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Abstract
Purpose: The manual delineation of organs at risk is a process that requires a great deal of time both for the technician and for the
physician. Availability of validated software tools assisted by artificial intelligence would be of great benefit, as it would significantly
improve the radiation therapy workflow, reducing the time required for segmentation. The purpose of this article is to validate the deep
learning−based autocontouring solution integrated in syngo.via RT Image Suite VB40 (Siemens Healthineers, Forchheim, Germany).
Methods and Materials: For this purpose, we have used our own specific qualitative classification system, RANK, to evaluate more
than 600 contours corresponding to 18 different automatically delineated organs at risk. Computed tomography data sets of 95
different patients were included: 30 patients with lung, 30 patients with breast, and 35 male patients with pelvic cancer. The
automatically generated structures were reviewed in the Eclipse Contouring module independently by 3 observers: an expert physician,
an expert technician, and a junior physician.
Results: There is a statistically significant difference between the Dice coefficient associated with RANK 4 compared with the
coefficient associated with RANKs 2 and 3 (P < .001). In total, 64% of the evaluated structures received the maximum score, 4. Only
1% of the structures were classified with the lowest score, 1. The time savings for breast, thorax, and pelvis were 87.6%, 93.5%, and
82.2%, respectively.
Conclusions: Siemens’ syngo.via RT Image Suite offers good autocontouring results and significant time savings.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
The development of a radiation therapy (RT) plan
requires images of the tumor and the normal structures
surrounding it, and it must be possible to delineate both
the tumor (gross tumor volume) and the organs at risk
(OAR). These delineations are made manually by the RT
oncologist or technician, with the precise segmentation of
the gross tumor volumes and OARs forming the basis for
good RT. To be able to increase reproducibility and
r
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reduce uncertainty and errors, international or institu-
tional guidelines, contouring atlases, case libraries, and
numerous recommendations exist.1-3 The manual delin-
eation of critical organs is a process that requires a great
deal of time both for the technician and for the physician.
Having validated software tools assisted by artificial intel-
ligence would be of great benefit, as these tools would sig-
nificantly improve the RT workflow, reducing the time
required for segmentation.4-6 These tools also may con-
tribute toward reducing interobserver variability, stan-
dardizing the critical organs delineated in different
clinical pathologies, and reducing uncertainty when com-
paring results between them.7

Syngo.via RT Image Suite is the dedicated multimodal-
ity imaging software solution for RT offered by Siemens
Healthineers (Forchheim, Germany) including automatic
contouring of organs required for RT planning. The auto-
matic contouring algorithm is based on deep learning,
and it has been trained and validated with patient images
from multiple institutions across the world.

To use the contours generated automatically by a soft-
ware program for assistance, they must be validated. The
Dice index is often used to perform this type of validation.
Also known as similarity coefficient, the Dice index is a sta-
tistic widely used in different specialties8 to gauge the simi-
larity of 2 samples. However, it has limitations, such as the
effect of the size of the structure and clinical interpretabil-
ity, because it does not provide local information. A quali-
tative classification system with a clear and straightforward
clinical interpretation may be more suitable.8−10

In this work, we present the validation of 600 contours
corresponding to 18 different OARs delineated automati-
cally by syngo.via RT Image Suite VB40. For this purpose,
we have used a specific qualitative classification system,
RANK.
Methods and Materials
Algorithm description

The autocontouring algorithm, developed by Siemens
Healthineers for syngo.via RT Image Suite, computes seg-
mentation masks of an organ or anatomic structure for a
given computed tomography (CT) data set.11 The seg-
mentation is performed on the region of interest of indi-
vidual organs instead of on the entire image volume. To
locate the regions of interest, anatomic landmarks
(including vessel bifurcations, bony structures, organ cen-
ter, and boundary points) are detected in the input image
based on Ghesu et al.12

A Deep Image-to-Image Network (DI2IN) is employed
for organ segmentation according to the technique
described by Yang et al.13 It consists of a convolutional
encoder−decoder architecture combined with multilevel
feature concatenation. During the training process, the
network is driven by a cross-entropy loss based on a
learning rate of 0.001 using the Adam optimization. An
adversarial network is selectively used to regularize the
training process of DI2IN by discriminating the output of
DI2IN from the ground truth in a patch-by-patch manner
using binary cross-entropy.

Radiation therapy images from multiple institutions
across Europe, Asia, and North and South America were
used for training and validation. Because the application
only segments normal anatomy, no ethnicity-based
dependency is expected. Depending on the segmented
organ, the number of annotated patients in the training
set ranges from few hundreds to many thousands. The
algorithm is trained with a fixed number of cases during
the process of product development; it does not learn
from new cases after product release and cannot be
retrained in the hospital itself.

The training, validation, and testing data were anno-
tated based on predefined clinical annotation protocols.
These protocols were defined based on guidelines from
the Radiation Therapy Oncology Group.14

A team of experienced radiologists and a radiation
oncologist mentored and supervised the entire process. For
each organ, a detailed protocol was established based on the
aforementioned international guidelines. A quality assess-
ment based on peer review was performed for each data set
before further use in model training and validation.
Patient selection

Computed tomography images from 105 different
patients were included: 30 patients with lung, 30 patients
with breast, and 35 patients with prostate cancer.
All the CT scans were performed with a 64-slice, single-
source, flat-table SOMATOM Confidence scanner
(Siemens Healthineers). The characteristics of the CT
scanning protocols are described in the Appendix. The CT
scans of patients with lung cancer were acquired in the
supine position with the stereotactic body RT Conchest
Supra (Lorca Marin S.A., Murcia, Spain) immobilization
system and respiratory control using the RGSC (Respira-
tory Gating for Scanners) system (Varian Medical Systems,
Palo Alto, CA). For the contouring of OARs, the “Average”
series was used. Patients with breast cancer were posi-
tioned with their arms abducted and were immobilized
with the same system as those with lung cancer. The CT
scan was performed with deep breaths and with respiratory
control for all left breasts, as well as for right breasts
requiring radiation of the ganglia regions, provided the
patient could complete it. In total, there were 15 patients
with the right breast affected (3 breath hold and 12 free
breathing) and 15 patients with the left breast affected (12
breath hold and 3 free breathing). All CT scans were per-
formed with the patient in the supine position.



Table 1 Contoured organs

Computed
tomography type Organ

Lung Lung right
Lung left
Aorta
Esophagus
Spinal cord
Body

Breast Breast right
Breast left
Lung right
Lung left
Esophagus
Spinal cord
Body

Pelvis Bladder
Rectum
Proximal femur right
Proximal femur left
Prostate
Abdominopelvic cavity
Body
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Workflow

The CT images were sent from our CT scanner to
syngo.via RT Image Suite VB40 software and ARIA (Var-
ian Medical Systems). The structures were manually seg-
mented in ARIA following the usual clinical workflow
established in our service: an expert technician segments
the structures and then a radiation oncologist reviews and
validates them. In parallel, all studies were automatically
contoured with the syngo.via RT Image Suite VB40 soft-
ware, which is based on a server-client system.

The autocontoured organs that were evaluated in this
study are shown in Table 1. The heart was not taken into
consideration, because our own protocol has changed in
relation to the craniocaudal limits and presented discrep-
ancies with the guidelines used by Siemens Healthineers.
The bilateral organs (lung and breast) were delineated
separately. The body structure corresponds to the
patient’s external contour.

Once the CT had been performed and the study con-
cluded, the images were sent to syngo.via, which automati-
cally contoured the structures assigned in the model.
Approximately 2 minutes later, the images together with
the set of structures were filed in a network folder without
having to open syngo.via. The autocontoured structures
from syngo.via were then reviewed in the Eclipse Contour-
ing module independently by 3 observers: an expert physi-
cian, an expert technician, and a junior physician
(completely independent of the clinical course of the
patient and their manually contoured structures). The eval-
uation was done based on a categorical system of 4 values
(Table 2). The specifics of the respective RT treatment
were taken into account. In patients with prostate cancer,
for example, the upper parts of the abdominal cavity were
not considered. In cases, for which the contouring of an
additional organ was required for treatment, this was per-
formed manually by the technician or physician responsi-
ble. Subsequently, all required structures were reviewed
and edited. The responsible physician then delineated the
planning target volume, checked the OARs, and approved
all the structures. Before the dosimetric planning, all the
patients underwent a clinical session in which a multidisci-
plinary group consisting of physicians, physicists, and tech-
nicians rechecked the correct delineation of the structures.
Images from other modalities such as magnetic resonance
imaging or positron emission tomography were not
required in the process.
Table 2 Categories of the specific qualitative evaluation syste

RANK 4 Clinically usable for RT planning May cont

RANK 3 Usable after minor edits May be us

RANK 2 Usable after major edits May be us

RANK 1 Must redo Must be r

Abbreviation: RT = radiation therapy.
Evaluations and measurements

The Dice coefficient was measured by means of the
Varian Eclipse 16.1 software for each of the autoseg-
mented organs, considering manual segmentation as
ground truth. Each segmented structure, together with its
corresponding Dice value, was assigned to a group based
on its RANK value. The RANK 1 category was excluded
for this part of the analysis because it corresponds to seg-
mentations that could not be used and had to be
completely redone manually.

The time invested in delineating the OARs was self-
timed, after opening the CT series, manually for 19 cases
(6 breast, 6 thorax, and 7 pelvis) in the Eclipse “Contour-
ing” module. The contouring time of OARs not included
in the study has not been considered. Similarly, the time
taken by the expert RT technician to review and correct
the autocontoured OARs was recorded. With Excel 365
(Microsoft, Redmond, WA), a t test analysis was per-
formed to investigate the correlation between the 4-level
categorical system and the Dice coefficient.
m, RANK

ain very minor errors that do not require any type of correction

ed but requires minor corrections on a maximum of 1-3 slices

ed but requires changes to at least 4 slices

ejected and redone manually



Figure 1 Dice values depending on the associated RANK.
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Results
Dice coefficient versus RANK

Figure 1 shows the results of the Dice coefficient
obtained for the various RANK values.

There was a statistically significant difference between
the Dice coefficient values associated with RANK 4 com-
pared with the coefficient associated with RANKs 2 and 3
(P < .001).

The Dice coefficient associated with RANK 4, 3, and
2 was 0.98, 0.90, and 0.86, respectively, with a 95% confi-
dence level. The average Dice coefficient across the entire
Figure 2 Distribution of the RANK scores obtained in all the
are indicated in the bars.
data set was between 0.95. In total, 95% of the autoseg-
mentations obtained a Dice coefficient greater than 0.9
and the 100% was greater than the common benchmark
of 0.7.
RANK by OAR

Figure 2 shows the distribution of all the 600 organs
segmented automatically based on their RANK. In total,
64% received the maximum score, 4. Only 1% of the
structures were classified with the lowest score, 1. The
structures obtaining a generally greater score (90% of
structures and in each one separately. The absolute values



Table 3 Time invested in contouring all the structures associated with breast, thorax, and pelvis treatments

Breast Thorax Pelvis

Manual contouring, min:s (Eclipse) 32:44 § 09:05 19:35 § 10:30 34:40 § 11:30

Corrections, min:s (syngo.via) 03:44 § 02:36 01:16 § 02:48 06:11 § 04:18

Average time saved, min:s 29:00 § 10:12 18:19 § 10:54 28:29 § 12:18

Average § 2s in minutes and seconds.
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cases rated 3 or 4) were femur right, proximal femur left,
body, spinal cord, prostate, bladder, abdominopelvic cav-
ity, lung right and lung left, whereas those obtaining a
lower score were breast right and breast left, scoring 1 or
2 in 30% and 40% of cases, respectively. Esophagus and
rectum obtained a score of 3 or 4 in 80% and 85% of cases,
respectively.
Time invested

The average time invested in checking and correcting
the autocontoured structures is a fraction of the time ded-
icated to manual contouring in Eclipse (Table 3). The
time savings for breast, thorax, and pelvis was 88.6%,
93.5%, and 82.2%, and the number of volumes requiring
correction was 2.5, 0.8, and 2.9 in average, respectively.
Table 3 does not show the cases in which the RANK1
event occurs as the autosegmented structure could not be
used in these cases. These cases accounted for only 0.67%
(4 of 600) of the total.
Discussion
Current techniques such as intensity modulated RT or
volumetric modulated arc therapy require the contouring
of various critical OARs for treatment planning. The defi-
nition and reliable segmentation of the normal tissues
also have significant clinical and dosimetric consequences.
For OARs that limit the dose in particular, the more
information is provided to the system, the better the result
will be. However, if performed manually, this process
requires a significant amount of time and effort of the
expert clinician. Autocontouring software plays an impor-
tant role in the future of RT and will be an essential tool to
manage the increasing patient volumes in cancer.

Artificial intelligence is demonstrating its importance
with automatic contouring tools and autoplanning sys-
tems.15-18 New technologies will appear in the short
term19 that will change the way of working, as happened
with the appearance of 3-dimensional RT.

The atlas-based automatic contouring systems20 signif-
icantly improve precision and reduce variability, which is
further improved by systems based on artificial intelli-
gence. Both can reduce the time taken and improve the
workflow. Accordingly, we have verified the clinical
applicability of syngo.via RT Image Suite in terms of the
time invested and the clinical benefit of deep learning−
based autocontouring.

Comparisons between contouring systems by means of
geometric overlap metrics may not lead to meaningful
results. Therefore, as proposed by Brouwer et al,21 we
decided to evaluate the manual adjustments made to the
automatic contours to be able to establish the applicability
of the system.

The performance of the autosegmentation software may
be evaluated by the contour similarity indices as well as
possible time savings. Different parameters exist, such as
the Jaccard index, the Dice coefficient, or the Hausdorff dis-
tance,6-10 which are used to compare the results of the
tested delineation to a ground-truth delineation. However,
aiming for a complete overlap between 2 structures con-
toured manually by 2 observers or by 1 observer and the
software may not lead to any insights, as there will always
be a certain degree of variability, which is inevitable in
everyday clinical practice. Moreover, given that artificial
intelligence is still at the developmental stage, the contours
generated by computer tools must always be subject to revi-
sion and manual correction by the radiation oncologist.22

For that reason, we decided to perform a clinical applicabil-
ity analysis, based on the possible changes that the techni-
cian would make to the automatically generated contour,
and we performed a usability analysis.

Walker et al23 published the results of a randomized
double-blind study in which the manually drawn con-
tours were compared with the automatically created con-
tours in 40 patients with head and neck cancer. The
automatic system allowed a time savings of 30%, with a
similar Dice coefficient between manual and autoseg-
mented series. However, in their conclusions, the authors
affirm that autocontouring must be validated by a physi-
cian. Choi et al24 compared the contours that were drawn
manually by an expert to those generated automatically
by 2 algorithms, one based on atlas and the other based
on deep learning in patients with breast cancer. They con-
cluded that the algorithm based on deep learning is more
reliable than the one based on atlas. Zabel et al25 per-
formed a similar study on the bladder, prostate, and rec-
tum contours, reaching the same conclusion; similar
results have been demonstrated by Van Dijk et al.26 The
advantage of deep learning methods was also shown for
delineations of greater complexity such as the parotid
glands27 and masticatory muscles,28 as well as in the
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delineation of the hippocampus on magnetic resonance
images.29

In the present study, we quantified the time saved with
autosegmentation. It is important to measure the total
time for all parts of the process and to include the time
invested in the definition of the atlas cases and in the
choice of the correct atlas case (manual or automatic).

Several benefits are expected from the use of autocon-
touring systems. However, they must be implemented
and carefully validated in everyday clinical practice.

To conclude, autosegmentation tools provide an
attractive opportunity with the potential both to reduce
segmentation time and to increase adherence to existing
guidelines. By generating contours that require minimal
editing time, these systems can be easily incorporated
into the routine workflows of a radiation oncology
department.
Conclusion
Siemens Healthineers’ syngo.via RT Image Suite offers
good autocontouring results and may be incorporated into
the clinical practice of a radiation oncology department with
significant time savings in the delineation of the critical
organs and, therefore, in the total preparation time for RT.
Supplementary materials
Supplementary material associated with this article can
be found in the online version at doi:10.1016/j.adro.2023.
101177.
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