
ORIGINAL RESEARCH
published: 23 June 2022

doi: 10.3389/fpubh.2022.921855

Frontiers in Public Health | www.frontiersin.org 1 June 2022 | Volume 10 | Article 921855

Edited by:

Amelia Kekeletso Ranotsi,

Maluti Adventist College, Lesotho

Reviewed by:

Teddy Lazebnik,

University College London,

United Kingdom

Keith Austin Burghardt,

University of Southern California,

United States

*Correspondence:

Wen Cao

jwzx_edifier@163.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Public Health Policy,

a section of the journal

Frontiers in Public Health

Received: 16 April 2022

Accepted: 26 May 2022

Published: 23 June 2022

Citation:

Cao W, Zhu J, Wang X, Tong X,

Tian Y, Dai H and Ma Z (2022)

Optimizing Spatio-Temporal Allocation

of the COVID-19 Vaccine Under

Different Epidemiological Landscapes.

Front. Public Health 10:921855.

doi: 10.3389/fpubh.2022.921855

Optimizing Spatio-Temporal
Allocation of the COVID-19 Vaccine
Under Different Epidemiological
Landscapes
Wen Cao 1*†, Jingwen Zhu 1†, Xinyi Wang 1, Xiaochong Tong 2, Yuzhen Tian 1, Haoran Dai 1

and Zhigang Ma 3

1Department of Remote Sensing and Geographic Information Science, School of Geoscience and Technology, Zhengzhou

University, Zhengzhou, China, 2Department of Photogrammetry and Remote Sensing, School of Geospatial Information,

University of Information Engineering, Zhengzhou, China, 3 PIESAT Institute of Applied Beidou Navigation Technologies at

Zhengzhou, Zhengzhou, China

An efficient and safe vaccine is expected to allow people to return to normal life as

soon as possible. However, vaccines for new diseases are likely to be in short supply

during the initial deployment due to narrow production capacity and logistics. There is

an urgent need to optimize the allocation of limited vaccines to improve the population

effectiveness of vaccination. Existing studies mostly address a single epidemiological

landscape. The robustness of the effectiveness of other proposed strategies is difficult to

guarantee under other landscapes. In this study, a novel vaccination allocation model

based on spatio-temporal heterogeneity of epidemiological landscapes is proposed.

This model was combined with optimization algorithms to determine the near-optimal

spatio-temporal allocation for vaccines with different effectiveness and coverage.

We fully simulated the epidemiological landscapes during vaccination, and then

minimized objective functions independently under various epidemiological landscapes

and degrees of viral transmission. We find that if all subregions are in the middle or late

stages of the pandemic, the difference between the effectiveness of the near-optimal and

pro-rata strategies is very small in most cases. In contrast, under other epidemiological

landscapes, whenminimizing deaths, the optimizer tends to allocate the remaining doses

to sub-regions with relatively higher risk and expected coverage after covering the elderly.

While to minimize symptomatic infections, allocating vaccines first to the higher-risk

sub-regions is near-optimal. This means that the pro-rata allocation is a good option

when the subregions are all in the middle to late stages of the pandemic. Moreover,

we suggest that if all subregions are in the period of rapid virus transmission, vaccines

should be administered to older adults in all subregions simultaneously, while when the

epidemiological dynamics of the subregions are significantly different, priority can be

given to older adults in subregions that are still in the early stages of the pandemic.

After covering the elderly in the region, high-risk sub-regions can be prioritized.
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INTRODUCTION

The rapid spread of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has triggered a public health and
economic crisis worldwide. As of January 15, 2022, there have
been more than 3.1 billion cases and 5.5 million deaths reported
(1). To combat this crisis, authorities have implemented various
non-pharmaceutical interventions according to local conditions.
Both empirical analysis and mathematical modeling suggest that
non-pharmacological interventions, particularly lockdown and
strict quarantine measures (2–4), are essential to mitigate the
spread of the virus in the short term. However, given the high
socio-economic costs of such measures, a long-term solution—
an effective and safe vaccine-remains urgently needed. With the
successive implementation of mass vaccination campaigns, the
huge demand for vaccines has left many countries and regions
facing severe resource shortages and supply imbalances (5, 6).
Optimizing the allocation of limited vaccines is an urgent and
critical issue for all countries.

The mathematical models help to inform the public and
policymakers about possible scenarios for the development of
infectious diseases and the potential effectiveness of different
intervention methods. The compartmental models can be
easily used to simulate various interventions. Epidemiological
parameters in these models and simulation results are easy
to understand. Based on the characteristics of this COVID-19
pandemic, a series of extensions for the classical SIR model
have been proposed, such as age-group separation (7, 8), the
introduction of asymptomatic infections (9, 10), deaths (11), and
immunity period (12), and the incorporation of graph-based
spatial components (10, 13). The efficacy and effectiveness of
most vaccines on various endpoints have been assessed through
rigorous controlled clinical trials or observational studies, such
as BNT162b2 (14, 15), ChAdOx1 (16), mRNA-1273 (17), and
inactivated SARS-CoV-2 vaccine (18). The optimal allocation
of vaccines involves three main dimensions: object, timing, and
places. Most of such studies focused on to whom and suggested
that vaccine should be prioritized to people by age and risk.
For the individuals in a region, prioritized vaccination of the
elderly is beneficial in reducing severe symptomatic infections
and deaths, while vaccinating younger age groups first can
minimize symptomatic infections (11, 12, 19–21). The research
on the spatio-temporal allocation of vaccines can be divided into
two parts. Some studies usedmathematical models to evaluate the
effectiveness of different allocation strategies (22–26). Another
approach was using optimization algorithms to find the possible
optimal strategy (27–29). In existing studies, only the allocation
for the epidemiological landscape (mainly refers to epidemic
dynamics in sub-regions in our work) of a region over a certain
period was identified. This does help to address the vaccine
allocation under the corresponding epidemiological landscape.
However, epidemiological landscapes change over time, and
different countries may face different epidemiological landscapes

Abbreviations: COVID-19, coronavirus disease 2019; NPIs, non-pharmaceutical

interventions; R0, basic reproduction number; Re, effective reproduction number;

Rc , control reproduction number; NGM, next-generation matrix.

when deploying vaccines. Once the epidemiological landscape
changes, the effectiveness of the proposed vaccine allocation
strategy will be difficult to guarantee, i.e., there may be other
better allocation strategies (see the Supplementary Materials).
The effect of spatio-temporal heterogeneity of epidemiological
landscapes on vaccine allocation is ignored to some extent in
previous studies. These studies lack the optimal deployment of
vaccines under different epidemiological landscapes.

The current vaccine spatial allocation strategy usually
allocates available doses to sub-regions in proportion to the size
of their population (referred to as the pro-rata allocation). For
policymakers, this strategy may be easier to implement. However,
such a strategy that ignores epidemiological landscapes may not
always maximize the population effectiveness of vaccines. In
this view, we proposed a new model of vaccination allocation
using a graph-based spatial model and an extended SIR-based
temporal model. We simulated the epidemic dynamics in
subregions during vaccine deployment sufficiently through this
model to set up a variety of possible vaccination scenarios.
The optimization algorithm was then run under different
scenarios to independently minimize two metrics of infection
and disease burden: proportion of cumulative infections and
deaths prevented. We also evaluated vaccine allocation in
combination with non-pharmacological interventions. In
epidemiology, a non-pharmaceutical intervention (NPI) is
any method to reduce the spread of an epidemic disease
without requiring pharmaceutical drug treatments. Vaccination
is a pharmaceutical intervention by definition. However,
we believe that vaccination is often not administered
alone, but in conjunction with other non-pharmacological
interventions. The non-pharmaceutical interventions may
affect the effectiveness of vaccination strategies. There,
we introduced vaccination at different intensities of non-
pharmaceutical interventions to investigate the variation
patterns of optimal strategies in the context of different degrees
of viral transmission.

METHODS

Vaccination Allocation Model
The vaccine allocation model consists of two components:
an age-structured deterministic compartmental model
to describe the temporal dynamics of infectious
diseases within the sub-region and a graph-based
spatial model to simulate the epidemiological
landscapes that the region may face at the time
of vaccination.

Age-Structured Deterministic Compartmental Model
We stratified individuals by 10-year age groups, in line
with previous parameter estimation and data. We assumed
subjects started susceptible to infection (S) and could become
exposed but not yet infectious (E) after effective contact.
After a latent period, exposed individuals developed an
asymptomatic infection (A) or a symptomatic infection (I).
Both symptomatic and asymptomatic infectious individuals
had a certain probability of being detected (ID). Infectious
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individuals eventually recovered (R) or died (D) depending on
the severity of their symptoms. Among them, asymptomatic
individuals did not die but recovered at a given rate. We
also assumed that recovered individuals became susceptible
again at a given rate, reflecting eventual loss of temporary
immunity from the infection (30, 31). We used the
previously estimated (32) contact matrix C with age structure
and corrected for reciprocity (33) based on the existing
demographic structure of the subregion (34), adapting it to
each subregion.

We introduced a leaked vaccine into the model and
tracked the vaccinated individuals by subscript v. Vaccination
was available to susceptible and recovered individuals.
We assumed that the vaccine can have two effects on
the vaccinated individuals. First, they are less likely to be
infected with the virus compared to unvaccinated individuals
(this effect is expressed by Ve). Second, the vaccine can
also reduce the probability of developing symptoms upon
infection (referred to as Vp). Vaccine effect on COVID-19
disease is defined as reduction in the likelihood to develop
symptomatic diseases upon exposure (referred to as Vdis).
The relationship (35) among Vdis, Ve, and Vp is shown
as follows:

Vdis = 1− ((1− Ve)(1− Vp)) (1)

A flowchart of the model is presented in Figure 1. The
equations used in the model are as follows:

FIGURE 1 | The flowchart of the transmission model.

cij = whcij| hom e + wwcij|work + wscij|school + wocij|other

(2)

λi = βmi

9
∑

j=1

cij(∂(Aj + Av,j)+ Ij + Iv,j)/Nj (3)

dSi

dt
= −λiSi + µ(Ri + Rv,i) (4)

dEi

dt
= λiSi − σEi (5)

dAi

dt
= (1− pi)σEi − (γA + ωA)Ai (6)

dIi

dt
= piσEi − (γI + ωI)Ii (7)

dIDi

dt
= ωAAi + ωIIi − γIDIDi (8)

dRi

dt
= γAAi + (1− δi)(γIIi + γIDIDi)− µRi (9)

dDi

dt
= δi(γIIi + γIDIDi) (10)

dSv,i

dt
= −(1− Ve)λiSv,i (11)

dEv,i

dt
= (1− Ve)λiSv,i − σEv,i (12)

dAv,i

dt
= (1− (1− Vp)pi)σEv,i − (γA + ωA)Av,i (13)

dIv,i

dt
= (1− Vp)piσEv,i − (γI + ωI)Iv,i (14)

dIDv,i

dt
= ωAAv,i + ωIIv,i − γIDIDv,i (15)

dRv,i

dt
= γAAv,i + (1− δi)(γIIv,i + γIDIDv,i)− µRv,i (16)

dDv,i

dt
= δi(γIIv,i + γIDIDv,i) (17)

where cij is the number of individuals in age group j contacted
by an individual in age group i, cij| hom e, cij|work, cij|school, and
cij|other are the number of contacts at home, work, school, and
other locations, respectively, and wh, ww, ws, and wo are the
weight of the contact matrix of the four locations, respectively.
λi is the force of infection for an individual in age group i, β

is the transmission coefficient, µi is the relative susceptibility
to infection for age-i, and α is the relative infectiousness of
asymptomatic infections. 1/µ is the average length of immunity.
1/σ is the mean duration of latent period. pi is the proportion
of the symptomatic in age group i. 1/γA, 1/γI , and 1/γID are
the average recover time of the asymptomatic, symptomatic and
detected, respectively. ωA and ωI are the detection rate (via
contact tracing and testing) for asymptomatic and symptomatic
infections, respectively. δi is the fatality of the disease for age-
i individuals.

Graph-Based Spatial Model
Due to the spatio-temporal heterogeneity and uncertainty in
the spread of infectious diseases and the implementation of
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interventions, the epidemiological dynamics of sub-regions when
deploying vaccines can be either similar (same early, middle
or late stage of a pandemic) or very different (sub-regions
at different times of the pandemic). We introduced into the
model the times at which vaccination begins in sub-regions
to set up a series of possible vaccination scenarios based
on this phenomenon. Different scenarios represent different
epidemiological landscapes, as shown in Figure 2. For sub-
region k under scenario s, if vaccination starts on day ts

k
, it

means that the virus has been transmitted for (ts
k
– 1) days.

Depending on the scenario, the times were randomly generated
within a reasonable range. This will affect the initial status of
each compartment, such as sub-regions that are in the early
stage of the pandemic with a greater proportion of susceptible

individuals. We quantified the intensity of the intervention
using the control reproduction number (Rc, defined as the
average number of secondary COVID-19 infections produced
by typically infected individuals in a susceptible population with
control measures). The Rc values for sub-regions were also
randomly generated within a certain range. We used these Rc
values to estimate some of the parameters in the model that
were relevant to non-pharmacological interventions. This means
that these parameters may be different for different sub-regions.
Full simulation details can be found in subsection Vaccination
Simulation Scenarios.

We considered a baseline basic reproductive number R0 = 2.5
(no interventions) to calculate the transmission coefficient β . We
defined the next-generation matrix (NGM) as

FIGURE 2 | Example of the simulated prevalence of sub-regional symptomatic infections under different scenarios without vaccination. (A) Scenario 1 (All subregions

are in the early stages of the pandemic). (B) Scenario 2 (All subregions are in the middle stages of the pandemic). (C) Scenario 3 (All subregions are in the late stages

of the pandemic). (D) Scenario 4 (The epidemic dynamics of the subregions differ significantly).
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NGMij = βmi

∑

j

cij(∂dA + dI) (18)

R0 is the spectral radius of the NGM (36). dAand dI denote
respectively the length of time individuals spend in statesA and I.

Risk Assessment of Viral Transmission in
Subregions
The effective reproduction number (Re, defined as the average
number of secondary cases per infectious case in a population
made up of both susceptible and non-susceptible hosts) was
usually used to measure epidemic transmission. Its value will
change as the pandemic proceeds, as some people may have
gained immunity through infection or vaccination. It is not very
desirable to use the effective reproduction number at a given
moment in isolation when prioritizing resources. Policymakers
need to look at the whole picture and use it alongside other
indicators. As shown in Equation 19, we assessed the risk of
transmission in subregions by the effective reproduction number
and the prevalence of symptomatic infections.

rk = RSk + ηISk (19)

where rk is the risk of viral transmission in the sub-region k.
RSk and ISk are the total effective reproduction number (sum
of effective reproduction number over T (our time horizon)
days) and the total prevalence of symptomatic infections (sum
of symptomatic infections over T days) without vaccination in
the sub-region k, respectively, both of which are normalized.
Considering that Re could better reflect the transmission risk, we
assumed η = 0.5.

Optimization Algorithm
The main focus of our study was on time and space. Within
the subregion, our optimizer would prioritize vaccine allocation
to the elderly. This is in line with most current policies and is
more ethical. Two objective functions were ultimately chosen:
the proportion of cumulative symptomatic infections and deaths
prevented 1 year (our time horizon) after vaccination initiation
compared with the unvaccinated base case. The reason why we
choose symptomatic infections is that these individuals are more
infectious compared to asymptomatic infections, andminimizing
symptomatic infections is better for controlling the further
spread of the virus. Moreover, symptomatic infections are closely
related to public health policy concern: the burden on the health
system. Therefore, we believe that although policies tailored to
reduce deaths are of great significance, there is still a need to
optimize the allocation of vaccines for symptomatic infections.
This can provide more insight and flexibility in the formulation
of public health policy.

min
X

f (X) (20)

s.t.











∑

k

Xk = 1

XkN ≤ Pk
0 ≤ Xk ≤ 1

(21)

where f (X) is the objective function andX is the decision variable.
Xk is the proportion of vaccines allocated to subregion k to the
total available vaccines. Pk is the number of people in sub-region
k and N is the total number of people in the region.

To increase the chances of approaching the global optimal
solution, we combined coarse global search with genetic
algorithm to explore the entire space of possible combinations
of vaccine allocation. Before running the genetic algorithm, we
performed coarse-grained grid search over the entire decision
variable space, with a search step of 0.1. For example, a point
in the grid is X = (0,0.1,0,0,0.1,0.4,0.2,0.2,0,0), which represents
the sub-regions 2, 5, 6, 7, 8 are allocated to 10, 10, 40, 20,
and 20% of the available vaccines, respectively. Each grid point
needed to satisfy the above constraints, if not, the grid point
would be discarded. We evaluated the objective function on all
feasible grid points and selected the best 25 points. The best
25 points obtained above and the pro-rata allocation vector
were put into the initial population of the genetic algorithm,
and the remaining individuals of the initial population were
randomly generated by the genetic algorithm according to the
constraints. It is worth noting that under high vaccine supply
(60−100%), the selection of feasible grid points may be <25 due
to the reduction in the number of decision variables that meet
the constraints. If the vaccine supply reaches 100%, the only
theoretically feasible decision variable is the pro-rata vector. In
this case, all individuals of the initial population were randomly
generated by the algorithm itself.

RESULTS

We partitioned the continental US into the 10 Standard Federal
Regions (10 HHS Regions) established by the US Office of
Management and Budget. The 10 HHS Regions are our study
subjects. More information on the 10 HHS regions can be found
in Supplementary Materials. Given the currentVdis data and the
uncertainty in the specific Ve and Vp values, we evaluated the
optimal use of 50 vaccines with specific effectiveness and coverage
(Vdis ranging from 60 to 100% and vaccination coverage ranging
from 10 to 100% of the total population, in in-crements of 10%).
We set Ve = 50% while varying the value of Vp according to Vdis.

Our study included four categories of scenarios and
three intensities of non-pharmacological interventions. We
assumed that the intensities of the non-pharmacological
interventions in subregions were close and set, [2.0,2.3], [1.5,1.8],
and [1.2,1.4] for low, moderate, and high intensity non-
pharmacological interventions, respectively. We assumed that
sub-regions deployed vaccines at a certain rate per day (rollout
speeds of 0.05% of their population per day) until the supply
was exhausted. Since each country will have different vaccination
rates, the at-once allocation would make the results more
general. Therefore, we also used this method to determine
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TABLE 1 | The values for the hyperparameters of the GA.

Hyperparameter Value

Population size 350

Elite count 18

Crossover fraction 0.8

Mutation fraction 0.15

Stall generations* 250

Function tolerance* 10−6

*The algorithm stops if the average relative change in the best fitness function value over

MaxStallGenerations is less than or equal to FunctionTolerance.

TABLE 2 | The values and source of parameters in the model.

Parameter Value Method

1/σ 6 (34)

1/γA 7 (3)

1/γI 7 (3)

1/γID 15 (3)

α 0.5 (3)

ωA – Estimated

ωI – Estimated

1/µ 365 Assumed

β – Calculated

mi [0.4, 0.38, 0.79, 0.86, 0.8, 0.82, 0.88,

0.74, 0.74]

(37)

pi [0.29, 0.21, 0.27, 0.33, 0.4, 0.49, 0.63,

0.69, 0.69]

(37)

δi [0.00002, 0.00006, 0.00031, 0.0008

0.0015, 0.006, 0.022, 0.051, 0.093]

(38)

wh,ww, ws, wo – Estimated

cij| hom e, cij|work ,

cij|school , cij|other

– (32)

the near-optimal strategy under different scenarios (see the
Supplementary Materials). All simulations were performed on
theMatlab 2021a platform. For the genetic algorithm, we used the
global optimization toolbox provided by it. The implementation
details and hyperparameters of the genetic algorithm are shown
in Table 1.

Simulation Setup
Parameter Estimation
The values of most parameters in the model referred to
previous studies, while some of the parameters related to non-
pharmacological interventions were estimated using genetic
algorithm. The decision variables of the genetic algorithm are all
parameters to be estimated. The fitness value is the absolute value
of the difference between the target Rc and the estimated Rc. The
values of relevant parameters are shown in Table 2.

Vaccination Simulation Scenarios
The possible scenarios were divided into two main categories:
epidemic dynamics in sub-regions are relatively close or different
significantly. For the first category of scenarios, we built three

sub-scenarios (Scenarios 1, 2, and 3). Scenarios 1, 2 and 3
represent epidemiological landscapes with all subregions in the
early, middle, and late stages of the pandemic, respectively, while
scenario 4 represents that the epidemiological dynamics of the
sub-regions are significantly different. The generation intervals
of the times when sub-regions start vaccination under different
scenarios are as follows:

tsk ∈















(pat
p

k
, (pa + lw)t

p

k
), s = 1

((1− 1
2 lw)t

p

k
, (1+ 1

2 lw)t
p

k
), s = 2

((1+ pa)t
p

k
, (1+ pa + lw)t

p

k
), s = 3

(0, tl
k
), s = 4

(22)

lw =

{

0.1, s = 1, 2, 3

1, s = 4
(23)

where ts
k
represents the time when vaccination begins in sub-

region k under scenario s. t
p

k
represents the expected timing of

the pandemic peak in sub-region k. lw is the scaling factor of
the generation interval to control the degree of proximity of
the epidemic dynamics among sub-regions. pa (0 < pa < 1–lw)
is used to determine the location of the interval. In scenarios
1 and 3, we adjusted the value of pa and conducted multiple
experiments to check whether the near-optimal vaccine strategy
changed when the interval changed. tl

k
is the pandemic duration

for sub-region k.

Uncertainty and Sensitivity Analysis of
Model Parameters
We assumed that each parameter obeys a uniform distribution
over its range of values. Latin hypercube sampling (LHS) was
performed for the entire parameter space. The model was run
1,000 times to analyze the sensitivity of response function values
to changes in a single input parameter using the partial rank
correlation coefficient (PRCC) as an indicator. The results are
shown in Figure 3.

These results suggest that COVID-19 can be controlled
effectively in the population by some interventions such as
wearing masks, maintaining social distance, or large-scale
vaccination. We chose model parameters that were more
sensitive to the objective functions as parameters to be
estimated: weights of contacts at home, school and other
locations, and detection rates for asymptomatic as well as
symptomatic infections.

Near-Optimal Vaccine Allocation Differs for
Different Epidemiological Landscapes
The near-optimal spatio-temporal allocation for the same
scenario is nearly identical under different intensities of non-
pharmacological interventions. In this section, we analyzed how
the near-optimal strategy to minimize symptomatic infections
changed for different epidemiological landscapes and present
results under low-intensity non-pharmacological interventions.

Compared with no vaccination, both strategies substantially
mitigated viral transmission in all scenarios, especially when
vaccine coverage is relatively high. If Vdis= 60% and vaccine
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FIGURE 3 | Sensitivity analysis of the main parameters of the model. Each plot shows the sensitivity of the corresponding response function value to changes in a

single main input parameter of the model. The green (red) bars indicate sensitive (insensitive) and gray bars indicate results that are not statistically significant.

FIGURE 4 | Percentage of cumulative symptomatic infections averted for both strategies under different scenarios. When Vdis = 60% and low-intensity

non-pharmacological intervention, the percentage of cumulative symptomatic infections averted for the near-optimal strategy (green) and the pro-rata strategy

(purple). Bars represent the mean of multiple experimental results and error bars represent uncertainty intervals (UI).

coverage was 50%, the near-optimal strategy could avert 40%
(UI: 37−43%), 17% (UI: 16−17%), 42% (UI: 33−57%), and 52%
(UI: 43−62%) of symptomatic infections in the four scenarios
on average, respectively (Figure 4). This suggests that mass
vaccination can go a long way in alleviating the spread of
COVID-19 and also emphasizes the importance of distributing
vaccines as soon as possible. Because the population effectiveness
of vaccination will diminish as the pandemic proceeds. The near-
optimal strategy under scenarios 1 and 4 could provide more
gain compared to other scenarios, averting up to 9% more (Vdis

= 60%, ∼60% of vaccine coverage) and 15% more symptomatic
infections (Vdis = 60%,∼40% of vaccine coverage) at the greatest
difference between the two strategies, respectively. In scenario
1, when the vaccine coverage was ∼30−70%, it was optimal to
vaccinate higher-risk sub-regions at high coverage, while the pro-
rata allocation was close to the near-optimal strategy for other
coverages (Figure 5A). In stark contrast, in Scenarios 2 and 3,
the pro-rata strategy was close to optimal regardless of vaccine
coverage and effectiveness (Figure 5B). The near-optimal vaccine

allocation is similar for scenarios 4 and 1, with the difference
that the priority was also given to higher-risk sub-regions when
vaccine coverage is less than 30% (Figure 5C). This may be
since that in scenario 1, the risk of transmission in the sub-
regions is not very different and the virus is rapidly spreading. All
subregions require large amounts of vaccines to slow the further
spread of the virus. While in scenario 4, some sub-regions are
already in the middle and late stages of the pandemic. In the
case of insufficient vaccines, the available doses can be allocated
to the sub-regions in the early stages of the pandemic. Both
strategies tended to perform similarly as vaccine effectiveness and
coverage increased.

Near-Optimal Vaccine Allocation Changes
With Objective Functions
Next, we investigated the effect of the vaccination objectives
on the near-optimal strategy and present some of the results
under moderate intensity non-pharmacological interventions.
The near-optimal vaccine allocation for the two objective
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FIGURE 5 | Near-optimal allocation strategies to minimize symptomatic infections under scenario 1 (A), 3 (B) and 4 (C). For each heat map, each row from left to

right is the decreasing direction of transmission risk, representing the total vaccine supply (percentage of the total population vaccinated) and each column represents

a different subregion. Colors represent the percentage of the population in a sub-region to be vaccinated.

functions differed more in scenarios 1 and 4. While in scenarios
2 and 3, whatever the objective function was, the pro-rata
allocation was close to optimal in most cases.

In Scenario 1, for low vaccine coverage, the near-optimal
strategy to minimize symptomatic infections prioritized the
coverage in higher-risk sub-regions; while when minimizing
deaths, the optimizer’s allocation results were similar to the
pro-rata strategy. As more vaccines became available (30−60%
vaccine coverage), the near-optimal strategy for symptomatic
infections remained the same, while the near-optimal strategy
for minimizing deaths first covered the elderly in all sub-regions
as much as possible and then allocated the remaining dose
to the subregion with the expected higher risk and coverage
(Figures 6A,C). The main reason for this phenomenon is that
the main contributors to the spread of the virus in this COVID-
19 pandemic are the younger age groups, but the mortality
rate in the elderly is much higher than in other age groups.
In our optimizer, the vaccine is first distributed to the elderly
in the sub-region. Allocating vaccine to older people in the
region first helps to minimize deaths. The effective control of

the epidemic requires mass vaccination among young people.
The near-optimal spatio-temporal strategy under scenario 4 is
overall similar to that of scenario 1, except that with fewer
vaccines available, the optimization algorithm may only focus
on allocating vaccines to sub-regions in the early and middle
stages of the pandemic (Figures 6B,D). In addition, we found
that the gain from optimizing vaccine allocation to improve pro-
rata strategy was relatively small when minimizing the deaths
(Figure 7). This may be because prioritizing older adults is more
beneficial for minimizing deaths within a sub-region than other
vaccine prioritization strategies.

Effect of the Intensity of
Non-pharmacological Interventions on
Vaccine Allocation
Since the epidemic dynamics of the subregions in each
experiment were randomly generated, the epidemiological
landscapes under scenario 4 may vary considerably under
different intervention intensities. Therefore, we only discuss the
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FIGURE 6 | Near-optimal allocation strategies for different objective functions. Here, we only show the results for Vdis = 60 and 80%. (A) The near-optimal strategies

to minimize symptomatic infections in scenario 1. (B) The near-optimal strategies to minimize symptomatic infections in scenario 4. (C) The near-optimal strategies to

minimize deaths in scenario 1. (D) The near-optimal strategies to minimize deaths in scenario 4. For each heat map, each row from left to right is the decreasing

direction of transmission risk, representing the total vaccine supply (percentage of the total population vaccinated) and each column represents a different subregion.

Colors represent the percentage of the population in a sub-region to be vaccinated.

FIGURE 7 | Percentage of cumulative symptomatic infections (A) and deaths (B) averted for both strategies. Solid lines with solid circles and dashed lines with hollow

circles represent the near-optimal and pro-rata strategies, respectively. For clarity, we highlight 1 set of results in Figure 6 in each scenario. The shaded areas

represent the range of effectiveness of strategies under multiple epidemiological landscapes simulated.
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effect of the intensity of non-pharmacological interventions on
the near-optimal vaccine allocation for the first 3 scenarios.

We found that the intensity of non-pharmacological
interventions had a greater effect on the near-optimal strategy
under scenario 1. As the intensity of non-pharmacological
interventions increased, the effectiveness of both strategies
improved to varying degrees compared with no vaccination
(Figure 8). For example, when Vdis = 60% and the total vaccine
coverage was 50%, the near-optimal strategy in scenario 1 could
prevent 43% (UI: 37−43%) of symptomatic infections if low-
intensity non-pharmacological interventions were implemented
along with vaccination. The symptomatic infections averted
under moderate or high intensity non-pharmacological

interventions would increase to 76% (UI: 51−76%) and 99%
(UI: 96−99%), respectively (Figure 8A). While the effectiveness
of the pro-rata strategy increased from 36% (UI: 34−36%)
to 71% (UI: 45−71%) and 98% (UI: 87−99%; Figure 8A).
The implementation of high-intensity non-pharmaceutical
interventions not only increases the population effectiveness
of vaccination but also requires fewer vaccines to control
the epidemic. Vaccinating everyone in scenario 1 would still
be difficult to completely control the outbreak under low-
intensity non-pharmaceutical interventions. However, under
high-intensity interventions, only 50% of the population would
need to be near-optimally vaccinated to control the pandemic.
Furthermore, when non-pharmacological interventions were

FIGURE 8 | Percentage of cumulative symptomatic infections (A) and deaths (B) prevented under different intensities of interventions. When Vdis = 60% and vaccine

coverage is 10−100% of the population, the percentage of cumulative symptomatic infections and deaths prevented for the near-optimal (solid line with solid circles)

and pro-rata (dashed line with hollow circles) strategy. For clarity, we highlight 1 set of results in each scenario. The shaded areas represent the range of effectiveness

of strategies under multiple epidemiological landscapes simulated.
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intensified, the optimizer tended to allocate vaccines more evenly
across all sub-regions. For the same vaccine effectiveness and
coverage, the range of optimal vaccine coverage for sub-regions
decreased with increasing intensity of the non-pharmacological
interventions, especially when the goal of vaccination was
to minimize cumulative symptomatic infections and vaccine
effectiveness and coverage were not sufficiently high (Figure 9).

DISCUSSION

The COVID-19 pandemic is not only a serious threat to human
life and health but also has a huge impact on economic
development and social stability. Non-pharmacological
interventions are effective in reducing the incidence of COVID-
19 cases. However, in the long term, these measures are
difficult to implement consistently and large-scale vaccination
is highly desirable. However, during the actual deployment
of the vaccine, the demand for the vaccine may far outweigh
the supply. Therefore, optimizing the allocation of limited
vaccines makes good practical sense and can provide valuable
information for policy formulation. In this work, we proposed
a novel vaccine spatio-temporal allocation model that can
reproduce the epidemiological landscapes that the region
may face when deploying vaccines. We used this model and
optimization algorithms to determine near-optimal vaccine
spatiotemporal allocation strategy in different scenarios. Our
findings suggest that the performance of vaccine spatiotemporal
allocation strategies is driven by several complex factors,
including vaccine effectiveness and coverage, epidemic dynamics
of subregions when allocating, and non-pharmacological
interventions implemented.

Based on the experimental results, we provide the following
recommendations for vaccination policy. If all subregions are in
the middle or late stage of the pandemic when the vaccine is
deployed, the existing pro-rata strategy is desirable, regardless
of vaccine effectiveness and coverage. This is because under
such epidemiological landscapes, for both vaccination targets, the

gains from optimizing vaccine allocation are minimal compared
to the pro-rata allocation. When sub-regions are in the same
period of rapid virus transmission or when the epidemic
dynamics of sub-regions differ significantly, prioritizing the
higher-risk sub-regions may be more beneficial in controlling
further virus transmission. While to minimize the deaths in
the region, the elderly in all subregions need to be vaccinated
as soon as possible. Under scenarios 1 and 4, the gain from
optimizing vaccine allocation to improve pro-rata strategy was
relatively small when minimizing the deaths. When the vaccine
coverage is less than 30%, the effectiveness of the two strategies is
almost the same under scenario 1. Based on this phenomenon,
we suggest that older adults in all subregions should be
vaccinated simultaneously if all subregions are in a period
of rapid virus transmission, while older adults in subregions
still in the early stages of a pandemic could be vaccinated
first when the epidemiologic dynamics of each subregion
differ significantly. After covering older adults in that region,
priority can be given to high-risk subregions. In addition, our
results suggest that the synergistic implementation of multiple
pandemic interventions can lead to better pandemic control
and that enhanced non-pharmaceutical interventions can reduce
vaccination pressure. If non-pharmaceutical interventions are
enhanced when deploying vaccines, the optimization strategy
will tend to allocate the vaccine more evenly across subregions.
This means that vaccines can be allocated more evenly across
sub-regions based on the above recommendations to further
enhance the effectiveness of vaccination if public health officials
can encourage or urge the public tomaintain good self-protection
habits while vaccinating.

It is worth noting that this work still has certain limitations.
First, the model assumed that the vaccine provided equal
protection to all vaccinated individuals and that the effect was
constant over the simulated time. Nevertheless, there may be
some differences in the protective effect of the vaccine in different
age groups, and asymptomatic infected individuals may result
in weaker protection (39). The protective effect of artificial

FIGURE 9 | Near-optimal vaccine coverage in sub-regions. Each violin represents the distribution of the primary optimal vaccine coverage for all sub-regions in

scenario 1 when minimizing the number of symptomatic infections for a certain intensity of non-pharmaceutical intervention.
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immunity induced by vaccination may decline over time (40). If
immunity is transient, then these results will apply only for that
duration. Second, the same rollout speed may be less desirable,
so different rollout speeds for subregions may be the focus of
our subsequent study, such as a faster rollout of vaccines in
sub-regions with more supply.
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