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ABSTRACT
◥

BRCA1/2 mutations account for only a small fraction of homol-
ogous recombination (HR) deficiency (HRD) cases. Recently devel-
oped genomic HRD (gHRD) tests suffer confounding factors that
cause low precision in predicting samples that will respond to PARP
inhibitors and DNA damaging agents. Here we present molecular
and clinical evidence of transcriptional HRD (tHRD) that is based
on aberrant transcript usage (aTU) of minor isoforms. Specifically,
increased TU of nonfunctional isoforms of DNA repair genes was
prevalent in breast and ovarian cancer with gHRD. Functional
assays validated the association of aTU with impaired HR activity.
Machine learning–based tHRD detection by the transcript usage
(TU) pattern of key genes was superior to directly screening for

gHRD or BRCA1/2 mutations in accurately predicting responses of
cell lines and patients with cancer to PARP inhibitors and genotoxic
drugs. This approach demonstrated the capability of tHRD status to
reflect functional HR status, including in a cohort of olaparib-
treated ovarian cancer with acquired platinum resistance. Diagnos-
tic tests based on tHRD are expected to broaden the clinical utility of
PARP inhibitors.

Significance:Anovel but widespread transcriptionalmechanism
by which homologous recombination deficiency arises indepen-
dently of BRCA1/2 mutations can be utilized as a companion
diagnostic for PARP inhibitors.

Introduction
The two key genes of the homologous recombination (HR) pathway

for double-strand break (DSB) repair, BRCA1 and BRCA2, are
intimately associated with the heritability of breast and ovarian cancer.
Recent studies have shown that DNA damage response (DDR) path-
ways are frequently mutated in these and other cancers (1–3). There-
fore, targeting vulnerabilities in DNA repair activity, in particular HR

deficiency (HRD), has been a primary treatment option. In the
representative example of synthetic lethality, inhibiting PARP
enzymes can selectively suppress cells that are defective in DDRs, for
example, due to BRAC1/2 mutations (4–9).

However, BRCA1/2 mutations account for a small fraction of HRD
cases, thereby limiting the development of more comprehensive
HRD diagnostic markers. A promising approach has been to detect
the genomic consequences, instead of the causal factors, of HRD.
Defective HR machinery leaves genomic footprints and lesions as a
consequence of failure in damage maintenance. Specifically, muta-
tional signature 3 and genomic scar are well known indicators of
HRD (10–15). Signature 3 has been linked to HRD by associating the
genome-wide patterns of single-nucleotide variants with specific
background factors (16). Genomic scar is determined by a combina-
tion of three chromosomal aberrant events, namely, telomeric allelic
imbalances, large-scale state transition, and LOH (17–19).

These genomic assays, however, cannot reflect the functional
restoration of HR that gives rise to therapeutic resistance (20).
BRCA1/2 reversion and various other mechanisms can account for
acquired resistance to platinum regimens and PARP inhibitors in
ovarian cancer (21–27). In these cases, initially imprinted genomic
scars remain detectable in tumors with recovered HR activity.
Furthermore, several technical artifacts can arise when calculating
mutational signatures (28). For example, the bleeding of signatures
refers to the phenomenon in which signatures present in only some
samples of a cohort affect the signature assignment of the entire cohort.
Directly related to detection of HRD is the tendency of the fitting
processes to force the assignment of flat signature 3 to irrelevant
samples (28).

These biological or technical confounding factors together make
detection of genomic HRD (gHRD) prone to false positives. This
results in low levels of precision because a considerable number of
tumors predicted to respond to DNA-damaging agents or PARP
inhibitors would not actually respond (29). Because of the coupling
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of precision and recall, attempts to improve precision by applying
more stringent cut-off points will undermine sensitivity. This calls for a
different biomarker that can complement this limitation and improve
precision. For example, biomarkers that can detect functional HRD
status may be used to refine gHRD predictions by filtering out tumors
that regained HR functionality (29).

In this work, we pay attention to transcriptional processes, which
change dynamically in response to functional fluctuation during
cancer evolution but are not affected significantly by the genomic
consequences of HRD. We employ machine learning to capture
patterns of transcriptional aberration that may be responsible for true
gHRD readouts by contrasting with the profiles of negative gHRD
samples. Ultimately, by leveraging data from patients with acquired
resistance to initial treatments, we attempt to test whether our method
can determine real-time, functional HR status and overcome the
limitations imposed by the artefacts of the gHRD tests.

Materials and Methods
The Cancer Genome Atlas data collection and gHRD
determination

Of 757 caseswith breast adenocarcinoma fromTheCancerGenome
Atlas (TCGA; TCGA-BRCA), we identified 644 samples with the
required molecular data available for our analysis, including bam files
from RNA sequencing (RNA-seq). We analyzed 324 TCGA ovarian
serous cystadenocarcinoma samples (TCGA-OV) whose chemother-
apy response data were available. Processing of the data is elaborated in
Supplemental Methods.

To define differences in expression level, splicing, and transcript
usage (TU) between HRDþ and HRD�, we used a stringent classifi-
cation of gHRD based on using both genomic scar and signature 3.
Genomic scar (HRD scores) and mutation signature 3 were obtained
from TCGA Hub (https://tcga.xenahubs.net) and mSignatureDB
(http://tardis.cgu.edu.tw/msignaturedb). Six hundred and forty-four
TCGA-BRCA samples were marked as gHRDþ when both genomic
scar and signature 3 exceeded themedian level (n¼ 210). Samples were
marked as gHRD� when both genomic scar and signature 3 were less
than the median level (n¼ 225). These 435 samples were retained for
further analysis. We analyzed 324 TCGA-OV samples in the same
manner. The samplesweremarked as gHRDþwhen both genomic scar
and signature 3 exceeded the median level (n ¼ 80). Samples were
marked as gHRD� when both genomic scar and signature 3 were less
the median level (n ¼ 82).

Quantification of TU and identification of aberrant TU
Individual transcript levels were quantified by transcripts per

million (TPM) through the two-pass method of StringTie (v.1.3.5;
ref. 30) using recommended parameters. For quantification of all
transcripts, including novel transcripts, we first performed the assem-
bly step using GENCODE v29 annotation for the BRCA1/2-active
TCGA-BRCA samples (n ¼ 388) and TCGA-OV samples (n ¼ 324),
and GENCODE v19 annotation for the Cancer Cell Line Encyclo-
pedia (CCLE) samples (n ¼ 56) as reference data, to extract
annotated and novel transcripts as individual gene transfer format
(GTF) files for each sample. We then created a newly assembled
reference by merging these GTF files of our different samples, which
were used for transcript quantification. TU was calculated by first
matching the gene origin of all transcripts using GffCompare
(v.0.11.2; 31) and then calculating the ratio of the respective TPM
transcript to the sum of all TPM transcripts belonging to the
respective matched gene.

Additional filtering was performed to identify minor transcripts
with functional loss from the computed TU matrix. Major transcripts
encoding proteins that are well preserved functionally and evolution-
arily (defined as principal isoforms; Principals 1–5) were filtered using
GENCODE v29 annotation from the Annotating Principal Splice
Isoforms (APRIS) database (32). The remaining transcripts that passed
through this initial filter belonged to the Alternative 1, Alternative 2, or
Not-Reported category, and were subsequently classified as minor
transcripts for our use in further analysis. Next, the mean counts per
million (CPM) of each genewas calculated to reduce noise in theminor
TU matrix; the TU of genes with a mean CPM less than 1 was filtered
out. Additionally, standard deviation-based filtering was performed to
remove TU with low intersample differences and to minimize noise in
the minor TU matrix.

We used two reciprocal approaches to identifying aberrant TU
(aTU) events. First, we identified minor transcripts whose TU was
significantly different between gHRDþ and gHRD� samples by using
the Mann–Whitney U test. The P values were adjusted based on
Benjamini–Hochberg correction for TCGA-BRCAbut not TCGA-OV
because of small sample size.We selected theminor transcript with the
highest statistical significance among multiple minor transcripts from
the same gene showing significant intergroup differences (FDR < 1%
for TCGA-BRCA and nominal P < 0.01 for TCGA-OV). aTU in
gHRDþ was defined when the most significant minor transcript was
overexpressed in gHRDþ. On the other hand, aTU in gHRD� was
defined when the most significant minor transcript was overexpressed
in gHRD�. Second, we partitioned samples based onTUvalues instead
of gHRD status. For each minor transcript, we selected samples whose
TU was greater than the 75th percentile (‘high minor TU’ group) and
those whose TU was lower than the 25th percentile (‘low minor TU’
group). We then compared the genomic scar scores between the two
groups using the Mann–Whitney U test followed by Benjamini–
Hochberg correction for TCGA-BRCA. This procedure was repeated
for each minor transcript from respective genes to identify significant
differences in genomic scar (FDR < 10% for TCGA-BRCA and
nominal P < 0.01 for TCGA-OV). The transcript with the most
significant difference in genomic scar was chosen for each gene. aTU
in gHRDþ was defined when genomic scar was higher in the ‘high
minor TU’ group for the most significant transcript. On the contrary,
aTU in gHRD�was defined when genomic scar was higher in the ‘low
minor TU’ group for the most significant transcript.

Development of the tHRD prediction model
For the breast cancermodel, we used all minor transcripts (n¼ 104)

of DNA repair genes with aTU in gHRDþ (n ¼ 35) as input to the
random forest (RF) classifier. TCGA-BRCA samples (n ¼ 388) were
divided in a 7:3 ratio, representing the training set (n¼ 272) and test set
(n ¼ 116) respectively, and the TU of the 104 isoforms were used as
features for prediction of gHRD status. Best parameter tuning of theRF
classifier was performed using the RandomizedSearchCV module of
sklearn.model. Each set of parameters went through 100 iterations, and
a stratified three-fold cross-validationwas performed.Mean validation
accuracy was computed for each result parameter set. Parameter sets
were sorted based on thismean value to identify the parameter set with
the highest mean validation accuracy. The average validation accuracy
for the classifier model developed with the best parameter set was 0.82.
The accuracy of the model for the test set indicated 0.84. The model
developed by this process was applied to the CCLE dataset to analyze
the correlations of tHRD status with sensitivity to PARP inhibitors or
DNA damaging drugs with the binary classification of tHRDþ or
tHRD� using a threshold score of 0.5. The tHRD probability itself was
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used for its correlation with gene dependency (DepMap RNAi com-
bined score).

The same procedures were repeated for the ovarian cancer model
with all minor forms (n ¼ 74) of DNA repair genes with aTU in
gHRDþ genes (n ¼ 22). The 74 TU values were used as features to
develop the RF classifier model. TCGA-OV samples were divided into
a training set (n ¼ 130) and test set (n ¼ 32). Because of its smaller
sample size compared with TCGA-BRCA set, we performed a stricter
best parameter tuning of the ovarian classifier to prevent overfitting.
This tunning was performed by the ten-fold cross-validation option of
RandomizedSearchCV. The parameter set with the highest mean
validation accuracy was chosen as the best one. The accuracy of the
model for the test set indicated 0.72. The model developed by this
process was applied to predict platinum chemotherapy sensitivity. We
employed the reannotation of the therapeutic responses of TCGA-OV
samples to platinum chemotherapy (33). Model performance was
evaluated by the precision-recall curve in comparison to the gHRD
metrics. The identical model was subsequently used to predict ther-
apeutic responses to olaparib and platinum in our neoadjuvant
chemotherapy (NAC), platinum resistance (PR), olaparib mainte-
nance (OM), and olaparib salvage (OS) cohorts.

Clinical data collection and analysis
The NAC, PR, OM, and OS cohorts consisted of patients with

advanced-stage or recurrent ovarian cancer who were treated with
platinum-based chemotherapy and/or olaparib from 2016 to 2021 at 3
hospitals (Severance Hospital, Samsung Medical Center, and Seoul
National University Hospital). The NAC cohort (n ¼ 27) included
patients who were treated with NAC followed by interval debulking
surgery. Fresh-frozen tumor samples were obtained before platinum-
based chemotherapy. The PR cohort (n ¼ 36) represented cases that
showed recurrence after platinum-based chemotherapy. Fresh-frozen
tumor samples were obtained after acquisition of PR (at progression).
Platinum responses were regarded as sensitive with platinum-free
interval (PFI)≥ 6months or resistant with PFI< 6months. In theNAC
cohort, 14 patients were classified as platinum-sensitive and 6 patients
were platinum-resistant. All patients from the PR cohort were con-
sidered as platinum-resistant. In the OM (n ¼ 24) and OS (n ¼ 33)
cohorts, patients with advanced-stage ovarian cancer treated with
olaparib were enrolled for this study. The OS cohort represented
patients who received olaparib as salvage therapy with PR and at least
three prior lines of treatment. Most of the patients were BRCA1/2
mutants. Tumor samples, obtained before olaparib treatment, were
embedded in paraffin after formalin fixation or kept fresh. The OM
cohort included patients treated with olaparib for maintenance fol-
lowing platinum-based chemotherapy. Most of the patients were
BRCA1/2 mutants. Tumor samples, obtained before the last round
of platinum therapy, were embedded in paraffin after formalin fixation
of kept fresh. Different criteria were applied to the OM and OS cohort
when classifying the olaparib users into responders and nonrespon-
ders. Complete response or partial response was considered as durable
response for theOS cohort. For theOM cohort, we considered patients
with progression-free survival (PFS) ≥ 12months as responders, based
on Study 19 (ClinicalTrials.gov identifier: NCT00753545) reporting
the median PFS of 11.2 months for patients with OM with BRCA1/2
mutations (34).

Clinical response was evaluated by the Response Evaluation
Criteria in Solid Tumors (RECIST) 1.1. PFS was calculated from
the start date of therapy to the date of progression or death. This study
was approved by the institutional review board of the participating
centers (Severance Hospital, Samsung Medical Center, and Seoul

National University Hospital) in accordance with the Declaration
of Helsinki and the International Conference of Harmonisation
Good Clinical Practice Guidelines (Severance Hospital, 4–2018–
0342; Samsung Medical Center, 2018–10–009 and 2019–03–126;
Seoul National University Hospital, 1810–035–977). Informed writ-
ten consent was obtained from all patients enrolled in this study. We
used a panel (CancerSCAN 3.1) to determine the presence or absence
of pathogenic or likely pathogenic mutations in 15 HR repair genes
(i.e., BRCA1, BRCA2, ATM, BRIP1, PALB2, RAD51C, BARD1,
CDK12, CHEK1, CHEK2, FANCL, PPP2R2A, RAD51B, RAD51D,
and RAD54L). Classification of variants was conducted in accordance
with the principles published in the American College of Medical
Genetics and Genomic standards and guidelines for interpretation of
sequence variants (35).

Sequencing and gHRD estimation of cohort samples
Whole-genome sequencing (WGS), whole-exome sequencing

(WES), and RNA-seq data were obtained from fresh-frozen or for-
malin-fixed, paraffin-embedded (FFPE) samples. Detailed sequencing
procedures are described in Supplemental Methods.

To estimate the signature 3 contribution of the PR, NAC, OS, and
OM samples, single-nucleotide variant (SNV) calling was performed
using Mutect2 (v.2.2) with recommended filtering steps and default
parameters. For the PR and OS cohort, Mutect2 matched-normal
mode with default parameters was used with WES bam files as input
for SNV calling, whereas Mutect2 tumor-only mode with default
parameters was used for SNV calling from WGS bam files as input
for the NAC and OM cohort. For the CCLE samples, we obtained the
calling data for somatic mutations from the Broad Institute CCLE
portal (https://portals.broadinstitute.org/ccle). Next, we determined
the mutation signature of each SNV using the R package deconstruct-
Sigs (v.1.8.0; ref. 36). Variant information in the vcf files was trans-
formed into the recommended inputfile format by using the vcf.to.sigs.
input method provided by the software package. To assess signature
contributions, fitting was performed for the previously reported set of
mutational signatures for each cancer type (i.e., signatures 1, 3, and 5 in
ovarian cancer and signatures 1, 2, 3, 5, 6, 8, 10, 13, 17, 18, 20, 26, and 30 in
breast cancer) using the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (https://cancer.sanger.ac.uk/cosmic/signatures_v2).

Genomic scar was estimated by determining copy number altera-
tions in the WES or WGS data using sequenza-utils (v.3.0.0; ref. 37),
based on which LOH, large scale transitions, and the number of
telomeric allelic imbalances were estimated using the scarHRD R
package (R package v.0.1.1; ref. 38). The sum of these values served
as the genomic scar score (17–19). We calculated genome-wide
guanine-cytosine (GC) content values by using the gc_wiggle program
with recommended parameters. We then processed the genomic bam
files with the GC content values by using the bam2seqz program with
recommended parameters to convert to a seqz file that contains
information on copy number alterations. The process to determine
copy-number alterations were identical to SNV calling with Mutect2.
The matched-normal mode was used for the PR and OS WES bam
files. The tumor-only mode was used for the NAC WGS bam files
with the Pan-Cancer Analysis of Whole Genomes normal WGS
bam file as nonmatching normal samples. Because the seqz file of
each cohort obtained through sequenza-utils was split for each
chromosome, a single seqz file was merged per sample. Genomic
scar was calculated using the scarHRD R package (R package v0.1.1;
ref. 38) and used as the input seqz file. gHRD status was determined
by using the median of signature 3 and genomic scar scores in
respective cohorts.
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Functional assays
Primary breast cancer (PD:tHRDþ andPD:tHRD�) cells were isolated

from tumor tissues of a patient-derived xenograft (PDX) model. Fresh
tumor tissues were minced into 1 to 2 mm pieces using sterile scissors,
scalpel, and forceps. For tissue digestion, the tissue pieces were incubated
in RPMI 1640 medium (Hyclone) containing 5% FBS (Hyclone), 1%
penicillin/streptomycin (Hyclone), 20 mg/mL of collagenase Type III
(Sigma Aldrich), and 840 ng/mL Amphotericin B (Gibco) for 6 hrs at
37�C.The digested tissue pieceswerewashedwithmedia three times. The
primary cells were cultured in RPMI 1640 medium containing 5% FBS,
1% penicillin/streptomycin, hEGF (20 ng/mL; Gibco), hydrocortisone
(4 mg/mL; Sigma Aldrich), and transferrin (4 mg/mL; Sigma Aldrich).
Depletion of mouse stromal cells was performed using Mouse Depletion
Kit (Miltenybiotec) according to the manufacturer’s instructions.

For immunocytochemistry, the PD:tHRDþ and PD:tHRD� cells
were cultured in a slide-covered dish and treated with Olaparib
(2 mmol/L; Sigma) for 48 hours. The cells were fixed with 4%
formaldehyde and permeabilized with 0.1% Triton X-100. Sample
slides were labeled with primary antibodies for Rad51 (1:500; Abcam)
or gH2AX (1:1000; Abcam) and then stained with the corresponding
Alexa Fluor 488-conjugated secondary antibody (Invitrogen) for
1 hour at room temperature. DAPI was used for nuclear staining.
The cells were then mounted with Aqua-Poly-Mount mounting
medium and imaged using an LSM710 confocal microscope (Carl
Zeiss AG) under 400X magnification. Twenty cells from each sample
were counted to calculate the nuclear Rad51 and gH2AX foci.

For HR activity assays, the PD:tHRDþ and PD:tHRD� cells were
pretreated with control media or with Olaparib (2 mmol/L). After 12 to

Figure 1.

HRD-associated overexpression of minor transcripts of DNA repair genes. A, Concept of aTU as the relative overexpression of a minor isoform of a gene in HRDþ

tumors. TU is calculated as the TPM of an isoform divided by the sum of all TPMs. From each gene, the minor isoform with the most significant differential TU was
selected and used to calculate the representativeminor TU of the given gene.B,Normalizedminor TU levels of 2,521 aTU genes in gHRDþ versus gHRD� TCGAbreast
tumors. Significantly differential TU was identified at a FDR < 10%. C, Functional enrichment analysis of the 2,521 aTU genes (red dots) in comparison to a negative
control set, for which aTU was defined as the relative overexpression of a minor isoform in gHRD� (blue dots). D, Representative aTU genes involved in DSB repair.
Shown are the levels of the minor TU of the gene in gHRDþ versus gHRD� samples (left), genomic scar in samples with high minor TU versus lowminor TU (middle),
and signature 3 in samples with high minor TU versus low minor TU (right). High and low minor TU are defined at the 75th and 25th percentile of all samples,
respectively. Comparisons between two groups were performed using the Mann–Whitney U test, and the P values were corrected by the Benjamini–Hochberg
procedure.
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16 hrs, the cells were transfected with circular pDR-GFP (Addgene
26475) using Lipofectamine 2000 as recommended by the manufac-
turer (Invitrogen). After 24 hours, the cells were additionally trans-
fected with the I-SceI–producing plasmid pCBASceI (Addgene
26477). Flow cytometry analysis was performed 24 hours later with
AccuriFlow Cytometry (BD Biosciences). The GFP-positive cells were
quantified by the FlowJo program, and the average HR frequency was
measured from three independent samples.

We performed Western blotting as follows. After Olaparib treatment
for 48 hours, protein samples were prepared and loaded at 10 to 50mg of
total protein per lane. The blot was probed with anti-BCL2 (1:1000, Cell
Signaling Technology), anti-BAX (1:1000, Cell Signaling Technology),
anti–phospho-p53 (Ser-15 or -392; 1:1000; Cell Signaling Technology),
and anti–b-actin (1:1000; Santa Cruz Biotechnology) antibodies. The
relative densities of bands were analyzed with the NIIH ImageJ 1.47v
software. For the alamarBlue cell viability assay, cells were cultured in a
96-well plate and treatedwith 2mmol/LOlaparib.At 24, 48, and72hours

posttreatment, 1/10th volume of alamarBlue reagent (Invitrogen) was
added directly to the culturemedia. The alamarBlue assaywas performed
according to the manufacturer’s instructions. Viable cells were detected
by fluorescence measurements using a microplate fluorescence spectro-
photometer (GenTeks Biosciences, Inc.).

Data availability
Raw sequencing data for our cohort samples have been submitted to

the BioProject database under BioProject ID PRJNA700673 (reviewer
access: http://www.ncbi.nlm.nih.gov/bioproject/700673).

Results
Minor isoform overexpression is associated with gHRD

We collected breast cancer samples from TCGA, examined germ-
line and somatic BRCA1/2 mutations, and defined HR status by using
both genomic scar and signature 3 readouts (Supplementary Fig. S1A).

Figure 2.

Functional characterizationof aTUevents.A,Frequencies of annotation categories that represent the functional consequences or alternative events byminor isoform
transcription. The odds of each class among the identified aTU genes was divided by the odds of that class among all genes. For example, a >3-fold
overrepresentation of intron retention and noncoding transcription was found among minor isoforms overexpressed in gHRDþ relative to all such events in the
genome. B, Nonfunctional minor transcripts overexpressed in gHRDþ from ATM, BRIP1, MRE11, RAD51, and MRE11. C, RNA read profiles of aTU involving intron
retention in representative genes in selected samples. Red, gHRDþ samples; blue, gHRD� samples.
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As expected, a majority (>87%) of BRCA1/2-mutant samples were
gHRDþ (Supplementary Fig. S1B, left). Importantly, a sizeable
fraction (approximately 44%) of BRCA1/2-wildtype tumors also
showed genomic instability at a stringent threshold, satisfying both
metrics (Supplementary Fig. S1B, right), thereby implying HRD
mechanisms that do not engage BRCA1/2 mutations. By using the
transcriptomes of TCGA samples, we tested whether DNA repair
genes were transcriptionally inactive in the gHRDþ samples. How-
ever, the genes repressed in association with gHRDþ were not
enriched for molecular functions associated with DNA repair
(Supplementary Fig. S1C).

This prompted us to investigate differential RNA splicing between
the gHRDþ and gHRD� samples. Remarkably, our enrichment anal-
ysis indicated that genes involved in DNA repair tend to be spliced

differentially between the 2 groups (Supplementary Fig. S2A). How-
ever, splicing patterns themselves are not indicative of functional
consequences. To further test whether splicing regulation is respon-
sible for HRD, we examined the patterns of TU because minor or
alternative isoforms can directly represent functional loss (32, 39).
Specifically, we identified aTU as the relative overexpression of aminor
transcript in the gHRDþ samples (Fig. 1A and B). In total, we
identified 2,521 such aTU genes (Fig. 1B) with a significant overrep-
resentation of DNA repair-related terms (Supplementary Fig. S2B),
particularly DSB repair andDNA replication (red dots inFig. 1C). The
aTU patterns of representative DSB repair genes, including RAD51,
are shown in Fig. 1D. Notably, this enrichment was not found for the
opposite definition of aTU with minor isoform overexpression in
gHRD� tumors (blue dots in Fig. 1C).

Figure 3.

Functional validation of tHRDmodel based ongenetic dependencies of clinical samples.A, Functional enrichment analysis of the genes predicted to be dependencies
in TCGA tHRDþ and tHRD� samples. Statistical significance of overrepresentation of the genes involved in various DNA repair pathways was plotted. The q values
were calculated from the GSEApy enrichment test. B, Higher dependency scores in TCGA tHRDþ and tHRD� samples (columns) were found for genes (rows)
pertaining to DNA repair, recombination, and replication. Relevant functional categories are marked on the left side of the heatmap. Dependency scores for TCGA
tumors were derived from our previous work (50). C, Examples of genes with higher dependency scores in the tHRDþ and tHRD� tumors. Colored and gray curves
represent the distribution of the tHRDþ and tHRD� samples, respectively. Comparisons between two groups were performed using the Kolmogorov–Smirnov test.
D, Genes (rows) whose minor isoform expression correlated with genetic dependencies on the PRKDC gene. Across TCGA samples (columns), we calculated
the correlations between the PRKDC dependency score and the TU of minor isoforms of individual genes. Marked on the left are genes involved in the pathways of
DNA repair, replication, and recombination.
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We examined whether the gHRD-associated aTU events give rise to
functional loss. In fact, the frequency of retrained introns and processed
transcripts (i.e., noncoding transcripts that do not contain an open
reading frame) by aTU was more than 3 times higher than expected
from the genome-wide distribution (Fig. 2A). Nonfunctional minor

forms overexpressed in gHRDþ from ATM, BRIP1, RAD51, and
MRE11 are shown in Fig. 2B. For example, intron retention in BRIP1
results in the disruption of the BRCA1-interacting domain by a
frameshift (Fig. 2B). We checked the RNA read profiles of aTU
involving intron retention in BRIP1 and other genes in selected samples

Figure 4.
Functional validation of tHRD model by HR assays in olaparib-treated PD cells. A, Comparison of the minor TU of DNA repair genes between PD tHRDþ cells (PD:
tHRDþ) and tHRD� cells (PD:tHRD�). A cluster of genes showingminor form overexpression in PD:tHRDþwas identified. Names of the genes are provided below the
zoomedheatmapof differential TU.B, Immunofluorescence staining images for gH2AX (red) andRAD51 (green) inPD:tHRDþ andPD:tHRD�before and after olaparib
treatment. Blue background indicates the fluorescent stain DAPI. Additional images are provided in Supplementary Fig. S6A. The graphs show the number of gH2AX
and Rad51 foci per cells, with the mean and SE obtained from four images. Comparisons between two groups were performed using the Student t test.
C, Representative scatter plots showing the rate of HR repair based on the DR-GFP/I-SceI assay in PD:tHRDþ and PD:tHRD� before and after olaparib treatment.
GFP-positive cells in themarked and zoomed zones indicate a populationof cells that underwentHR-mediatedDSB repair of GFP reporter plasmids. The graph shows
the fraction of the GFP-positive cells, with the mean and SE obtained from three replicate experiments after excluding the maximum and minimum. Comparisons
between two groupswere performed using the Student t test. Replicate plots are provided in Supplementary Fig. S6B.D,Western blot analysis of PD:tHRDþ and PD:
tHRD� before and after olaparib treatment for BCL2 (antiapoptotic protein), BAX (proapoptotic protein), P53 phosphorylation at Ser-15 (senescence marker), and
P53 phosphorylation at Ser-392 (apoptosis marker). E, Cell viability measured by the alamarBlue assay in PD:tHRDþ and PD:tHRD� before and after olaparib
treatment. Fluorescence signalswere obtained at 24, 48, and 72 hours after the treatment and normalized by the pretreatment (control)measurements.Mean and SE
were obtained from three experiments. Comparisons between two groups were performed using the Student t test. H, hours.

Figure 5.

Responses to PARP inhibitors and genotoxic drugs explained by tHRD in cell lines. A, Comparison of IC50 between tHRDþ/tHRD� versus gHRDþ/gHRD� in breast
cancer cell lines. The same graphs for the responses to bleomycin, etoposide, and SN-38 are provided in Supplementary Fig. S7. Response data were obtained from
the GDSC database. We applied our tHRD detection model to the RNA-seq data of the cell lines to classify them as tHRDþ and tHRD�. Comparisons between
two groups were performed using the Mann–Whitney U test. B,Mapping of drug sensitivity and HRD prediction results in respective cell lines. Below the plot of IC50

values are the results of our tHRD model and signature 3–based gHRD assay for the corresponding cell lines. The plus signs denote HRDþ predictions. gHRD was
considered positive above the 75th percentile of signature 3. IC50 values lower than themedianwere regarded as positive responses to the given drug. C,Differences
in drug sensitivity between the tHRDþ and tHRD� breast cancer cell lines across drug classes. Differences are denoted as�log10P values at the top for drugs sorted in
the order of the statistical significance. Below is the grouping of the drugs named at the bottom according to their mechanism of action shown on the left. PARP
inhibitors, DSB-inducing agents, anthracyclines, and DNA cross-linkers are highlighted in colors. The P values are from the Mann–Whitney U test.
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Figure 6.

Therapeutic responses toolaparib andplatinum regimens explainedby tHRD.A andB,HRD-basedprediction of platinum sensitivity of patientswith ovarian cancer in
TCGA (n ¼ 103). A, Precision versus recall (left), and accuracy and F1 at the best accuracy (right), for tHRD, genomic scar, and signature 3. B, PFS for patients
partitioned by the tHRD- and gHRD-based classification. PFI comparisons between two groups were performed using the log–rank test. C, Precision versus recall
(left), and accuracy and F1 at the best accuracy (right), for tHRD, genomic scar, and signature 3 inNAC (n¼ 27).D,Mappingof platinum responses andHRDprediction
results in respectiveNAC (n¼ 27) and PR (n¼ 36) samples. For tHRD and signature 3, the thresholds at the best accuracywere obtained fromNACand applied to PR.
For genomic scar, the previously established threshold for clinical use (65) was employed to reduce false positives in PR. (Continued on the following page.)
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(red for gHRDþ samples and blue for gHRD� samples in Fig. 2C). The
aTU patterns were observed specifically in gHRDþ tumors but not in
their matched normal samples (Supplementary Fig. S3).

Development and functional validation of the tHRD detection
model

We selected 35 DNA repair genes that showed aTU in TCGA
breast cancer and developed a tHRDpredictionmodel based on theTU
level of their transcripts (Supplementary Fig. S4A; Supplementary
Table S1). The performance of the aTU-based classifier in predicting
gHRD indicates only the degree of agreement between the tHRD and
gHRD methods. Some gHRDþ samples may be predicted as tHRD�

when they present artefactual genomic signatures as described in the
Introduction. Also, some gHRD� samples may be predicted to be
tHRDþ when they share similar TU patterns with genuine gHRDþ

samples; these should not be considered as false positives. Hence, the
tHRD results should be validated by functional or clinical measures
independently of gHRD status. For example, HRDþ tumors are
expected to show poor prognosis and high mutation burden. In this
regard, the tHRD approach was as successful as the gHRD method
(Supplementary Fig. S4B).

To perform more detailed functional tests of the tHRD results in a
gHRD-independent manner, we first employed the concept of genetic
dependencies. Substantial effort has been put into identifying genes
essential for cancer cell proliferation and survival based on systematic
loss-of-function screens (40–49). Synthetic lethality arises when inac-
tivation of one gene (e.g., by BRAC1/2 mutations) increases depen-
dencies on a related gene (e.g., PARP1) so that the simultaneous
perturbation of the two genes results in cell death (7). In this respect,
the samples predicted to be HRDþ should be dependent on genes with
DNA repair activity.

We first tested this concept by using cell lines for which both
transcriptome and dependency data were available. Cell lines with
higher tHRD scores represented higher average dependencies on DNA
repair genes (Supplementary Fig. S5). For validation in clinical samples,
we performed dependency prediction (50) for TCGA tHRDþ and
tHRD� samples, and then examined enrichment of the predicted
dependencies for DNA repair genes. The dependencies of the tHRDþ

tumors, but not the tHRD�- tumors, showed a significant overrepre-
sentation of genes involved in DNA repair pathways (red versus blue
bars in Fig. 3A). Indeed, higher dependency scores were observed in
tHRDþ than in tHRD� for many DNA repair genes, with the largest
difference for PRKDC (Fig. 3B and C). As the main component of the
nonhomologous end joining pathway, DNA-PKcs (encoded by
PRKDC) is recruited to DSBs for DNA repair when HR is unavailable
or defective (51). Further studies established synthetic lethality between
the HR pathway and DNA-PKcs (52–55). We discovered many genes
involved in DNA repair and related pathways showing positive
correlations between minor TU and PRKDC dependency (Fig. 3D).

We next sought to validate our tHRD prediction by functional HR
assays in BRCA1/2-wildtype patient-derived (PD) cells. One tHRDþ

sample (PD:tHRDþ) and one tHRD� sample (PD:tHRD�) were
selected by applying the tHRD model to the transcriptomes of our
PD xenografts of breast cancer (56). PD:tHRDþ overexpressed the

minor isoforms of key repair genes, including RAD50, ATM, H2AX,
and BRIP1 (Fig. 4A). In our first assay, DSB repair processes were
visualized by gH2AX and RAD51 staining before and after olaparib
treatment. Whereas olaparib treatment induced DSBs overall, a sig-
nificantly larger number of gH2AX and RAD51 foci were observed in
PD:tHRDþ than in PD:tHRD� (Fig. 4B; Supplementary Fig. S6A). For
a more direct assessment of HR-mediated DSB repair activity, we
performed the DR-GFP/I-SceI HR assay (57) in which GFP signals
represent the full repair of introduced DSBs. As a result, PD:tHRDþ

showed a 2- to 3-fold lower fraction of GFP-positive cells than did PD:
tHRD� (Fig. 4C; Supplementary Fig. S6B). These results collectively
suggest that the accumulation of gH2AX/RAD51 foci in the PD:
tHRDþ cells results from delayed DSB resolution due to impaired
HR functionality, as demonstrated previously (58–61).

To compare the cellular consequences of the differential rates of HR
repair, we examined the phosphorylation of P53, the key player of
DDR. The phosphorylation of P53 at Ser-392 and at Ser-15 gives rise to
apoptosis and cellular senescence, respectively (62, 63). According to
the Western blots, olaparib treatment strongly induced P53 phos-
phorylation, particularly at Ser-392 in PD:tHRDþ but not in PD:
tHRD� (Fig. 4D). Accordingly, PD:tHRDþ presented an increase of
the proapoptotic protein, BAX, and a decrease of the antiapoptotic
protein, BCL2, in response to olaparib (Fig. 4D). These data suggest
that the unresolved DSB foci of PD:tHRDþ (Fig. 4B and C) eventually
lead to apoptosis of the cells. Indeed, our cell viability assays showed a
significant reduction in cell proliferation when the PD:tHRDþ cells
were challenged by olaparib (Fig. 4E).

tHRD predicts drug responses with high accuracy in cell lines
To evaluate our tHRD model in predicting susceptibility to PARP

inhibition or genotoxic stress, we examined the response of breast
cancer cell lines to olaparib, rucaparib, talazoparib, veliparib, cisplatin,
doxorubicin, bleomycin, etoposide, and SN-38 using the Genomics of
Drug Sensitivity in Cancer (GDSC) database (64). We applied our
tHRD detection model to the RNA-seq data of the cell lines to classify
them as tHRDþ and tHRD� (Supplementary Table S2). In terms of the
IC50, significant differences were found in the sensitivity of the tHRDþ

and tHRD� cell lines for all the PARP inhibitors and DNA damaging
agents (Fig. 5A; Supplementary Fig. S7A and S7B).

Remarkably, the IC50 differences were more significant between the
tHRDþ and tHRD� groups than between the gHRDþ and gHRD�

groups (Fig. 5A) for almost all drugs, indicating that tHRD better
predicts drug sensitivity than gHRD. For instance, the olaparib and
rucaparib responses scored P ¼ 0.008 (tHRD) versus P ¼ 0.025
(gHRD) and P¼ 0.033 (tHRD) versus P¼ 0.106 (gHRD), respectively.
We then examined the tHRD and gHRD status of individual samples.
Notably, there weremultiple cases in which the response was predicted
only by tHRD but not by gHRD (i.e., tHRDþ/gHRD� samples) in the
responsive group (IC50 values lower than the median; Fig. 5B). Low-
ering the threshold of gHRD (from the 75th to 50th percentile) led to
many cases in which only gHRD made a positive prediction (i.e.,
gHRDþ/tHRD� samples) in the no response group (IC50 values
greater than the median; Supplementary Fig. S8A). At this threshold,
however, gHRD did not make a meaningful distinction between the

(Continued.) The plus signs for gHRDdenote the cases inwhich both genomic scar and signature 3were positive. Genetic screening results indicating the presence of
germline mutations in BRCA1/2 or CHEK2 are shown at the bottom. E, Mapping of olaparib/platinum responses and HRD prediction results at the best accuracy in
respective OM (n¼ 24) and OS (n¼ 33) samples. Duration of olaparib responses is shown at the top. Platinum responses aremarked as positive for the patients with
OM and negative for the patientswith OS. The plus signs for gHRD denote the cases inwhich both genomic scar and signature 3were positive. F, genome sequencing
failure. Genetic screening results indicating the presence of germline mutations in BRCA1/2 or other genes (ATM, CHEK1, and CDK12) are shown at the bottom.
F,Comparison of theminor TUof selected genes (columns) across different samples (rows) from theOS/PR, TCGA, andNAC cohorts. Geneswith themost significant
differences between TCGA responders and nonresponderswere selected.G,Comparison of the distribution of tHRD andgHRDmetrics among theOS/PR, TCGA, and
NAC groups of samples. For the average minor TU, the TU values of the minor isoform of the selected genes in F were averaged for each sample.
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positive and negative samples (see the P values above the boxplots of
Supplementary Fig. S8B).

These data suggest that gHRD is prone to false positive signals
attributed to biological or technical artefacts (29). This feature of
gHRD explains low levels of precision at a common cut-off of the
median with a considerable number of the gHRDþ samples that do not
actually respond to the drugs (Supplementary Fig. S8A). A more
stringent threshold improves precision but sacrifices recall (also
known as sensitivity), as demonstrated in Fig. 5B. In this case, the
tHRD approach is more sensitive than the gHRD method and can
identify tumors that do not harbor detectable genomic signatures but
that respond to these drugs.

Additionally, we tested the drug specificity of the responses as
reported previously (14) by comparing IC50 among different classes of
molecules grouped according to their mechanism of action. Specific
responses were observed for PARP inhibitors (olaparib, rucaparib,
veliparib, and talazoparib; red in Fig. 5C), DSB-inducing agents
(bleomycin, SN-38, and etoposide; violet in Fig. 5C), and anthracy-
clines or DNA cross-linkers (doxorubicin, cisplatin, andmitomycin C;
green in Fig. 5C).

The number of ovarian cancer cell lines with IC50 in the GDSC
database was limited. Hence, we merged data based on the area under
the drug response curve from different databases. As a result, gHRD
did not show an expected pattern (i.e., lower AUC value forHRDþ) for
all the examined drugs. In contrast, tHRD consistently showed the
expected pattern although statistical significance was not achieved at
P < 0.1 except for olaparib and carboplatin (Supplementary Fig. S7C).

tHRD predicts drug responses with high accuracy in clinical
samples

We next sought to assess the utility of tHRD in clinical settings. To
first develop a tHRD model for ovarian cancer, the procedures we
applied to TCGA breast tumors were repeated for TCGA ovarian
samples; briefly, we partitioned the patient samples into gHRDþ and
gHRD� groups, identified aTU cases with minor isoform overexpres-
sion in gHRDþ, and developed an aTU-based prediction model with
22 DNA repair genes.

By using the reannotation of clinical outcomes of TCGA cases (n¼
103; ref. 33), we evaluated the performance of our tHRD model in
predicting platinum sensitivity (Supplementary Table S3). In com-
parison with gHRD, the tHRD prediction exhibited an improvement
in terms of the precision and recall metrics as well as the accuracy and
F1 score (Fig. 6A). Also, PFS was substantially better explained by
tHRD (P¼ 2.6� 10–6) than genomic scar (P¼ 4.7� 10–3), signature3
(P¼ 2.7� 10–3), and their combination (P¼ 2.4� 10–3; Fig. 6B). We
further tested the model using samples from our NAC cohort (n¼ 27)
and performed validation by adding independent samples with PR
(n ¼ 36; Supplementary Table S4). The tHRD model outperformed
gHRD in the NAC cohort (Fig. 6C) and made no false positives in the
PR cohort (Fig. 6D; Supplementary Fig. S9A). In contrast, gHRDmade
a substantial number of false positive predictions for the PR samples
(Fig. 6D), failing to achieve a clinically applicable level of accuracy for
the combined dataset (Supplementary Fig. S9A). BRCA1/2 testing was
not successful at all in predicting platinum responses (Fig. 6D).

We then tested whether the tHRD model can predict responses to
PARP inhibitors as well by using our data fromOM and OS treatment
(Supplementary Table S5). TheOMgroup (n¼ 24) andOS group (n¼
33) data represented therapeutic responses of platinum-sensitive and
platinum-resistant patients, respectively, to olaparib as second-line
therapy. Whereas tHRD outperformed gHRD in predicting olaparib
sensitivity overall (Fig. 6E; Supplementary Fig. S9B), we focused on the

cases that were resistant to both olaparib and platinum (n ¼ 17).
Notably, both genomic scar and signature 3 were positive for 7 cases in
this highly resistant group in which only one tHRDþ case was found
(Fig. 6E). BRCA1/2 screening also resulted in many false positives
(Fig. 6E). Demonstrating the coupling of precision to sensitivity, the
gHRD methods failed to detect a few of the best responders that were
sensitive to both olaparib and platinum (Fig. 6E). Among patients with
partial response, sensitive to either olaparib or platinum, tHRD was
positive for those with a relatively longer duration of olaparib response
(Fig. 6E), thereby contributing to the clear segregation of survival
curves (Supplementary Fig. S10).

To test whether the platinum resistance of the PR and OS cases can
be explained by TU patterns, we partitioned TCGA samples into
platinum responders and non-responders and identified key repair
genes whose minor isoforms were underexpressed in the nonrespon-
ders. The TU of theseminor isoforms in the PR/OS samples was as low
as the nonresponders (Fig. 6F). The distribution of the average TU of
these isoforms and that of the TU of the ATM minor isoform were
similar between the PR/OS and TCGAnonresponder populations (top
panel of Fig. 6G). In sharp contrast, both signature 3 and genomic scar
of the PR/OS samples were distributed similarly to those of TCGA
responders (bottom panel of Fig. 6G).

Together with our findings about breast cancer (Supplementary
Fig. S8), these findings about ovarian cancer underscore the low
precision of gHRD due to confounding factors that can be either
biological or technical (29). The false positives in the PR cohort may be
technical artefacts, given that most of the patients are BRCA1/2-
wildtype (Fig. 6D). In contrast, our OS data highlight the influence
of biological factors, considering that the olaparib users were selected
based on their BRCA1/2mutations. In this respect, the nonresponders
of this group are likely to involve initially imprinted genomic lesions
that remain detectable after HR restoration. Given that acquired
platinum resistance is common in ovarian cancer (22–25), this raises
a problemwhen attempting to select patient cases that will benefit from
PARP inhibitors as subsequent therapy based on the gHRD signatures
or BRCA1/2 mutations. In contrast, the tHRD model predicted
durable responders sensitively while maintaining high precision.

The tHRD data from some of the OM and OS samples were derived
fromFFPE tissues. It is known that nucleic acids are not preserved very
well in FFPE tissues. Indeed, we failedDNA sequencing for some of the
FFPE samples, resulting in missing data for gHRD. In contrast, our
results suggest that the RNA-based tHRD assay may be applied
properly to these most common sources of archived tissue material.

Discussion
PARP inhibition is a promising treatment option targeted to cancers

in which DSB repair has been impaired by mechanisms such as
BRCA1/2 inactivation. However, BRCA1/2 mutations comprise only
a small fraction of HRD cases. Our data reinforce the notion thatmany
HRD cases do not engage BRCA1/2 alterations. Because of the
diversity of potential mechanisms, however, there has been no single
unified mechanism-based assay with greater utility than the genetic
screening of BRCA1/2 orHR repair genemutations. The gHRDassays,
which scan the consequences of genomic instability caused by HR
defects, lack functional flexibility and suffer a high rate of false
positives.

In this work, we focused on a less explored class of transcriptional
aberration and found that these alterations in DNA repair–related
genes prevail in breast and ovarian cancer without regard to BRCA1/2
mutations. On the basis of this widespreadmechanism, we developed a
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novel approach that has the capacity to substitute for not only the
genetic screening but also the gHRD assays. The tHRD method
appears to reflect functional HR status that changes dynamically
during cancer evolution, thereby minimizing biological confounding
factors, in contrast to the static genome-based tests.

What remains to be tested is whether this HRD mechanism is less
reversible than other mechanisms, especially under therapeutic inter-
ventions. Investigation of underlying causal factors will be helpful in
this respect. Of note, these transcriptional changes involve multiple
genes with sample-to-sample variations, ruling out the possibility that
a single splicing factor acting in trans governs this somewhat com-
plicated phenomenon; thus, genetic or epigenetic regulatory changes
influencing respective genes in cis are likely more responsible. We
employed a machine learning-based model to address this variability.
In this regard, the reversion of the HRD driven in this fashion is less
likely to occur than that involving single-gene coding mutations.

The utility of thismethod remains to be validated further beyond the
multiple different contexts and settings tested in this work. Our
method is expected to offer high adaptability as machine learning
models can be optimized by adjusting various features and parameters.
Especially, the tHRD model can be fitted directly to particular ther-
apeutic responses instead of the universal genomic markers, as long as
sufficient training data can be provided. For example, different repair
genes can be used as features with variable parameters in predicting
responses to different drugs in various clinical settings. In this work, we
developed respective models for breast cancer and ovarian cancer. The
tHRD-based diagnostic tests are expected to broaden the clinical utility
of PARP inhibitors in various cancers.
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