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Abstract. Spontaneous intracerebral hemorrhage (icH) 
is a subtype of stroke associated with high mortality and 
morbidity due to the lack of effective therapy. obstructive 
sleep apnea (oSa) has been reported to aggravate early brain 
injury (eBi) and worsen the overall outcome of patients with 
ICH. However, the precise role of OSA‑mediated neuroinflam‑
mation and apoptosis following ICH has not been confirmed. 
The present study aimed to investigate the neuronal damage 
induced by oSa and the potential molecular mechanisms 
by which icH‑induced eBi regulates neural apoptosis in a 
c57Bl/6 mouse icH model. Mortality, neurological score, 
brain water content and neuronal death were evaluated by 
evans blue extravasation, Tunel staining, eliSa, analysis 
of reactive oxygen species/lipid peroxidation and western 
blotting. The results showed that oSa induction decreased 
survival rate, neurological score and neuron survival and 
upregulated the protein expression levels of caspase‑3, Bax, 
cytokines il‑1β, il‑6 and TnF‑α and nF‑κB, which indicated 
that OSA‑mediated induction of apoptosis and neuroinflam‑
mation aggravated neuronal death following icH. The 
molecular mechanism was partly dependent on the activating 
transcription factor/cHoP pathway. Taken together, the results 
demonstrated that oSa worsens neurological outcomes 
in mice and increases neuronal death by enhancing neural 
apoptosis and neuroinflammation.

Introduction

Spontaneous intracerebral hemorrhage (icH) has the highest 
mortality rate of ~40% worldwide among stroke subtypes (1), 
accounts for 15‑20% of all stroke cases, and is more common 
in elderly patients (2‑4). acute icH due to large intracranial 
hematoma is associated with high morbidity and mortality as it 
can lead to primary brain injury via destruction of brain tissue 
and high intracranial pressure (icP) (5‑7). Previous studies 
revealed that craniotomy for hematoma evacuation is an effec‑
tive therapy for limiting primary brain damage and decreasing 
icP following icH (5,8,9). However, long‑term outcomes 
were found to not be altered, and it rarely affects neurological 
recovery (10). increasing numbers of studies have found that 
red blood cell debris (hemoglobin and its degradation products) 
and other blood components trigger secondary brain injury 
following icH and contribute to a series of damaging events, 
including neuroinflammation, brain edema, oxidative stress, 
blood‑brain barrier (BBB) damage and neuronal death (11‑16). 
an increasing number of studies has been investigated the 
mechanisms underlying icH‑induced secondary injury to 
identify improved therapeutic targets for icH; the potential 
mechanisms underlying eBi include autophagy, apoptosis, 
direct neuronal death and necroptosis (13,17,18).

numerous factors, including hypertension, obstructive 
sleep apnea (oSa), smoking, obesity and hyperlipidemia, can 
induce intracranial aneurysms, promote aneurysm rupture, 
aggravate early brain injury (eBi) and worsen the overall 
outcome of patients with vascular aneurysm following hemor‑
rhagic stroke (19‑21). Geer et al (22) also reported that the 
incidence rate of hypertension, heart disease and hyperlipid‑
emia, as well as body mass index, were higher in patients with 
oSa than in those without. a multivariable logistic regression 
model showed that oSa is associated with an increased risk 
of icH in a recent study (23). Pontes‑neto et al (24) also found 
that the incidence of oSa is higher in patients with icH and 
may aggravate perihematomal edema.

The mechanism by which oSa aggravates brain injury is 
unclear. orrù et al (25) reported that oSa induces oxidative 
stress and inflammation and disrupts vascular function by 
releasing excessive levels of no and its derivatives. apoptosis 
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and neuroinflammation are involved in hypoxia‑induced cell 
death and tissue injury, especially in oSa and hypoxia‑asso‑
ciated disease, such as intermittent hypoxia (26) and cerebral 
ischemia (27). Previous studies have reported that activating 
transcription factor (aTF)4 is a transcriptional regulation 
factor that serves an important role in icH and that the 
aTF4/cHoP signaling pathway regulates cell death via 
aggravated neuroinflammation and apoptosis (28,29). To the 
best of our knowledge, however, the effect of oSa in icH has 
not been investigated and the specific mechanism is unclear. 
The present study aimed to investigate the neuronal damage 
induced by oSa and the potential molecular mechanisms by 
which icH‑induced eBi regulates neural apoptosis.

Materials and methods

Animals. all animal experiments complied with the national 
institutes of Health guidelines (30) for the handling of labora‑
tory animals and were approved by the ethics committee of the 
Wuxi clinical college of anhui Medical university (approval 
no. YXll‑2020‑112; Wuxi, china). all experiments were 
performed on 159 healthy adult male c57Bl/6J mice (age, 
6‑8 weeks; weight, 22‑25 g; anhui Medical university). Mice 
were divided into the following groups (n=15/group): Sham, 
oSa, icH, icH + oSa, icH + small interfering (si)‑control 
(con), icH + si‑aTF4, icH + oSa + si‑con and icH + oSa + 
si‑aTF4. overall, there were 16 mice in the Sham group (one 
dead), 16 mice in the oSa group (one dead), 19 mice in the 
icH group (four dead), 23 mice in the icH + oSa group (eight 
dead), 20 mice in the ICH + si‑Con (five dead), 18 mice in 
the icH + si‑aTF4 (three dead), 25 mice in the icH + oSa + 
si‑con (10 dead), 22 mice in the icH + oSa + si‑aTF4 (seven 
dead). The mice were housed in a climate‑controlled environ‑
ment at 25±2˚C and 55±5% humidity with 12‑h light/dark 
cycles, and had free access to food and water.

ICH animal model. The icH mouse model was constructed 
via autologous blood injection, as previously described (31). 
Briefly, male C57BL6/J mice were anesthetized by intraperi‑
toneal (i.p.) injection of 50 mg/kg pentobarbital sodium and 
placed in a prone position with a stereotactic head frame. 
The rectal temperature was maintained at 37.0±0.5˚C during 
the operation with a heating pad. An artificial tear ointment 
was used to protect the eye from injury during surgery. a 
midline scalp incision was made and a cranial burr hole (1 mm 
diameter) was made at the following coordinates relative to 
bregma: 0.2 posterior, 2.2 lateral and 3.5 mm below the dura. 
a total of 30 µl autologous blood without anticoagulation was 
collected from the caudal artery and rapidly injected into the 
basal ganglia via the burr hole using the 26 gauge needle of a 
10‑µl Hamilton syringe. First, 5 µl arterial blood was injected 
at a depth of 2.8 mm from the dura (injection speed, 3 µl/min). 
after 5 min, the remaining 25 µl blood was injected at a depth 
of 3.5 mm (injection speed, 3 µl/min). Following the injection 
of autologous blood, the needle was left in the brain for 10 min 
to prevent blood backflow along the needle tract. Finally, the 
hole was covered with medical bone wax. The animals in the 
Sham group underwent the same surgical procedures but were 
injected at the same sites with an equal volume of 0.9% sterile 
saline instead of blood.

Intermittent hypoxia (IH) model. an iH model was used to 
construct the oSa model as previously described (32). at 
30 min after recovery from anesthesia, mice in the oSa group 
were exposed to air for 90 sec, followed by 90 sec of progres‑
sive hypoxia to a nadir of 5% inhaled o2 to model moderate 
Sa. The mice were exposed to iH for 7 h/day during the light 
period (10 a.m. to 5 p.m.) for 3 consecutive days. during 
the hypoxia phase, the o2 concentration in the chamber was 
decreased to 5% within 20 sec by infusion of n2 and remained 
at that concentration for 90 sec. Then, the o2 concentration 
was rapidly increased to 21% within 10 sec by flushing the 
chamber with compressed clean air, which was sustained for 
90 sec. Following iH induction, the mice were transferred to 
the normal housing environment with room air, neurological 
score was measured and mice were euthanized for brain tissue 
collection.

siRNA treatment and transfection. The mice were anesthe‑
tized with pentobarbital sodium (50 mg/kg) and placed on 
stereotaxic apparatus (narishige international ltd.). Then, a 
burr hole was made in the left hemisphere at the following 
coordinates: 0.2 posterior, 1.0 lateral and 2.2 mm below the 
horizontal plane of the bregma. A total of 5 µl siRNA was 
injected into the left lateral ventricle at a rate of 0.5 µl/min. 
lipofectamine™ rnaiMax reagent (invitrogen; Thermo 
Fisher Scientific, inc.) was used in opti‑MeM medium, 
according to the manufacturer's instructions. To enhance the 
silencing effect, the injection was performed 48 h before icH. 
Targeted and control siRNAs were synthesized by Shanghai 
Genechem co., ltd., as follows: si‑aTF4 forward, 5'‑GuG 
aGa aac uGG aua aGa aTT ‑3' and reverse, 5'‑uuc uua 
ucc aGu uuc uca cTT ‑3' and negative control sirna 
forward, 5'‑uuc ucc Gaa cGu Guc acG uTT ‑3' and reverse, 
5'‑acG uGa cac Guu cGG aGa aTT ‑3'.

Neurobehavioral and mortality assessment. The severity of 
brain injury was evaluated by determining the neurological 
function 72 h after icH as previously described (17). The 
scoring system consisted of six tests, and specific standards 
are shown in Table SI. The final neurological score ranged 
from 3 to 18 and included spontaneous activity (0‑3), move‑
ment symmetry of all limbs (0‑3), forelimb outstretching (0‑3), 
body proprioception (1‑3), response to vibrissae touch (1‑3) 
and climbing (1‑3). a total of 10 mice in all groups underwent 
neurobehavioral assessment, and a higher score represented 
improved neurological function. Following the establishment 
of the icH/oSa model and the neurobehavioral assessment, 
mortality assessment was performed and death was confirmed. 
dead animals were replaced to ensure 15 mice in each group. 
The mortality was defined as the ratio of dead mice to the total 
number in each group.

Brain water content measurement. at 72 h post‑icH, the mice 
were sacrificed with 100 mg/kg sodium pentobarbital via i.p. 
injection. death was confirmed by cessation of breathing 
and corneal reflex, then brain tissue samples were collected. 
The severity of brain edema was evaluated by measuring the 
brain water content using the standard wet‑dry method, as 
previously reported (17,27,33). The entire brain was harvested 
and separated into the ipsilateral and contralateral cortex and 
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basal ganglia and cerebellum (wet weight). Then, brain speci‑
mens from each group were dehydrated at 105˚C for 24 h to 
acquire the dry weight. The percentage of brain water content 
was calculated as follows: (Wet weight‑dry weight)/wet 
weight x100%.

Evans blue extravasation. evans blue extravasation was 
performed as previously described (34). Briefly, all mice 
were anesthetized with intraperitoneal (i.p.) pentobarbital 
sodium (50 mg/kg) injection. evans blue dye (2%; 5 ml/kg; 
Sigma‑aldrich; Merck KGaa) was injected into the left femoral 
vein for >2 min and allowed to circulate for 60 min. Then, 
mice were sacrificed with 100 mg/kg sodium pentobarbital 
via i.p. injection followed by phosphate‑buffered saline (PBS) 
intracardial perfusion. Death was confirmed by cessation of 
breathing and corneal reflex. The brains were removed and 
divided into the left and right cerebral hemispheres, weighed, 
homogenized in saline and centrifuged at 15,000 x g for 30 min 
at room temperature. The supernatant was added to an equal 
volume of trichloroacetic acid, incubated overnight at 4˚C and 
centrifuged at 15,000 x g for 30 min at room temperature. The 
supernatant was collected and spectrophotometrically quanti‑
fied at 610 nm to measure the amount of Evans blue dye.

TUNEL staining. Tunel and neuronal nuclei (neun) 
co‑staining were performed to assess neuronal death in the 
brain cortex and were fixed with 4% paraformaldehyde for 
1 h at 25˚C. Paraffin‑embedded sections (10 µm) were cut 
from formalin‑fixed tissue and stained with Tunel and 
neun stain. Tunel reaction mixture (50 µl) was added to 
each sample and slides were incubated in a humidified dark 
chamber for 60 min at 37˚C. Then, a primary antibody against 
neun (1:200; rabbit polyclonal; cat. no. ab128886; abcam) 
diluted in PBS was added, followed by incubation overnight 
at 4˚C. The slides were then incubated with DAPI (0.1 mg/ml) 
for 5 min at room temperature in the dark to stain the nuclei, 
followed by imaging with a fluorescence microscope (magni‑
fication, x400). The procedure was performed according to 
the manufacturer's instructions with a Tunel staining kit 
(cat. no. 1684817; roche diagnostics GmbH). a negative 
control (without the Tunel reaction mixture) was used. 
The apoptotic index (%) was calculated as follows: number 
of Tunel‑positive cells/total number of cells x400. The cell 
count was confirmed in four randomly selected high‑power 
fields and the data were averaged.

Cytokine measurement. Hippocampal levels of cytokines 
were detected by eliSa. Briefly, hippocampal samples 
were collected and dissolved using riPa buffer (coWin 
Biosciences), then cell lysate was centrifuged for 3‑5 min 
at 12,500 x g at room temperature and the supernatant was 
collected. il‑1β (cat. no. ab197742), il‑6 (cat. no. ab222503), 
TnF‑α (cat. no. ab208348) and nF‑κB (cat. no. ab176663) 
were measured by eliSa according to the manufacturer's 
instructions (all abcam).

Reverse transcription‑quantitative (RT‑q)PCR. rT‑qPcr 
analysis was performed as described previously (35). Total rna 
was extracted from hippocampal brain samples using TRIzol 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 

manufacturer's instructions. Then, the rna was reverse‑tran‑
scribed into complementary dna using the revertaid First 
Strand cdna Synthesis kit (cat. no. K1622; Thermo Fisher 
Scientific Inc.). The ATF4 and CHOP mRNA levels in each 
sample were measured by qPcr using SYBr‑Green Master 
Mix (Toyobo life Science). GaPdH was used as an internal 
control. The qPcr thermocycling conditions were as follows: 
Initial denaturation at 45˚C (2 min) and 95˚C (10 min), followed 
by 40 cycles of denaturation at 95˚C (15 sec), annealing at 
60˚C (1 min) and extension at 72˚C (1 min). The 2‑ΔΔcq method 
was used to assess the relative mrna expression levels (36). 
All samples were analyzed in triplicate. The primers used are 
listed as follows: aTF4 forward, 5'‑aTG acc Gaa aTG aGc 
TTc cTG ‑3' and reverse, 5'‑GcT GGa Gaa ccc aTG aGG T‑3'; 
cHoP forward, 5'‑GGa aac aGa GTG GTc aTT ccc ‑3' and 
reverse, 5'‑cTG cTT GaG ccG TTc aTT cTc ‑3'; and GaPdH 
forward, 5'‑aTG GGT GTG aac cac GaG a‑3' and reverse, 
5'‑caG GGa TGa TGT TcT GGG ca‑3'.

Western blot analysis. Western blot analysis was performed as 
described previously (33). Briefly, cerebral cortex samples were 
collected, homogenized and total protein was extracted using 
riPa buffer (coWin Biosciences). a Bca Protein assay kit 
(Beyotime institute of Biotechnology) was used to measure the 
protein concentration. Total protein (30 µg) was separated via 
12% SdS‑PaGe and transferred onto PVdF membranes. The 
membranes were blocked at room temperature for 1 h with 5% 
non‑fat milk and incubated with primary antibodies (all abcam) 
overnight at 4˚C as follows: Rabbit anti‑β‑actin (1:1,000; cat. 
no. ab8227), anti‑caspase‑3 (1:2,000; cat. no. ab184787), 
anti‑Bax (1:2,000; cat. no. ab182733), anti‑Bcl2 (1:2,000; cat. 
no. ab182858), anti‑aTF4 (1:1,000; cat. no. ab216839) and 
mouse anti‑cHoP (5 µg/ml; cat. no. ab11419). after washing 
the membranes with TBS with 0.5% Tween‑20 three times, 
horseradish peroxidase‑conjugated anti‑rabbit (1:2,000; cat. 
no. 7074S; cell Signaling Technology, inc.) or anti‑mouse 
igG (1:2,000; cat. no. 7076S; cell Signaling Technology, inc.) 
secondary antibodies were applied and incubated at room 
temperature for 1.5 h. The signals were developed using an 
enhanced chemiluminescence reagent (MilliporeSigma) 
according to the manufacturer's instructions. The protein 
bands were detected using a Bio‑rad imaging system (Bio‑rad 
Laboratories, Inc.) and quantified with ImageJ (version 1.52; 
national institutes of Health).

Statistical analysis. all experiments were repeated >3 times 
and data are presented as the mean ± SeM. SPSS 14.0 (SPSS, 
inc.) and GraphPad Prism 6 (GraphPad Software, inc.) 
were used for statistical analysis. Student's t test (unpaired, 
two‑tailed) was used to analyze the statistical differences 
between two groups. differences between multiple groups 
were analyzed using one‑way ANOVA followed by post hoc 
Tukey's test. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Mortality and neurological function in ICH/OSA model 
mice. Previous clinical studies reported that oSa aggravates 
eBi, increases mortality rate and worsens overall outcomes 
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of patients with icH (22,37). Thus, an icH model was 
constructed and chronic (c)iH was used to construct the 
oSa model (Fig. 1a). The effect of oSa on mortality rate 
and neurological score was assessed. There were 16 mice in 
the Sham group (one dead), 16 mice in the oSa group (one 
dead), 19 mice in the icH group (4 dead) and 23 mice in the 
icH + oSa group (8 dead). Mortality rate (Fig. 1B) increased 
in the subarachnoid hemorrhage (icH) + oSa group but there 
was no significant difference compared with the ICH group 
(or=0.46; 95% Pi, 0.11‑1.94). neurological score decreased 
significantly following ICH and was further aggravated by 
oSa (Fig. 1c).

OSA aggravates EBI and BBB permeability following 
ICH. To assess eBi following icH and oSa, brain water 
content was measured by the wet‑dry method at 72 h post‑icH 
to evaluate the degree of brain damage. The results showed 
that ICH significantly increased the brain water content in 
the ipsilateral cortex and both ipsilateral and contralateral 
basal ganglia; oSa significantly aggravated this in the 
ipsilateral cortex and basal ganglia (Fig. 2a). Similar results 
were observed for BBB permeability, which increased 
significantly following ICH and was significantly aggravated 
by oSa (Fig. 2B). To assess hippocampal neuronal death 
following icH and oSa, Tunel assay was performed. as 
expected, more hippocampal neuron death was observed 
in the icH + oSa group compared with in the icH group 
(Fig. 2c). Hence, these data showed that oSa aggravates eBi 
following icH.

OSA aggravates neuroinf lammation following ICH. 
Neuroinflammation serves a key role in EBI following ICH; 
increased neuroinflammation aggravates eBi (27,38). The 
inflammatory complex induces secretion of pro‑inflammatory 
cytokines, including il‑1β, il‑6, TnF‑α and nF‑κB (27). 
Therefore, hippocampal levels of il‑1β, il‑6, TnF‑α and 
nF‑κB were assessed by eliSa. The results showed that 
expression levels of pro‑inflammatory cytokines increased 
significantly following icH and were further increased in 
the oSa + icH group (Fig. 3a‑d). The results showed that 
oSa aggravated eBi in a mouse model of icH and that the 
mechanism may be partly associated with the activation of 
neuroinflammation.

OSA further increases expression levels of apoptosis‑ 
associated proteins following ICH. Previous studies have indi‑
cated that apoptosis is an important form of cell death in central 
nervous system (cnS) disease and serves a key role in SaH 
and oSa (26,27). expression levels of apoptosis‑associated 
proteins caspase‑3, Bax, and Bcl‑2 following icH and oSa 
were evaluated by western blotting (Fig. 4a). The results 
showed that expression levels of caspase‑3 and Bax increased 
significantly following ICH and were further increased by 
subsequent oSa. Protein expression levels of anti‑apoptotic 
Bcl‑2 were significantly decreased by icH and further 
decreased in the icH + oSa group (Fig. 4B‑d). The results 
showed that oSa aggravated eBi in a mouse model of icH 
and that the mechanism may be partly associated with the 
activation of apoptosis.

Figure 1. Mortality and neurological function in icH/oSa mouse models. (a) Schematic of the experimental paradigm for modeling icH/oSa in mice. (B) Mortality 
rate increased in the ICH + OSA group but there was no significant difference compared with the ICH group. (C) Neurological score of mice after 72 h (n=10). Data 
are presented as the mean ± SeM. *P<0.05 vs. Sham; &P<0.05 vs. oSa; #P<0.05 vs. icH. icH, intracerebral hemorrhage; oSa, obstructive sleep apnea.
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OSA aggravates EBI via the ATF4/CHOP signaling pathway 
following ICH. deng et al (39) reported that the aTF4/cHoP 
signaling pathway is a key mechanism by which brain injury is 
ameliorated in icH rats. Therefore, the present study investigated 
whether OSA aggravated apoptosis and neuroinflammation by 
regulating the aTF4/cHoP signaling pathway. First, protein 
and gene expression levels of aTF4 and cHoP were assessed 
following icH and oSa by western blotting and rT‑qPcr. The 
results showed that mrna expression levels of aTF4 and cHoP 
increased following icH and further increased following oSa 

(Fig. 5a and B). Similar results were demonstrated by western 
blot analysis of protein expression levels (Fig. 5c‑e). Hence, it 
was hypothesized that OSA aggravated EBI by inhibiting the 
aTF4/cHoP signaling pathway following icH.

Knockdown of ATF4 reverses OSA‑aggravated EBI following 
ICH. To investigate the role of aTF4 in eBi, transfection with 
targeted sirna (si‑aTF4) was performed to downregulate 
expression of ATF4. There was no significant difference in 
mortality rate following aTF4 knockdown (Fig. 6a). rT‑qPcr 

Figure 2. oSa aggravates early brain injury and BBB permeability following icH. (a) icH and subsequent oSa increased brain water content in the ipsilateral 
cortex and ipsilateral and contralateral basal ganglia. (B) oSa increased BBB permeability following icH. (c) Tunel staining of apoptotic neurons. oSa 
aggravated neuronal apoptosis in the hippocampus post‑icH. Scale bar, 50 µm. data are presented as the mean ± SeM. *P<0.05 vs. Sham; &P<0.05 vs. oSa; 
#P<0.05 vs. icH. oSa, obstructive sleep apnea; BBB, blood‑brain barrier; icH, intracerebral hemorrhage; neun, neuronal nuclei. 
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was used to confirm that transfection was successful and 
ATF4 expression was efficiently silenced (Fig. S1). Following 
aTF4 knockdown, neurological score, ipsilateral basal 
ganglia brain edema and BBB permeability were improved 
(Fig. 6B‑d), indicating a reversal of oSa‑induced eBi. The 

levels of apoptosis‑associated proteins (cleaved‑caspase‑3, 
Bcl‑2 and Bax) were assessed by western blotting (Fig. 6e). 
The expression levels of cleaved‑caspase‑3 and Bax were 
decreased and those of Bcl‑2 increased significantly following 
aTF4 knockdown (Fig. 6F‑H).

Figure 3. OSA aggravates neuroinflammation following ICH. Following ICH, OSA significantly aggravated hippocampal expression levels of (A) TNF‑α, 
(B) il‑1β, (c) il‑6 and (d) nF‑κB. data are presented as the mean ± SeM (n=5). *P<0.05 vs. Sham; &P<0.05 vs. oSa; #P<0.05 vs. icH. oSa, obstructive sleep 
apnea; icH, intracerebral hemorrhage.

Figure 4. oSa increases expression levels of apoptosis‑associated proteins following icH. (a) expression levels of caspase‑3, Bax and Bcl‑2 in the brain 
cortex of mice were assessed following icH/oSa by western blotting. expression levels of (B) cleaved‑caspase‑3, (c) Bax and (d) Bcl‑2 in the brain cortex 
relative to β‑actin loading control. OSA significantly increased Cleaved‑Caspase‑3 and Bax expression levels and decreased those of anti‑apoptosis protein 
Bcl‑2 following icH. data are presented as the mean ± SeM (n=5). *P<0.05 vs. Sham; &P<0.05 vs. oSa; #P<0.05 vs. icH. oSa, obstructive sleep apnea; 
icH, intracerebral hemorrhage. 
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Discussion

The present study evaluated the mechanisms by which 
oSa aggravates eBi in a mouse icH model. The present 
study demonstrated that oSa aggravates eBi, neurological 
dysfunction, brain damage, neuroinflammation, apoptosis and 
neuronal death following icH. The potential mechanism may 
be associated with the aTF4/cHoP signaling pathway.

OSA is characterized by repetitive narrowing or collapsing 
of the upper airways, resulting in recurrent hypoxia during 
sleep (40). interruption of breathing by oSa results in iH, 
leading to decreased blood oxygen saturation and impaired sleep 
quality; prolonged hypoxia induces inflammatory responses, 
which affect the function of the vascular endothelium (41). oSa 
not only seriously affects the quality of life but also induces or 
aggravates various comorbidities, including hypertension (40), 
coronary heart disease (42), icH (25) and stroke (43). The 
potential molecular mechanisms of oSa‑induced disease are 

complicated. oSa induces oxidative stress and activation of 
the inflammatory system, resulting in the production of reac‑
tive oxygen species (roS); roS may be a potential therapeutic 
target for ameliorating hypoxia‑induced cell death and tissue 
injury (44). Furthermore, an increasing number of studies 
have demonstrated an association between oSa and cognitive 
impairment and cnS disease (19‑22,24‑26).

a previous study reported that oSa induces cognitive 
impairment via neuronal death in the hippocampus (45). 
lim and Pack (46) reported that oSa alters BBB perme‑
ability by changing the expression levels of influx and efflux 
transporters, causing an acute leak via the tight junctions of 
the BBB. Halder and Milner (47) demonstrated that chronic 
hypoxia triggers BBB disruption and subsequent neuro‑
logical dysfunction. in the present study, brain water content 
increased and BBB permeability was enhanced following icH 
and further aggravated by subsequent oSa. Zolotoff et al (48) 
found that iH and sustained hypoxia can induce BBB 

Figure 5. oSa aggravates early brain injury via the aTF4/cHoP signaling pathway following icH. mrna expression of (a) aTF4 and (B) cHoP in the 
brain cortex of mice following ICH/OSA was assessed by reverse transcription‑quantitative PCR. OSA significantly increased mRNA expression of ATF4 
and cHoP following icH. (c) Protein expression levels of aTF4 and cHoP in the brain cortex of mice following icH/oSa were assessed by western 
blotting. OSA significantly increased the protein expression levels of (D) ATF4 and (E) CHOP following ICH. Data are presented as the mean ± SEM (n=5). 
*P<0.05 vs. Sham; &P<0.05 vs. oSa; #P<0.05 vs. icH. aTF4, activating transcription factor 4; oSa, obstructive sleep apnea; icH, intracerebral hemorrhage. 
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disruption and increase BBB permeability via production of 
roS, nrf2 and HiF‑1α. icH increases brain water content via 
BBB disruption, cerebral vasospasm and vascular endothelial 
dysfunction (13,35). Hence, it was hypothesized that OSA 
combined with icH increases brain water content and brain 
damage and that BBB permeability and vascular endothelial 
dysfunction serve an important role. The underlying molecular 
mechanisms are unclear and need further study.

Neuroinflammation is the primary pathophysiological change 
following cerebral hemorrhage; excessive neuroinflammatory 
response causes hippocampal neuronal apoptosis and eBi (27). 

Molecular markers of neuroinflammation include pro‑inflam‑
matory cytokines il‑1β, il‑6, TnF‑α and nF‑κB. numerous 
studies have demonstrated that OSA induces cognitive deficits or 
brain damage, partly via oxidative stress and neuroinflammation, 
and that brain damage and neuronal apoptosis are alleviated if 
neuroinflammation is prevented (49‑51). Gong et al (49) reported 
that oSa aggravates neuronal and microglial damage; damaged 
microglia release large amounts of proinflammatory cytokines, 
and an excessive inflammatory response leads to neurotox‑
icity and neuronal apoptosis by activating BniP3‑dependent 
mitophagy via the JnK/erK signaling pathway. additionally, 

Figure 6. Knockdown of ATF4 reverses OSA‑aggravated early brain injury following ICH. (A) Mortality rate was not significantly different compared with 
the icH group. aTF4 knockdown reversed oSa‑aggravated (B) neurological dysfunction (indicated by higher neurological score), (c) brain water content 
and (d) blood‑brain barrier permeability. (e) expression levels of apoptosis‑associated proteins (caspase‑3, Bcl‑2 and Bax) were detected by western blotting. 
Knockdown of aTF4 increased expression levels of (F) Bcl‑2 and decreased those of (G) Bax and (H) caspase‑3. data are presented as the mean ± SeM (n=5).  
aTF4, activating transcription factor 4; oSa, obstructive sleep apnea; icH, intracerebral hemorrhage; si, small interfering; con, control. 
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oSa‑induced nerve damage and stimulation of the interaction 
between toll‑like receptor 2 and its aptamer Myd88 are associ‑
ated with microglial aggregation, nF‑κB activation, oxidative 
stress and elevated levels of inflammatory cytokines in mice (50). 
In the present study, expression levels of pro‑inflammatory cyto‑
kines, including il‑1β, il‑6, TnF‑α and nF‑κB, were increased 
significantly following ICH combined with OSA, thus aggra‑
vating eBi. The molecular mechanism may be associated with 
the aTF4/cHoP signaling pathway.

aTF4 serves different roles in different tissues, organs, 
and cells. in mammals, aTF4 is involved in a variety of 
physiological activities, such as eye development, bone 
formation, metabolism, energy balance, stress reaction, 
learning, memory and cnS disease (52,53). overexpressed 
aTF4 enters the nucleus and activates the transcription 
factor cHoP, which is involved in endoplasmic reticulum 
(er) stress‑induced neuronal apoptosis (54). aTF4 mrna is 
expressed in all tissues, but aTF4 protein is only expressed 
at low levels under normal physiological conditions; the 
translation of aTF4 is upregulated by phosphorylation of the 
α subunit of eukaryotic initiation factor 2 (eiF2), which is 
triggered by ER and oxidative stress and amino acid defi‑
ciency (55). Baleriola et al (56) reported that the expression 
of aTF4 protein is increased in neuronal axons, as well as 
near amyloid plaques and in bead axons in the Alzheimer's 
disease brain. inhibition of local translation and retrograde 
transport or knockdown of axonal aTF4 mrna abolishes 
amyloid β‑induced aTF4 transcriptional activity and cell 
loss (57). in a ciH rat model, a H2/o2 mixture inhibits 
er stress‑induced apoptosis via the PerK/eiF2α/aTF4 
signaling pathway and notably improves cardiac dysfunction 
and myocardial fibrosis (58). Furthermore, overexpression 
of aTF4 upregulates transcription of factors such as cHoP; 
this upregulates expression the apoptotic regulator mito‑
chondrial apoptosis protein Bcl‑2, which interacts with 
apoptotic regulators, activates the pro‑apoptotic protein Bax 
and suppresses expression levels of anti‑apoptotic gene Bcl‑2 
family proteins, thus promoting oxidative stress‑induced 
nerve cell death (59). in the present study, expression levels 
of ATF4 and CHOP were increased significantly following 
icH and further aggravated following oSa; this was associ‑
ated with increased neuronal death and eBi. The present data 
showed that neuronal death and eBi following icH/oSa 
were partially prevented following aTF4 knockdown. To the 
best of our knowledge, however, there have been no reports 
concerning the regulation of the downstream molecular 
pathway of cHoP following icH/oSa and the exact mecha‑
nism requires further investigation.

in conclusion, oSa aggravated neurological dysfunc‑
tion, brain edema, neuroinflammation and neuronal injury 
following icH by promoting er stress‑associated apoptosis 
and neuroinflammation in hippocampal neurons. The 
mechanisms underlying these effects involved activation of 
aTF4/cHoP‑mediated er stress and apoptosis. additionally, 
further investigations into the effects of oSa treatment 
combined with icH in the clinic are required.
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