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Long non-coding RNAs in anti-cancer drug resistance
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ABSTRACT
Chemotherapy is one of the basic treatments for cancers; however, drug 

resistance is mainly responsible for the failure of clinical treatment. The mechanism of 
drug resistance is complicated because of interaction among various factors including 
drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding 
RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest 
studies have revealed that lncRNAs play essential roles in drug resistance in breast 
cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and 
pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we 
will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy 
and the therapeutic potential of lncRNAs in future cancer treatment.

INTRODUCTION

Malignant cancer is the most severe disease 
threatening human health, considerably reducing the 
quality of human lives. With the advent of various 
anticancer drugs, cytotoxic and molecularly targeted 
compounds have become the first-line standard treatment 
regimens for most cancer patients when surgery is not an 
appropriate option [1, 2]. In 2004, it was first reported 
that a mutation in the epidermal growth factor receptor 
(EGFR) conferred a clinical response to EGFR tyrosine 
kinase inhibitors (TKIs) in non-small cell lung cancer 
(NSCLC). To date, three generations of EGFR TKIs 
have been developed, and the third-generation molecular 
targeted drug WZ4002 exhibits high activity against 
tumor cells harboring EGFR with the T790M mutation. 
Clinical trials showed that progression-free survival 
(PFS) of patients with detectable T790M was significantly 
prolonged after taking the third-generation TKIs [3-
5]. Human epidermal growth factor receptor-2(HER2) 
positive breast cancer accounts for about a quarter of 
breast cancers. HER2 amplification induces cell growth 
and suppresses cell death. Recently, the application of 
trastuzumab combined with chemotherapy was shown 
to increase overall survival (OS) of patients with HER2 
overexpression by achieving a blockade of HER2 

receptors [6]. Similarly, the combination of cisplatin 
and trastuzumab is the mainstream therapy for patients 
with HER2-positive gastric cancer [7]. The inhibition of 
EGFR2 and vascular endothelial growth factor receptor 
2 have also confirmed their efficacy in the treatment of 
advanced gastric cancer [8]. Although chemotherapeutics 
have prolonged disease-free survival and OS for many 
patients, an inevitable problem that has gradually emerged 
is the propensity of tumor cells to become resistant to 
drugs that have been used previously, or even to drugs 
that are chemically and functionally unrelated, suggesting 
that tumor cells can adopt common resistance mechanisms 
[9]. Both intrinsic and acquired drug resistance can greatly 
limit the effectiveness of chemotherapy [10, 11]. Solving 
this problem is an urgent concern. 

With the rapid development of bioinformatics 
analysis and application of next-generation sequencing 
technology to whole genomes and transcriptomes, it has 
become clear that only 2% of the human genome encodes 
proteins whereas 98% of transcriptional products are non-
coding RNAs [12]. Most non-coding RNAs consist of 
more than 200 nucleotides, and are defined as long (or 
large) non-coding RNAs (lncRNAs) [13, 14]. For past 
decade, lncRNAs have been varified to participate in a 
series of cellular processes including cell proliferation, 
apoptosis, migration, and invasion and regulate gene 
expression at epigenetic, transcriptional, and post-

                  Review

mailto:zhaoxiawang88@hotmail.com


Oncotarget1926www.impactjournals.com/oncotarget

transcriptional levels dependent on diverse cell locations. 
Importantly, a large amount of misregulated lncRNAs 
have been linked to human cancers development and 
progression. These lncRNAs involve in regulation 
of cancer cells growth, metastasis and chemotherapy 
drug resistance through diverse mechanisms, including 
interacting with RNA binding proteins such as polycomb 
repressive complex 2 (PRC2), behaving as decoys to 
compete with other proteins for the binding position of 
target genes or specific microRNAs, and modifying 
mRNA structure and affecting stability of mRNA [15-
18]. Interestingly, many well-known transcription factors 
(such as E2F1, P53, SP1 et al.) and epigenetic regulators 
(such as EZH2, DNMT1) mediated DNA methylation or 
histone modifications have been found to contribute to 
lncRNAs aberrant transcriptional activation or inactivation 
in cancer cells [19-21]. In this review we describe multiple 
mechanisms of drug resistance including drug efflux, DNA 
damage repair, mutations of drug targets, and cancer cell 
apoptosis and highlight the important roles of long non-
coding RNAs in the regulation of drug resistance of cancer 
cells.

MECHANISMS OF CANCER CELL DRUG 
RESISTANCE

Alterations in drug efflux

The ATP-binding cassette family in humans 
possesses 49 known transporters that move drug 
compounds out of cells to sustain intracellular drug 
concentration, directly leading to multidrug resistance 
(MDR) in cancer cells. Among these proteins, P 
glycoprotein (P-gp), adenosine triphosphate-binding 
cassette superfamily G member 2 (ABCG2), and multi-
drug resistant associate protein (MRP) have been 
extensively studied in many solid tumors such as breast 
cancer and ovarian cancer [22]. P-gp is overexpressed 
in several cancers including neuroblastoma, myeloma, 
and colorectal cancer. It has been demonstrated that 
overexpression of P-gp predicts an unfavorable prognosis 
[23]. The expression of P-gp encoded by the MDR1 
gene increases when normal tissues are transformed to a 
neoplastic state [24]. Some proteins, such as H-Ras, Raf-
1, MEK1, and MEK2 involved in MAPK pathway, act 
as downstream receptors that upregulate the P-gp level, 
thus regulating the cellular environment and leading to the 
development of drug resistance. Conversely, inhibition of 
ERK pathway reduces P-gp expression [25, 26].

Dysfunction of DNA damage repair

In normal cells, the DNA repair pathway is activated 
when DNA damage is induced by physical, chemical, 

or biological factors. To sustain the stabilization of 
chromosomes, DNA damage is efficiently repaired through 
activation of repair genes. Conversely, dysfunctional 
activation of the DNA repair pathway readily results 
in the occurrence of tumors [27]. It is well known that 
chemotherapeutics trigger DNA damage through direct 
or indirect mechanisms, which may contribute to the 
acquisition of cytotoxicity. If such damage can be 
repaired in tumor cells, there is a possibility that they will 
survive under chemotherapy or become more tolerant to 
chemotherapeutic agents. For instance, DNA is the key 
target of traditional chemotherapy drugs such as platinum, 
and cancer cells tend to be more resistant to platinum as 
a result of abnormal DNA damage repair activation [28, 
29]. A latest study has observed that NF-κB/HOTAIR have 
interaction in DNA damage response in development of 
chemoresistance [30]. Accordingly, specific inhibition 
of DNA repair is believed to improve the efficacy of 
chemotherapeutics.

Apoptosis

Two classic pathways are involved in cell apoptosis: 
the intrinsic pathway regulated by chondriosomes and 
the extrinsic pathway regulated by tumor necrosis factor 
(TNF) receptors. [10] The Bcl-2 protein family includes 
both apoptosis-inducing proteins such as Bax, Bad, 
and Bid, and antiapoptosis proteins like Bcl-2 and Bcl-
xl. These proteins antagonize each other to maintain a 
relatively balanced condition in cells. Once the balance is 
disrupted, resistance to chemotherapy drugs that interefer 
apoptosis may arise during tumorigenesis [31]. It has been 
demonstrated that downregulation of Bcl-2 can increase 
sensitivity to chemotherapeutics [32]. In addition, high 
expression of Bcl-xl predicts poor prognosis in NSCLC 
[33]. Alterations in protein expression of TNF family 
members such as TNFR-1, Fas, DR4, and DR5 may lead 
to resistance to anticancer drugs. It has been noted that 
soluble Fas could block apoptosis induced by Fas [34, 
35]. A clinical trial has verified that mutation of DR4 
and DR5 contributes to drug resistance in glioma [36]. A 
recent study observed that expression of P-gp is inversely 
associated with expression of TNF-related apoptosis-
inducing ligand or Apo2L (TRAIL), which mediates 
the apoptosis pathway in MDR cells. TRAIL has been 
implicated as a potent therapeutic target in clinical trials 
[37].

Mutation of drug targets

Molecular targeted therapy is an advanced treatment 
option in cancer therapy that has become a major focus 
in cancer research because of fewer side effects and 
higher efficacy than standard chemotherapy agents [38]. 
Several different molecules can be considered targets 
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Table 1: Cancer drug resistance related lncRNAs 
lncRNAs Targets Mechanisms Drugs Cancers Refs
LEIGC N/A N/A 5-Fu Gastric cancer [58]

MRUL ABCB1 N/A Multi-drug 
resistance Gastric cancer [59]

AK022798 MRP1, 
P-glycoprotein N/A Cisplatin Gastric cancer [60]

PVT1
MDR1, MRP1 N/A Multi-drug 

resistance Gastric cancer [61]

N/A N/A Cisplatin Ovarian cancer [47]

ANRIL PARP, bcl-2 N/A Cisplatin, 5-Fu Gastric cancer [63]

HOTAIR
GREB1, TFF1, 
c-MYC N/A Tamoxifen Breast cancer [52]

P21 N/A Cisplatin NSCLC [72]

IL-6 Activating NF-κB 
signaling Platinum Ovarian cancer [20]

HOXA1 DNA methylation Multi-drug 
resistance SCLC [77]

LncRNA-ATB miR-200c CeRNA Trastuzumab Breast cancer [53]

BCAR4 ERBB2/ERBB3 N/A Oestrogen,
Tamoxifen Breast cancer [48-51]

HIF1A-AS2 N/A N/A Paclitaxel Breast cancer [55]

AK124454 N/A N/A Paclitaxel Breast cancer [55]

UCA1 Wnt6 N/A Cisplatin Bladder cancer [67]

PARP, bcl-2 N/A Adriamycin Gastric cancer [62]

miR-204-5p CeRNA 5-Fu Colorectal cancer [84]

AK126698 NKD2 N/A Cisplatin NSCLC [74]

GAS5
IGF-1R N/A Gefitinib NSCLC [75]

miR-21 CeRNA Trastuzumab Breast cancer [54]

MEG3 P53, bcl-xl N/A Cisplatin NSCLC [73]

LINC00635-001 Akt N/A Gefitinib NSCLC [76]

ODRUL ACBC1 N/A Doxorubicin Osteosarcoma [78]

H19 MDR1, 
P-glycoprotein

Binding with DNA 
methyltransferases Doxorubicin Hepatocellular 

cancer [80]

linc-ROR CD133 N/A Sorafenib, 
doxorubicin

Hepatocellular 
cancer [81]

CCAL AP-2α, MDR1, 
P-glycoprotein

activating Wnt/β-
catenin pathway

Multi-drug 
resistance Colorectal cancer [83]

snaR N/A N/A 5-Fu Colorectal cancer [82]
HOTTIP HOXA13 N/A Gemcitabine Pancreatic cancer [79]
lncARSR miR-34/miR449 CeRNA Sunitimb Renal cancer [85]

ABCB1,ATP binding cassette subfamily B member 1; MRP1, multi-drug resistant associate protein 1; MDR1, multi-drug 
resistant protein; ceRNA, competing endogenous RNA; 5-Fu, 5-fluorouracil; NSCLC, non-small cell lung cancer; N/A, not 
available.
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for therapy, such as members of the signal transduction 
pathway; however, clinical tests have determined that 
drug resistance can be achieved when the pathway is 
altered [39-41]. Estrogen receptor (ER) positive breast 
cancer patients have a favorable prognosis compared 
with ER-negative patients but exhibit a higher recurrence 
rate following endocrine treatment. This is attributed to 
a decrease in ER-positive breast cancer cells. Moreover, 
activation of the PI3K/AKT/mTOR pathway results in 
resistance to endocrine drugs [42, 43]. Patients with lung 
cancer usually acquire resistance to EGFR TKIs due to the 
T790M mutation, the secondary mutation in EGFR [44]. 
Overexpression of BCR-ABL1 may account for the main 
mechanism of imatinib resistance. Clinically, patients with 
the BCR-ABL1 T315I mutation lose sensitivity to most 
second-generation TKIs [45].

LONG NON-CODING RNA IN CANCER 
CELL DRUG RESISTANCE

Recently, numerous lines of evidence have indicated 
that lncRNA expression is widely altered in cancers 
and that lncRNAs participate in various aspects of 
tumorigenesis through inactivation of tumor suppressors or 
activation of oncogenes [46-48]. For example, expression 
of the lncRNA MALAT1 is decreased by treatment with 
S-adenosyl methionine (SAM) suggesting that epigenetic 
regulation of MALAT1 expression is predominantly 
through DNA methylation [49]. Our previous studies 
have revealed that the expression pattern of several 
lncRNAs, such as HOTAIR, SPRY4-IT1, BANCR, and 
PVT1, is altered in human NSCLC and gastric cancer. 
Among these, PVT1 is significantly upregulated in 
NSCLC tissues and cells, and increased PVT1 expression 
promotes NSCLC cell proliferation and suppresses 
apoptosis through epigenetic repression of transcription 
of the tumor suppressor LATS2 by binding with enhancer 
of zeste 2 polycomb repressive complex 2 subunit(EZH2) 
[50]. In addition, the lncRNA HOTAIR is overexpressed 
in gastric cancer and either promotes cell proliferation 
and metastasis by functioning as a ceRNA to sponge up 
miR-331-3p or epigenetically silences miR34a by binding 
to PRC2 [51, 52]. HOTAIR has also been identified as 
a cell proliferation regulator through binding to EZH2 
in glioma cells [53]. Moreover, lncRNA BC032469 
can directly bind to miR-1207-5p as a ceRNA that may 
decrease the expression of telomerase reverse transcriptase 
in gastric cancer, and UCA1 can sponge miR-485-5ps and 
antagonize its repression of matrix metallopeptidase 14 in 
epithelial ovarian cancer cells [54, 55]. Notably, emerging 
evidence has shown that lncRNAs are also actively 
involved in cancer cell drug resistance. Meijer et al. first 
identified BCAR4 through a functional genetic screen in 
the ER-positive and estrogen-dependent breast cancer cell 
line ZR-75-1. Ectopic expression of BCAR4 in ZR-75-1 
cells induces hydroxytamoxifen resistance [56]. Moreover, 

knockdown of extracellular vesicle long non-coding RNA 
derived from extracellular vesicles reduced expression of 
ABCG2, promoting sorafenib-induced cell apoptosis in 
hepatocellular carcinoma [57]. PVT1 is associated with 
cisplatin resistance by inhibiting apoptotic pathways in 
ovarian cancer [58]. The lncRNAs involved in cancer 
cell drug resistance and their regulated targets/pathways 
related to cancer drug resistance are listed in Table 1.

lncRNAs and breast cancer drug resistance

ER-positive mammary cancers are mostly dependent 
on estrogenic growth stimulation and antihormone therapy 
is the major clinical treatment for ER-positive breast 
cancer. Regrettably, although anti-hormone therapy is 
widely applied to cure breast cancer patients, it cannot 
totally suppress the growth of breast cancer cells [59]. 
BCAR4 is a strong oncogene that transforms breast cancer 
cells into an estrogen-independent, antiestrogen-resistant 
state. In addition, loss of estrogen receptor 1(ESR1) does 
not result in tamoxifen resistance, as verified in ZR/
BCAR4 cells, and inhibition of ESR1 does not affect the 
drug resistant capacity of ZR/BCAR4 cells [60]. In 2010, 
Godinho et al. showed that high levels of BCAR4 predict 
poor PFS and patients with high expression of BCAR4 
are likely to be resistant to endocrine therapy. In addition, 
expression of ERBB2 and ERBB3 was elevated in ZR/
BCAR4 cells, indicating that activation of ERBB2/ERBB3 
signaling may contribute to BCAR4-induced proliferation 
in the presence of tamoxifen. Cell proliferation was 
inhibited after knockdown of BCAR4. An identical result 
was observed upon knockdown of ERBB2/3, implying 
that BCAR4 acts in an ERBB2/3-dependent manner 
[59, 61, 62]. Recently, Xue et al. found that HOTAIR 
expression was significantly higher in tamoxifen-resistant 
breast cancer tissues compared with primary cancer 
tissues. HOTAIR was directly repressed by estrogen 
and conversely upregulated in the absence of hormone. 
Interestingly, increased HOTAIR expression may 
strengthen ER signaling, stimulating ER transcriptional 
activities even under an estrogen-deprived environment. 
Moreover, functional studies revealed that a high level of 
HOTAIR promoted the growth of breast cancer, whereas 
silencing of HOTAIR abolished tamoxifen-resistant cell 
growth [63]. Shi et al. found that lnc-ATB was remarkably 
upregulated in trastuzumab-resistant breast cancer 
cells and tissues. Lnc-ATB could promote trastuzumab 
resistance and then induce an invasion-metastasis cascade 
in breast cancer by competitively sponging miR-200c, 
thereby upregulating ZEB1 and ZNF-217. In addition, 
overexpression of lnc-ATB was positively associated with 
trastuzumab resistance of breast cancer patients(Figure 1) 
[64]. Li et al. reported that GAS5 suppressed cancer cell 
growth by sponging miR-21, resulting in downregulation 
of phosphatase and tensin homolog(PTEN), the target 
of miR-21(Figure 1) [65]. Triple-negative breast cancer 
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account for one fifth of all breast cancers. Jiang et al 
reported lncRNA HIF1A-AS2 and AK124454 contributed 
to paclitaxel resistance in triple-negative breast cancer 
through transcriptome analysis [66].

Together, these findings provide new insight 
into breast cancethe involvement of lncRNAs in breast 
cancer drug resistance, and it is essential to identify more 
lncRNAs that could be potential therapeutic targets for 
chemotherapy-resistant breast cancer patients [67].

lncRNAs in gastric cancer drug resistance

Several studies have documented that various 
lncRNAs are dysregulated in gastric cancer, and that 
their aberrant expression is related to tumorigenesis, 
metastasis, or drug resistance. Han et al. found that 
LEIGC knockdown in MGC-803 cells resulted in reduced 
sensitivity of gastric cancer cells to 5-fluorouracil (5-FU) 
[68, 69]. Wang et al. showed that the lncRNA MRUL was 
located near the MDR1 gene region and that expression 
of MRUL was higher in both SGC7901/VCR and 
SGC7901/ADR cells than in SGC7901 cells. P-gp-related 
chemotherapy drugs are considered to be the standard 
treatment for patients encountering MDR. Patients with 
high MRUL levels responded negatively to chemotherapy 
drugs. Consistent with this finding, downregulation of 

MRUL enhanced chemosensitivity of MDR gastric cancer 
cell sublines to P-gp-related chemotherapy drugs. MRUL 
knockdown in MDR cells led to increased doxurubicin 
concentration and a reduced Bcl-2/Bax ratio that may 
promote the rate of apoptosis. Additionally, in vitro and 
in vivo results showed that MRUL depletion decreased 
ATP binding cassette subfamily B member 1 (ABCB1) 
mRNA levels. Heterologous luciferase reporter assays 
showed that MRUL performed an enhancer-like role to 
promote ABCB1 transcription [70]. Hang et al. found 
that Notch 1 overexpression positively regulated lncRNA 
AK022798 during gastric cancer progression. Silencing 
of AK022798 significantly reduced the cell viability of 
cisplatin-resistant cell lines SGC7901/DDP and BGC823/
DDP and the expression of MRP1 and P-gp, and increased 
apoptosis of SGC7901/DDP and BGC823/DDP cells. 
AK022798 may become a new target for the treatment of 
terminal-stage gastric cancer [71]. Zhang et al. reported 
that PVT-1 was highly expressed in gastric cancer tissues 
of cisplatin-resistant patients and BGC823/DDP and 
SGC7901/DDP cells. In addition, transfection of BGC823/
DDP and SGC7901/DDP cells with PVT-1 siRNA could 
overcome the resistance of these two cisplatin-resistant 
cell lines, whereas overexpression of PVT1 exhibited 
antiapoptotic activity in BGC823 and SGC7901 cells 
exposed to cisplatin. Moreover, qRT-PCR and western 

Figure 1: Overview of the involvement of long non-coding RNAs (lncRNAs) in cancer drug resistance. A. LncRNA-ATB 
competitively sponge miR-200c, downregulating ZEB1 expression, thus inducing trastuzumab resistance in breast cancer. B. GAS5 suppress 
the expression of phosphatase and tensin homologs (PTEN) by sponging miR-21. Downregulation of GAS5 leads to trastuzumab resistance 
in breast cancer. C. CCAL promotes MDR1 expression through activating Wnt/β-catenin pathway by targeting AP-2α in colorectal cancer. 
D. H19 induces MDR1 expression via increasing the MDR1 promoter methylation level in hepatocellular carcinoma.
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blotting analyses showed that the expression of MDR1, 
MRP, mTOR, and HIF-1a increased upon upregulation 
of PVT1. These findings suggest that lncRNA PVT1 may 
play a critical role in the development of MDR in gastric 
cancer [72]. Shang et al revealed that UCA1 knockdown 
inhibited the resistance to adriamycin of SGC7901/
ADR cells, UCA1 silencing promoted apoptosis through 
upregulating expression of PARP and suppressing Bcl-
2 levels [73]. Lan et al found that ANRIL was greatly 
upregulated in cisplatin resistant and 5-Fu resistant 
patients. The rate of tumor growth significantly decreased 
after transfected with si-ANRIL, and the levels of MDR1, 
MRP1 also reduced [74]. 

lncRNAs in bladder cancer drug resistance

Platinum-based chemotherapy is the standard first-
line treatment for bladder cancer, whereas gemcitabine 
plus cisplatin is approved for metastatic urothelial cancer. 
However, most patients ultimately experience disease 
recurrence due to the poor response to therapy [75]. Wang 
et al. used RACE technology to obtain full-length cDNA 
for UCA1, which is believed to play a role in bladder 
cancer progression. Cell viability studies by MTT assay 
showed that expression of UCA1 in BLS-211 cells caused 
resistance to cisplatin, and further studies determined that 
the level of serine-arginine protein kinase 1 was inversely 
related to UCA1 expression [76]. Wang et al. reported 
that overexpression of UCA1a led to fewer apoptotic 
cells after cisplatin treatment [77]. Fan et al. suggested 
that upregulation of UCA1 in patients with bladder cancer 
partially contributed to cisplatin-based therapy. Likewise, 
UCA1 expression levels were higher in cisplatin-resistant 
bladder cancer cells. Forced expression of UCA1 
augmented cell viability even in the presence of cisplatin, 
whereas UCA1 inhibition reduced cell viability during 
cisplatin treatment. Furthermore, UCA1 remarkably 
increased expression of Wnt6 in human bladder cancer cell 
lines, and their expression was also positively correlated 
in vivo. Finally, UCA1 promoted cisplatin resistance 
of bladder cancer cells by enhancing the expression of 
Wnt6 and activating Wnt signaling. Thus, the UCA1/
Wnt6 pathway represents a potential target for conquering 
chemoresistance in bladder cancer [78].

lncRNAs in lung cancer drug resistance

The developments of platinum-based chemotherapy 
and targeted therapies for EGFR-sensitive and ALK-
positive patients have been milestones in lung cancer 
treatment [79]. Nonetheless, increasing proportions 
of patients eventually develop acquired resistance 
[80]. Cheng et al. speculated that lncRNAs may play a 
pivotal role in resistance to EGFR-TKIs. They found 
that numerous lncRNAs were differentially expressed 

in gefitinib-sensitive and gefitinib-resistant cells using 
lncRNA microarray. Bioinformatics analysis showed 
that these aberrantly expressed lncRNAs were involved 
in regulating resistance to EGFR-TKIs by influencing 
neighboring genes. Pathway analysis revealed that cell 
proliferation and apoptosis were associated with the 
development of EGFR-TKI resistance [81]. In addition, 
Wu et al screened 1476 lncRNAs dysregulated in EGFR-
TKI-resistant cell line of lung adenocarcinoma, which 
further illustrated lncRNAs may play as biomarkers in 
EGFR-TKI therapy [82]. In our previous studies, we 
found that HOTAIR expression was significantly increased 
in cisplatin-resistant A549/DDP cells, and that siRNA-
mediated silencing of HOTAIR could partly restore the 
responses of A549/DDP cells to cisplatin. Functional 
analysis demonstrated that p21 is the underlying target 
of HOTAIR and overexpression of p21 partially rescued 
the HOTAIR-induced cisplatin resistance in A549/DDP 
cells [83]. In addition, we also revealed that MEG3 
expression is decreased in A549/DDP cells, and exogenic 
overexpression of MEG3 partially reversed the cisplatin 
resistance of A549/DDP cells through the regulation 
of p53 and Bcl-xl expression [84]. Moreover, Yang et 
al. identified eight lncRNAs that were differentially 
expressed in A549/DDP cells. Downregulation of 
one of these lncRNAs—lincAK126698 depressed the 
induction of apoptosis by cisplatin in A549 cells, possibly 
through decreased naked cuticle homolog 2 expression 
and increased β-catenin expression resulting in altered 
Wnt signaling [85]. Dong et al. reported that a high 
level of GAS5 reduced tumor growth both in vitro and 
in vivo under treatment with gefitinib. In addition, they 
confirmed that IGF-1R is a key downstream mediator 
that was inversely correlated with expression of GAS5 
[86]. Wu et al. demonstrated that linc00635-001 silencing 
accompanied by gefitinib treatment suppressed Akt 
activation and sensitized HCC827-8-1 cells to gefitinib-
induced cytotoxicity [87]. Fang et al testified HOTAIR 
recruited HOXA1 by RNA immunoprecipitation. HOTAIR 
silencing reduced methylation of HOXA1, and enhanced 
the sensitivity of cancer cells to anticancer drugs in SCLC 
[88].

lncRNAs in drug resistance of other cancers

Researchers demonstrated that expression of 
lncRNA ODRUL was increased in doxorubicin-
resistant osteosarcoma cell lines. ODRUL knockdown 
led to suppression of the ABCB1 gene, which is related 
to multidrug resistance [89]. Silencing of HOTTIP 
increased the chemosensitivity of pancreatic cancer cells 
to gemcitabine. The expression of HOTTIP showed a 
positive correlation with HOXA13 and the biological 
behavior of HOTTIP was partially modulated by 
HOXA13. Moreover, a high level of HOXA13 predicted 
poorer prognosis in pancreatic cancer [90]. Tsang et al. 
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observed that H19 inhibition decreased the expression of 
MDR1/P-glycoprotein and increased cellular doxorubicin 
accumulation and doxorubicin sensitization in both 
HepG2 parent cells and R-HepG2 cells. MDR1 promoter 
methylation was inversely correlated to MDR1 expression 
level, and only half of the CpG island sites at the MDR1 
promoter region were hypomethylated in R-HepG2 cells. 
Furthermore, there was an increase in MDR1 promoter 
methylation level after H19 knockdown. These findings 
demonstrated that H19 altered P-glycoprotein expression 
and induced MDR1-associated drug resistance by 
modulating MDR1 promoter methylation (Figure 1) [91]. 
A recent study reported that linc-ROR expression was 
induced by sorafenib in HCC cells, whereas knockdown 
of linc-ROR enhanced chemotherapy-induced cell death. 
Silencing of linc-ROR attenuated the expression of 
the CD133+ cells present among tumor-initiating cells 
that resulted in progression of chemoresistance [92]. 
Lee et al. identified that upregulation of lncRNA snaR 
promoted apoptosis of colon cancer cells after 5-FU 
treatment. In contrast, loss of snaR decreased sensitivity 
of cancer cells to 5-FU [93]. Ma et al. showed that the 
lncRNA CCAL acted as an oncogene in colorectal cancer 
progression; patients with high CCAL expression had 
shorter survival and worse response to chemotherapy. 
CCAL mediated a reduction in AP-2α protein-activated 
Wnt/β-catenin signaling, inducing multidrug resistance 
and upregulating MDR1/P-gp expression. Moreover, 
CCAL was upregulated by histone H3 methylation and 
deacetylation in colorectal cancer (Figure 1) [94]. Bian 
et al detected that UCA1reduced sensitivity of colorectal 
cancer cells. UCA1 sponged miR-204-5p, activating 
CREB1 expression, which correlated with poor prognosis 
of patients [95]. Qu et fal found that exosome transmitted 
lnc ARSR functioned as ceRNA sponging miR-34/miR449 
that may promote the expression of AXL and c-MET, 
thus inducing sunitinib resistance in renal cancer. It is 
believed that lncARSR or AXL/c-MET inhibitors may 
have curable potential in renal cancer treatment [96]. Özeş 
et al conducted that HOTAIR was highly expressed in 
ovarian cancer patients resistant to platinum therapy. The 
ectopic expression of HOTAIR could persistently repair 
DNA damage attributed by platinum, and it activated 
NF-κB signaling. It is suggested that NF-κB/HOTAIR 
crosslinking contributed to chemoresistance in ovarian 
cancers [30].

FUTURE PERSPECTIVES

Cancer is a major cause of human disease-related 
death worldwide. Chemotherapy is one of the main 
treatment methods for cancer patients, and many newly 
developed molecular targeted drugs significantly improve 
therapeutic efficacy and prolonged patient survival time. 
However, resistance to chemotherapy drugs has become 

the most urgent problem hampering the treatment of 
cancer patients. Over past decades, substantial efforts have 
been devoted to the investigation of resistance mechanisms 
of cancer cells and approaches to reverse such resistance. 
Researchers have found that many protein coding genes 
such as MDR1, ABCG2, and MRP play critical roles 
in cancer cell drug resistance, and some of them have 
been used to develop treatment strategies for patients. In 
addition, many noncoding RNAs, including microRNAs 
and lncRNAs, have also been shown to be involved in this 
process [97-99]. Chen et al. reported that low expression 
of miR-206 correlates with restored cisplatin resistance 
in lung adenocarcinoma tissues, and that miR-206 
suppresses cisplatin resistance via inactivating PI3K/AKT 
/mTOR signaling pathways [100]. Sun et al. proposed that 
upregulation of miR-424 and miR-27a enhanced TRAIL 
sensitivity by downregulating PLAG1 [101]. Besides, 
lncRNAs have been reported to act as oncogenes or tumor 
suppressor genes that can reduce or increase the sensitivity 
of cancer cells to anticancer regimens such as tamoxifen, 
gefitinib, cisplatin, docetaxel, and 5-Fu. More further 
studies are needed to determine whether lncRNA-based 
cancer therapy can be applied to clinical practice [102]. 
Although studies on lncRNA and cancer drug resistance 
remain in their infancy, we cannot ignore the potential 
of lncRNAs as candidates to develop novel strategies 
to reverse the cancer cell resistance to chemotherapy or 
molecular targeted therapy. Therefore, more researches 
are needed to identify additional lncRNAs related to 
cancer cell drug resistance and elucidate their function 
and molecular mechanisms, which may place lncRNAs at 
center stage in the biology of drug resistance of cancer 
cells.
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