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Vaccination is the best prophylaxis for the prevention of infectious diseases, including
coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse
reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the
immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and
lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-
dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative
feedback loop. Excessive IL-6 expression reduces vaccination efficacy in agedmice, while
EV miR-192 improves efficacy in these aged mice as well, making this miRNA an
interesting focus of study. miR-21 levels in serum EVs also increase with aging, and
regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is
expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant
in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6.
However, levels differ among individuals and correlate with local inflammatory symptoms
experienced after a seasonal flu vaccination. These findings suggest the importance of EV
miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the
immune response and adverse reactions after vaccinations.
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INTRODUCTION

Vaccines are the best prophylaxis for infectious disease prevention, including seasonal flu and
coronavirus disease 2019 (COVID-19) (1, 2). Vaccines comprise specific antigens and adjuvants (3);
several types of adjuvants, such as aluminum salts and monophosphoryl lipid A, are used in vaccines
(4, 5). These induce pro-inflammatory cytokine expression, and activate dendritic cells and
macrophages, leading to the priming of naïve T cells and provoking antigen-specific immune
responses, including B-cell activation and antibody production (3). In addition to artificial
compounds, components of viral particles also function as adjuvants, e.g., in the inactivated whole-
virus influenza vaccine. Viral RNA within its viral particles that are recognized by Toll-like receptors
org June 2021 | Volume 12 | Article 6853441
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determine the efficiency of vaccines (6); thus, adjuvant-induced
innate immune responses are crucial for vaccine efficacy.

Studies have revealed that several microRNAs (miRNAs)
regulate the innate immune responses (7–10). miRNAs are
delivered from the host to donor cells by extracellular vesicles
(EVs), such as exosomes and microvesicles (11–13). Exosomes
are small vesicles, approximately 100 nm in diameter that
express CD9, CD63, and CD81 proteins (14, 15), while
microvesicles are > 100 nm in diameter (14, 16). Several
miRNAs within EVs affect immune responses after vaccination.
EV MIR-192 IMPROVES AGE-ASSOCIATED
DECREASES IN VACCINE EFFICACY

Aging affect the immune system (17, 18), and the efficacy of
vaccines decreases with age (19). It is expected that aging would
lead to immune dysfunction because of impaired B cell
generation, a reduction in naïve T cells, a decreased ability of
hematopoietic stem cells to replicate, and/or some other
phenomena associated with age (20, 21). However, several
studies have shown that chronic inflammatory responses
increase with age, thereby decreasing vaccination efficacy (17,
22–24). For example, excessive TNF-a down-regulates CD28
expression on T cells (25), and high TNF-a levels lead to reduced
B cell responses (26). These former studies suggest that excessive
inflammation diminishes vaccine efficacy (27).

Decreased vaccine efficacy with aging has been observed in
mouse animal models; mice aged 8–12 weeks are usually used for
immune response analyses, and older mice, (1> year), exhibit
lower vaccination efficacy than young mice (22, 28).

miR-192 is a miRNA induced by p53 that improves renal
fibrosis in diabetic nephropathy patients (29, 30) and plays a role
in several other diseases (31, 32). Recently, we found that miR-
192 was an aging-associated miRNA and that EVs delivered
miR-192 to macrophages, thereby reducing pro-inflammatory
cytokine expression in the lungs (22). miR-192 targets ZEB2,
MIP2a, TRIM25, IL-17RA, and Rictor mRNAs (Table 1):
MIP2a is a chemokine that recruits neutrophils; TRIM25 is
required for pro-inflammatory cytokine expression in response
to influenza A virus RNAs (45, 46); and IL-17RA is crucial for
pro-inflammatory cytokine expression in response to IL-17 (47).
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These targets might be involved in miR-192-mediated suppression
of pro-inflammatory cytokine expression.

Additionally, we found that the expression of pro-
inflammatory cytokines in the lung was prolonged in aged mice
after intranasal administration of a whole-virus influenza vaccine
(22). However, intranasal administration of EVs containing miR-
192 mimic RNA reduced excessive pro-inflammatory cytokine
expression, such as IL-6, and improved antigen-specific antibody
levels after vaccination in aged mice (22). Since EV miR-192 levels
increased in aged mice in an IL-6-dependent manner (22), it was
expected that miR-192 would constitute a negative feedback loop
to attenuate chronic inflammatory responses, resulting in
improved immune responses and improved vaccination efficacy
in elderly (Figure 1) (22).
MIR-21 REGULATES IMMUNE
RESPONSES AFTER VACCINATION

Serum IL-6 levels increase with aging in humans and mice (48),
and miR-19b, miR-21, miR-181c, and miR-322 levels in serum
EVs also increase with aging in an IL-6-dependent manner (22).
Among those aging-associated miRNAs, miR-21 is known to
regulate the immune responses following vaccination.

miR-21 negatively regulates the expression of IL-12p35, as
well as IL-6, IL-8, TNF-a, and IL-1b (38, 49, 50). Although
a contradicting report has shown the miR-21-augmented
pro-inflammatory cytokine expression of IL-1b and IL-6 in
RAW264.7 cells (51), Knockout (KO) studies have shown
that miR-21 KO also increased the expression of these pro-
inflammatory cytokines as well (52, 53). Therefore, EV miR-21 is
expected to attenuate the expression of these pro-inflammatory
cytokines (Figure 1). miR-21 targets mRNAs of IL-12p35,
PDCD4, and PTEN (Table 1): although PDCD4 promotes
pro-inflammatory cytokine expression (54), PTEN reduces
pro-inflammatory cytokine expression (40), and these
mechanisms might underlie the apparent contradictions.

miR-21 levels affect the efficacy of a live-attenuated vaccine of
Leishmania, LdCen-/- (55). IL-12 is an essential cytokine for Th1
response to Leishmania; therefore, miR-21 decreased Th1
immunity, thereby affecting the efficacy of this live-attenuated
vaccine (55). Interestingly, miR-21-containing exosomes derived
from dendritic cells regulate CD4+ T cell proliferation (56); thus,
it is expected that serum EV miR-21 levels would affect innate
and adaptive immune responses following vaccination. Further
investigation is required to determine the role of EV miR-21 in
the immune response after vaccination.
MIRNA-451A IS ASSOCIATED WITH
LOCAL INFLAMMATORY RESPONSES
AFTER VACCINATION

Innate immunity itself is required to initiate the adaptive
immune responses, whereas it leads to a local inflammatory
TABLE 1 | Immune regulatory miRNAs and their targets.

miRNA Target Reference

miR-192 ZEB2 (30, 33)
MIP2a (CXCL2) (34)
TRIM25 (35)
IL-17RA (36)
Rictor (37)

miR-21 IL-12p35 (38)
PDCD4 (39)
PTEN (40)

miR-451 14-3-3z (41, 42)
CAB39 (43)
IKK-b (44)
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response. Upon stimulation from adjuvants, IL-6, TNF-a, and
IL-1b are produced from macrophages and increase vascular
permeability, allowing the flow of red and white blood cells as
well as plasma with small molecules, resulting in local swelling,
pain, and redness (57–60). Additionally, circulation of these
cytokines in the blood flow causes prostaglandin E2 (PGE2)
production in the hypothalamus, leading to fever (61). Excessive
innate immune responses are harmful to the host: hypermorphic
mutations in the genes involved in innate immune responses
cause autoimmune disorders (62).

miR-451a attenuates pro-inflammatory cytokine expression
(41), as it targets 14-3-3z (Table 1), which controls the activities
of FOXO3 and ZFP36 (41). FOXO3 is an inhibitory transcription
factor for cytokine expression (63), and ZFP36 can bind to AU-
rich elements of the untranslated mRNA regions, thus
destabilizing cytokine mRNAs (41). In addition to 14-3-3z,
IKK-b and CAB39 are also targeted by miR-451a (Table 1):
IKK-b plays a crucial role in NF-kB activation (64). These
mechanisms are expected to underlie miR-451a-mediated
suppression of pro-inflammatory cytokine expression.

miR-451a is efficiently sorted into EVs in several cell types
(65, 66); therefore, miR-451a levels in serum EVs are very high
(67, 68), and its intracellular levels are relatively low (65, 69). We
found that EV miR-451a levels in the serum of a culture medium
correlated with intracellular miR-451a levels, a few days after
incubation of macrophages with a serum-containing medium,
because EVs deliver miR-451a to macrophages (69). Therefore,
EVs miR-451a levels in serum of culture medium correlated
with expression levels of cytokines, such as type I IFN and IL-6,
Frontiers in Immunology | www.frontiersin.org 3
in macrophages stimulated with influenza A virus vaccines
(69). This correlation was also observed in several other
miRNAs (69).

In the short term, miR-451a levels in human sera are relatively
stable, with few changes of more than two-fold in a week (69);
however, levels gradually fluctuate and, in some cases, change by
more than 10-fold during a year (69). IL-6 is a pro-inflammatory
cytokine regulated by miR-451a that causes inflammatory
responses, including vesicular permeability (41). Our clinical
study showed that miR-451a levels in serum EVs before
vaccination correlated with the occurrence of local inflammatory
symptoms observed after a seasonal flu vaccination (68).
Several other EV miRNAs were also associated with local
inflammatory responses (68). Christian LM et al. have reported
the correlation of local inflammatory symptoms with the
expression of pro-inflammatory cytokines after vaccination (70).
These observations imply that circulating EV miRNAs regulate
local cytokine expression and inflammatory responses after
vaccination. However, it is still possible that the levels of miR-
451a and other immune regulatory miRNA reflect a physical
condition that affects the inflammatory responses. Further studies
are required to determine mechanism underlying the correlation
between miR-451a levels in circulating EVs and immune responses
after vaccination.

DISCUSSION

Vaccine efficacy varies among individuals, and vaccine-related
adverse reactions occur only in certain cases. Environmental
FIGURE 1 | EV miRNAs regulate cytokine expression in response to vaccines. EVs deliver miR-451a, miR-192, and miR-21 to recipient cells, such as macrophages.
Vaccine adjuvants then stimulate these macrophages and dendritic cells, resulting in the production of pro-inflammatory cytokines. miR-451a attenuates type I IFN
and IL-6 expression in macrophages, and miR-192 reduces the expression of IL-6. miR-21 has the ability to attenuate the IL-12 expression. miR-192 and miR-21
levels in EVs increase with aging in an IL-6-dependent manner. Serum IL-6 levels are increased with aging, and thus constituting a miR-192-dependen negative
feedback loop.
June 2021 | Volume 12 | Article 685344

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Oshiumi miRNAs and Vaccine
factors affect immune responses (71, 72) and are expected to
cause differences in vaccine efficacy and the onset of adverse
reactions. Increasing evidence has shown that circulating EV
miRNAs affect immune responses after vaccination, and
miRNA levels vary among healthy individuals. For example,
excessive glucose uptakes and several diseases are reported to
affect miR-451a levels (73–76). Some of the environmental factors
that affect EV miRNA levels might regulate vaccine-induced
immune responses; hence, studies of the environmental factors
affecting circulating EV miRNA levels are important in
identifying environmental factors affecting immune responses
after vaccination.

Recent studies have identified the significant potential of
serum miRNAs as biomarkers for cancer, diabetes, Alzheimer′s
disease, allergic inflammatory disease, rheumatoid arthritis, etc.
(77–80). Thus, since serum EV miRNAs affect the immune
responses following vaccination, they can potentially be used as
biomarkers to predict vaccine efficacy and adverse reactions.
Similarly, if a vaccination is predicted to be ineffective for a
person, improvement of the efficacy by an additional vaccination
is possible. In the case of the recent COVID-19 outbreak, herd
immunity will be crucial in eradicating the pandemic (81).
Thus, prediction of the efficacy and follow-up vaccination
requirements might help achieve effective herd immunity
against COVID-19 efficiently. COVID-19 vaccination is
progressing all over the world and, thus cohort studies
investigating the association of EV miRNAs with antibody
production or memory cell generation after vaccination would
reveal the potential of EV miRNAs as biomarkers.

Vaccination efficacy decreases with age, therefore, miRNAs
that affect or improve immune responses of the elderly would
also help improve the vaccination efficacy. Indeed, miR-192 in
EVs improves the efficacy of vaccination in aged mice. Recent
approaches have tested the engineering of exosomes for
delivering therapeutic proteins and nucleic acids, as well as
miRNAs (82). Thus, it is expected that vaccines containing EV
miR-192 would be useful for vaccinating the elderly. In addition
Frontiers in Immunology | www.frontiersin.org 4
to miR-192, miR-451a could improve vaccines. miR-451a levels
in EVs were negatively correlated with inflammatory responses
at the vaccination site and reduced pro-inflammatory cytokine
expression (68, 69); therefore, the addition of EV miR-45 to a
vaccine might improve excessive inflammatory symptoms, such
as pain, swelling, and redness, without reducing efficacy. EVs
containing immune regulatory miRNAs could be useful tools to
improve vaccine efficacy and to reduce adverse reactions.

Although both exosomes and microvesicles deliver miRNAs,
there are functional differences between them; for example, miR-
150 is efficiently sorted into exosomes but not microvesicles (83).
Furthermore, EVs can be classified into several types, and each
type contains distinct components (84). It is therefore possible
that specific EVs affect the immune response after vaccination.
Further studies are required to reveal the role of EVs in
regulating immune responses after vaccination.
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