should be vaccinated has an accuracy of more than 80%. As a result the
efficacy of the strategy was significant, at least for the metropolitan region of São
Paulo city (figure 6.4), notwithstanding the minor impact seen in the rest of the
State. A possible explanation for this could be a lack of adequacy of the selec-
tiveness criteria adopted (to vaccinate only previously unvaccinated children).
As a matter of fact, another uncertainty, not forecasted by the initial model,
was the decision of public health authorities to extend the measles campaign to
a broader scope strategy that included other vaccines like diphtheria-pertussis-
tetanus (DPT). However, shortly after midday of June, 21, the DPT vaccine run
out of stock, which probably demobilized the population. The latter argument
is intended only as an example of how unexpected facts can influence the final
result of such a complex endeavor like a mass vaccination campaign. In conclu-
sion, we think that the fuzzy logic approach for designing the control strategy
against the measles epidemic in São Paulo was very useful in the sense that
it allowed the combination of intuitive informations from public health experts
and costs constraints into a coherent model. Moreover it proved to be very ef-
fective, in the sense that the strategy adopted resulted in a significant control
of the epidemic. Our results, notwithstanding several intervenient factors out of
our control during the implementation of the proposed strategy, are very en-
couraging in demonstrating the potential of new techniques for the designing of
interventions in public health.

Maybe the great advantage of the making decision approach proposed by Bell-
man and Zadeh applied here is its simplicity, both from the practical and theo-
retical points of view (Bellman & Zadeh, 1970). This simplicity allowed that the
fuzzy model for design a control strategy for vaccination against measles could
be developed quickly. In fact, this model was elaborated, in a consensus form, in
just two meetings. At the final of the second meeting the best strategy elected
by the model was accepted by all experts and in few days it was implemented
in whole São Paulo State. Clearly, from the sanitary surveillance point of view,
the agility and the adhesion capacity are important characteristics desired in the
mathematical models.

Stochastic Decision Trees is one of the most traditional approach to decision
making that deals with uncertainty in health care applications (Mason et al.,
1995; Col et al., 1997; Onho-Machado et al., 2000). In order to compare the fuzzy
decision making with other more traditional probabilistic methods,
Onho-Machado and collaborators (2000) studied the same situation with the
decision trees technique. The authors built a ranking of the strategies to control
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the measles epidemic in 1997, in Brazil, considering the same structure proposed
in the fuzzy decision making and compared them (Onho-Machado et al., 2000).
The models identify the same strategy as being the best one, but exhibit dif-
ferences in the ranking starting from the fourth strategy. So, in terms of the
health care decision making the fuzzy model and the stochastic decision trees
were completely equivalent. Thus, the differences between the two approaches
refer only to the mathematical structures and, in this case, the fuzzy decision
approach presents the advantage of its mathematical simplicity, which resulted
in a great adhesion power.
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