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Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes which catalyze the poly-ADP-ribosylation involved in gene
transcription, DNA damage repair, and cell-death signaling. As PARP-1 protein contains a DNA-binding domain, which can bind
to DNA strand breaks and repair the damaged DNA over a low basal level, the inhibitors of poly(ADP-ribose) polymerase 1 (PARP-
1) have been indicated as the agents treated for cancer. This study employed the compounds from TCM Database@Taiwan to
identify the potential PARP-1 inhibitors from the vast repertoire of TCM compounds. The binding affinities of the potential TCM
compounds were also predicted utilized several distinct scoring functions. Molecular dynamics simulations were performed to
optimize the result of docking simulation and analyze the stability of interactions between protein and ligand. The top TCM
candidates, isopraeroside IV, picrasidine M, and aurantiamide acetate, had higher potent binding affinities than control, A927929.
They have stable H-bonds with residues Gly202 and, Ser243 as A927929 and stable H-bonds with residues Asp105, Tyr228, and
His248 in the other side of the binding domain, which may strengthen and stabilize ligand inside the binding domain of PARP-
1 protein. Hence, we propose isopraeroside IV and aurantiamide acetate as potential lead compounds for further study in drug
development process with the PARP-1 protein.

1. Introduction

Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes
which catalyze the poly-ADP-ribosylation to combine one or
more ADP-ribose moieties from intracellular nicotinamide
adenine dinucleotide (NAD+) covalently with target proteins
[1–3]. The poly-ADP-ribosylation is commonly involved in
gene transcription, DNA damage repair, and cell-death sig-
naling [4–6].

There are six domains in the structure of poly(ADP-
ribose) polymerase 1 (PARP-1) protein elucidated by recent
structural studies. Two of three zinc-binding domains have
the function to detect and bind to DNA breaks and the third
zinc-binding domain coordinates DNA-dependent enzyme
activation [7]. The automodification domain serves as accep-
tors of ADP-ribose moieties, which allow PARP-1 protein

mediated poly-ADP-ribosylation to itself, and contains a
BRCA1 C-terminus repeat motif [8–10]. The C-terminal
catalytic domain catalyzes the poly-ADP-ribosylation to
combine one ormore ADP-ribosemoieties from intracellular
nicotinamide adenine dinucleotide (NAD+) covalently with
target proteins [11–13]. As PARP-1 protein contains a DNA-
binding domain, which can bind to DNA strand breaks
and repair the damaged DNA over a low basal level, the
inhibitors of poly(ADR-ribose) polymerase 1 (PARP-1) have
been indicated as the agents treated for cancer [14–17].

Nowadays, the researchers devote to determining the
mechanism of diseases and detecting the useful target protein
against the diseases [18–24]. In previous researches, it was
proven that many compounds extracted from traditional
Chinese medicine (TCM) can be recognized as potential
lead compounds treated for viral infection [25–28], stroke
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Figure 1: Disordered protein predicted by PONDR-Fit and sequence alignment with disordered residues (yellow regions) and residues in the
binding domain (magenta regions).

Table 1: Scoring functions of top candidates and A927929 from TCM database screening.

Name Resource LigScore2 Dreiding -PLP1 -PLP2 -PMF Dock score
Isopraeroside IV Angelica dahurica 6.42 122.67 116.48 163.17 100.596
Picrasidine M Picrasma quassioides (D. Don) Benn. 6.92 125.68 121.49 162.36 92.256
Aurantiamide acetate Artemisia annua L. 6.74 136.86 132.63 159.08 88.910
A927929∗ 6.10 118.83 115.73 120.22 52.093
∗Control.

prevention [29–31], cancers [32–35], and metabolic syn-
drome [36–38]. To improve drug development from TCM
compounds, this study employed the compounds from
TCM Database@Taiwan for virtual screening to identify
the potential PARP-1 inhibitors from the vast repertoire of
TCM compounds. As the structural disorders of protein
may cause the side-effect or affect the ligand binding [39,
40], the prediction of disordered amino acids of PARP-1
proteinwas performedbefore docking simulation. In docking

simulation, distinct scoring functions had been created to
predict the binding affinities in different measure methods,
such as LigScore considering the Van der Waals interaction
and buried polar surface area, piecewise linear potential
(PLP), and potential of mean force (PMF) measuring the
pairwise interactions of hydrogen bond (H-bond) and steric
interaction. We identify the potential TCM compounds in
docking simulation utilizing those scoring functions and
dock score, which evaluated the docking poses by interaction
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Figure 2: Chemical scaffolds of control and top three candidates.

Table 2: H-bond occupancy for key residues of PARP-1 protein with top three candidates and A927929 overall 40 ns molecular dynamics
simulation.

Name H-bond interaction Occupancy

A927929

His201:ND1 /H44 58%
Gly202:HN /N24 88%
Gly202:HN /O25 100%
Gly202:O /H44 86%
Ser243:HG1 /O25 100%

Isopraeroside IV

Asp105:OD1 /H53 32%
Asp105:OD2 /H53 5%
His201:HE2 /O27 17%
Gly202:HN /O15 87%
Gly202:O /H51 44%
Ser243:HG1 /O15 63%
His248:HE2 /O28 71%
His248:HE2 /O29 22%

Picrasidine M

Tyr228:HH /N27 66%
Tyr228:HH /O34 87%
Lys242:HZ3 /O17 20%
Tyr246:HH /N26 11%

Aurantiamide acetate

Gly202:HN /O32 6%
Gly202:HN /O34 78%
Tyr228:HH /O8 35%
Ser243:HG1 /O34 55%

H-bond occupancy cutoff: 0.3 nm.
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Figure 3: Docking poses of PARP-1 protein complexes with A927929, isopraeroside IV, picrasidine M, and aurantiamide acetate.

energy.Moreover, themolecular dynamics (MD) simulations
were performed to optimize the result of docking simulation
and analyze the stability of interactions between protein and
ligand under dynamic conditions.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure
of human poly(ADP-ribose) polymerase 1 (PARP-1) with
A927929 was obtained from RCSB protein data bank with
PDB ID: 3L3M [41]. The crystal structure of PPAR protein
was prepared by prepare protein module in Discovery Studio
2.5 (DS2.5) to remove crystal water, protonate the structure of
protein, and employ chemistry at HARvard macromolecular

mechanics (CHARMM) force field [42]. The binding site of
PARP-1 protein was defined by the volume and location of the
cocrystallized compound, A927929. A total of 9,029 nondu-
plicate TCM compounds from TCM Database@Taiwan [43]
were filtered by Lipinski’s rule of five [44] and protonate the
structure by prepare ligand module in DS2.5. The prediction
of disordered amino acids of PARP-1 protein was performed
by PONDR-Fit [45].

2.2. Docking Simulation. The TCM compounds were vir-
tually screened by LigandFit protocol [46] in DS 2.5 to
dock compounds into binding site using Monte-Carlo ligand
conformation generation and a shape-based initial docking.
The suitable docking poses were then optionally minimized
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Figure 4: Root-mean-square deviation and total energy over 40 ns
MD simulation for PARP-1 protein complexes with A927929, iso-
praeroside IV, picrasidine M, and aurantiamide acetate.

withCHARMMforce field [42], and a set of scoring functions
were evaluated by LigandFit protocol [46] in DS 2.5.

2.3. Molecular Dynamics Simulation. Themolecular dynam-
ics (MD) simulations are performed by Gromacs [47]. The
PARP-1 protein was reprepared with charmm27 force field
by Gromacs. The topology and parameters of each ligand for
use with Gromacs were provided by SwissParam program
[48].The whole system involves a cubic box with a minimum
distance of 1.2 Å from the protein-ligand complex was sol-
vated by a water model of TIP3P. At the beginning of MD
simulation, an energy minimization was performed using
steepest descent algorithm [49] with a maximum of 5,000
steps and followed by a single 10 ps constant temperature
(NVT ensemble) equilibration performed using Berendsen
weak thermal couplingmethod.The total of 40 ns production
simulation was performed under the particle mesh Ewald
(PME) option with a time step of 2 fs. The 40 ns MD
trajectories were analyzed by the protocols in Gromacs.

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered amino
acids of PARP-1 protein were predicted by PONDR-Fit with
the protein sequence from Swiss-Prot (UniProtKB: P09874).
Figure 1 displays the result of disordered amino acids predic-
tion and the sequence alignment. It indicates that the residues
in the binding domain do not deposit in the disordered

region. The binding domain of PARP-1 protein may have
a stable structure in protein folding. Most residues in the
binding domain were close to the local lowest regions of
disordered disposition.

3.2. Docking Simulation. After virtual screening, the top
TCM compounds ranked by dock score [46] and control,
A927929, are listed in Table 1 with the results of three scoring
functions, LigScore2 Dreiding [50], -PLP1 [51], -PLP2 [52],
and -PMF [53].

LigScore2 Dreiding is a scoring function calculated by
three descriptors as equation as follows:

LigScore2 Dreiding = 1.539 − 0.07622 ∗ V𝑑𝑊

+ 0.6501 ∗ 𝐶 + pol − 0.00007821

× BuryPol2,
(1)

where vdW is a softened Lennard-Jones 6–9 potential in
units of kcal/mol. C+ pol shows the buried polar surface area
between protein and ligand in units of Å2. BuryPol2 is the
squared sum of the buried polar surface area between protein
and ligand in units of Å2.

-PLP1, -PLP2, and -PMF are calculated by summing
pairwise interaction, which are hydrogen bond (H-bond) and
steric interaction, between protein and ligand. Higher scores
indicate stronger protein-ligand binding affinities.

The scoring functions indicate that the top TCM com-
pounds have higher binding affinities than A927929. The
resources of three TCM compounds are also listed in Table 1.
Isopraeroside IV is extracted from root of Angelica dahurica.
Picrasidine M is extracted from bark of Picrasma quassioides
(D.Don) Benn. Aurantiamide acetate is extracted from plant
of Artemisia annua L. The chemical scaffolds of A927929
and top three TCM compounds are shown in Figure 2. The
docking poses of A927929 and top TCM compounds in
PARP-1 protein are illustrated in Figure 3. A927929 has H-
bonds with two key residues Gly202 and Ser243, which
restricted ligand in the binding domain. The TCM com-
pounds, isopraeroside IV and aurantiamide acetate, have H-
bonds with two key residues Gly202 and Ser243 as A927929.
Moreover, aurantiamide acetate also has an H-bond with
residue Gly227. Picrasidine M has H-bonds with another
three residuesAsp105, Tyr228, andTyr246 to restricted ligand
in the binding domain of PARP-1 protein.

3.3. Molecular Dynamics Simulation. Themolecular dynam-
ics (MD) simulations were performed to analyze the stability
of interactions between protein and ligand under dynamic
conditions. Figure 4 illustrates the root-mean-square devia-
tions (RMSDs) and total energies for PARP-1 protein com-
plexes with A927929, isopraeroside IV, picrasidine M, and
aurantiamide acetate over 40 nsMD simulation. RMSDswere
calculated to study atomic fluctuations for each protein and
ligand during MD simulation. The C𝛼 RMSDs and ligand
RMSDs indicate that each complex tends to stabilize after
31 ns of MD simulation. Moreover, Figure 4 also indicates
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Figure 5: Distance matrices consisting of the smallest distance between residue pairs for PARP-1 protein complexes with A927929,
isopraeroside IV, picrasidine M, and aurantiamide acetate. Residues 1–348 in 𝑦-axis correspond to residues 2–349.

that the PARP-1 complexes with the top three TCM com-
pounds have similar total energies as the PARP-1 complex
with A927929 under dynamic conditions. Distance matrices
consisting of the smallest distance between residue pairs for

each protein-ligand complex are shown in Figure 5. Those
matrices display that the influence of the top three TCM
compounds on the structure of PARP-1 protein is similar to
A927929. Figure 6 shows the secondary structure changes
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for each complex during MD simulation, respectively. The
secondary structure changes indicate that the top three TCM
compounds did not cause significant differences from the
control. The secondary structural feature ratio variations
indicate that each protein-ligand complex has approximately
33% of 𝛼-helix and 21% of 𝛽-sheet during MD simulation.
In Figure 7, it illustrates the RMSD values and graphical
depiction of the clusters with cutoff of 0.105 nm over 40 ns
MD simulation. The RMSD values between MD trajectories
indicate that the PARP-1 protein complexes tend to stabilize
after MD simulation. After the complexes tend to stabilize
under dynamic conditions, the representative structures
of each protein-ligand complex after MD simulation were
identified by middle RMSD structure in the major cluster.

Docking poses of middle RMSD structure in the major clus-
ter for PARP-1 protein complexes with A927929 (39.32 ns),
isopraeroside IV (38.42 ns), picrasidine M (31.22 ns), and
aurantiamide acetate (38.44 ns) are illustrated in Figure 8. It
indicates that A927929 has a similar docking pose as docking
simulation and maintains the H-bonds with two key residues
Gly202 and Ser243 after MD simulation. For three TCM
compounds, isopraeroside IV keeps the H-bonds with two
key residues Gly202 and Ser243 under dynamic conditions.
Moreover, isopraeroside IV has H-bonds with the other two
residues Asp105 andHis248 afterMD simulation. Picrasidine
Mmaintains theH-bondwith residue Tyr228 under dynamic
conditions and shifts an H-bond from residue Tyr246 to
residue Lys242. In addition, picrasidine M loses the H-bond
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Figure 9: Distances of hydrogen bonds with common residues during 40 nsMD simulation. (a) A927929, (b) isopraeroside IV, (c) picrasidine
M, and (d) aurantiamide acetate.

with residue Asp105 after MD simulation. Aurantiamide
acetate maintains the H-bonds with two key residues Gly202
and Ser243 under dynamic conditions and has an H-bond
with residue Tyr228 after MD simulation.

Docking poses of middle RMSD structure in the major
cluster for PARP-1 protein complexes indicate that all com-
pounds except picrasidine M have stable H-bonds with
two key residues Gly202 and Ser243. Picrasidine M and



Evidence-Based Complementary and Alternative Medicine 11

aurantiamide acetate have an H-bond with residue Tyr228.
Isopraeroside IV has H-bonds with the other two residues
Asp105 and His248 after MD simulation.

The occupancies of H-bonds for key residues of PARP-1
protein are listed in Table 2, and the fluctuation of distances
for H-bonds with common residues of PARP-1 protein is
shown in Figure 9. The H-bonds occupancies and distances
fluctuation over MD simulation displays the stable H-bonds
between ligands, A927929, isopraeroside IV, aurantiamide
acetate, and residues Gly202 and Ser243. In addition, picrasi-
dineMhas stableH-bondswith residue Tyr228. ForA927929,
although the H-bond occupancy with residue His201 over
40 ns of MD simulation is 58%, the distance variation of H-
bond shown in Figure 9 indicates that this H-bond was lost
at the end of theMD simulation. For isopraeroside IV, the H-
bondswith residuesAsp105 andHis248 are tended to stabilize
after MD simulation. Aurantiamide acetate also has a stable
H-bond with residue Tyr228 after 25 ns of MD simulation.
For picrasidine M, the H-bond with residue Tyr246 in the
docking simulation has shifted to bindingwith residue Lys242
after MD simulation, and it has another H-bond with residue
Tyr246 under dynamic conditions.

The top TCM compounds, isopraeroside IV and auran-
tiamide acetate, have stable H-bonds with residues Gly202
and Ser243 as A927929. In addition, isopraeroside IV also
has stable H-bonds with residues Asp105 and His248, which
stabilized the docking pose of ligand in the binding domain.
Aurantiamide acetate has another stableH-bondwith residue
Tyr228 similar to picrasidine M. For picrasidine M, it forms
the stable H-bond with residue Lys242 instead of residues
Gly202 and Ser243.

4. Conclusion

In this study,we aim to investigate the potent TCMcandidates
for PARP-1 protein. The top TCM candidates, isopraeroside
IV, picrasidine M, and aurantiamide acetate had higher
potent binding affinities than control, A927929, in the dock-
ing simulation. Both isopraeroside IV and aurantiamide
acetate had H-bond with residues Gly202 and Ser243 as
A927929. The MD simulations were performed to optimize
the result of docking simulation and validate the stability
of H-bonds between each ligand and PARP-1 protein under
dynamic conditions. Isopraeroside IV and aurantiamide
acetate have stable H-bonds with residues Gly202 and Ser243
as A927929 under dynamic conditions. Moreover, they had
stable H-bonds with residues Asp105, Tyr228, and His248 in
the other side of the binding domain, which may strengthen
and stabilize ligand inside the binding domain of PARP-1 pro-
tein. Hence, we propose isopraeroside IV and aurantiamide
acetate as potential lead compounds for further study in drug
development process with the PARP-1 protein.
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