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Abstract

Obsessive–compulsive disorder (OCD) is a debilitating and disabling neuropsychiatric

disorder, whose neurobiological basis remains unclear. Although traditional static

resting-state magnetic resonance imaging (rfMRI) studies have found aberrant func-

tional connectivity (FC) in OCD, alterations in whole-brain FC and topological proper-

ties in the context of brain dynamics remain relatively unexplored. The rfMRI data of

29 patients with OCD and 40 healthy controls were analyzed using group indepen-

dent component analysis to obtain independent components (ICs) and a sliding-

window approach to generate dynamic functional connectivity (dFC) matrices. dFC

patterns were clustered into three reoccurring states, and state transition metrics

were obtained. Then, graph-theory methods were applied to dFC matrices to calcu-

late the variability of network topological organization. The occurrence of a state

(State 1) with the highest modularity index and lowest mean FC between networks

was increased significantly in OCD, and the fractional time in brain State 1 was posi-

tively correlated with anxiety level in patients. State 1 was characterized by having

positive connections within default mode (DMN) and salience networks (SAN), and

negative coupling between the two networks. Additionally, ICs belonging to DMN

and SAN showed lower temporal variability of nodal degree centrality and efficiency

in patients, which was related to longer illness duration and higher current obsession

ratings. Our results provide evidence of clinically relevant aberrant dynamic brain

activity in OCD. Increased functional segregation among networks and impaired

functional flexibility in connections among brain regions in DMN and SAN may play

important roles in the neuropathology of OCD.
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1 | INTRODUCTION

Obsessive–compulsive disorder (OCD) is a debilitating and disabling

neuropsychiatric disorder characterized by intrusive thoughts and

repetitive or ritualistic behaviors (Goodman, Grice, Lapidus, &

Coffey, 2014; Li et al., 2020). It has a lifetime prevalence of 2–3% in

the general population (Abramowitz, Taylor, & McKay, 2009; Li

et al., 2011). As an emerging subspecialty of radiology, psycho-

radiology has led to our better understanding of the complex brain

alterations in patients with OCD (Huang et al., 2019), where magnetic

resonance imaging (MRI) studies have provided evidence of structural

and functional alterations in fronto-striatal circuitry, notably abnormal

gray matter volume in the anterior cingulate cortex, prefrontal cortex,

striatum, and thalamus (Milad & Rauch, 2012), and dysconnectivity

within and between frontal and subcortical regions (Endrass &

Ullsperger, 2014; Li et al., 2014; Milad & Rauch, 2012).

Recent investigations of large-scale brain networks using resting-

state functional MRI (rfMRI) found extensive alterations in brain func-

tional connectivity (FC) in OCD (Gursel, Avram, Sorg, Brandl, &

Koch, 2018). These findings generally support the “triple-network”
model in which abnormal FC patterns within and between the default

mode network (DMN), executive control network (ECN), and salience

network (SAN) represent core pathophysiological mechanisms of

OCD (Fan et al., 2017; Posner et al., 2017; Stern, Fitzgerald, Welsh,

Abelson, & Taylor, 2012). Graph-theoretical analysis of the brain

connectome has demonstrated decreased global metrics such as

small-worldness, as well as altered regional metrics such as clustering

coefficient and nodal degree in frontal and subcortical regions

(Armstrong et al., 2016; Beucke et al., 2013; Zhang et al., 2011),

improving understanding of the topological organization of functional

brain networks in OCD.

Conventional rfMRI FC analysis treats brain connectivity patterns

as if they are stationary during scan sessions. However, the brain is a

highly dynamic system with non-stationary neural activities and

rapidly-changing neural interactions (Fu et al., 2018), and this informa-

tion is lost in static FC analytic approaches. Although the static analy-

sis approach has provided valuable information concerning brain

functional organization in OCD, the dynamic functional connectivity

(dFC) approach can provide a complementary understanding of the

dynamic changes in functional activity in large scale networks and

their alteration in neuropsychiatric illnesses (Hutchison et al., 2013).

Neural dynamics is especially important during resting periods where

the mental activity is not directly modulated by task demands

(Fu et al., 2018). dFC fluctuations are related to changes in cognitive

and affective processes (Thompson et al., 2013), and altered func-

tional dynamics of the brain have been associated with changes in

cognitive and emotional functions whose alterations characterize psy-

chiatric disorders (Anticevic, Schleifer, & Youngsun, 2015). In some

cases, dFC features have provided a higher predictive accuracy for

diagnostic and prognostic purposes compared with static FC metrics

(Rashid et al., 2016).

Several approaches have been developed to examine the dynamic

properties of FC. The sliding-window method is most widely

performed (Preti, Bolton, & Van De Ville, 2017), in which, instead of

generating an average correlation between brain regions across the

entire period of data acquisition, a separate FC matrix for each time

window is calculated. Then, the variability of FC over time windows is

examined to index dFC. These changes in brain connectivity states are

systematic, alternating between discrete states that can be identified

statistically using cluster analysis. The potential biomarker utility and

clinical relevance of dFC patterns have been demonstrated in several

psychiatric disorders, including schizophrenia and bipolar disorder

(Du et al., 2017; Zhang et al., 2018), autism (Yao et al., 2016), and

major depression (Wu et al., 2019). The graph theory based approach

applied to dFC has further clarified the whole brain and nodal patterns

of dynamic brain connectivity alteration in neuropsychiatric disorders

(Yu et al., 2015). Measures of FC between pairs of brain regions are

necessarily constrained by the topology of the whole brain, which has

not been taken into account in typical FC analysis focused on a

sequential comparison of pairs of brain regions (Shine &

Poldrack, 2018).

Alterations in whole-brain FC and topological properties in the

context of brain dynamics remain relatively unexplored in OCD.

Gursel et al. using the sliding-window approach found peak dys-

connectivity (i.e., peak reduction in correlation between two net-

works across time windows) between bilateral fronto-parietal

networks (FPN) and between the left FPN and the SAN in patients

with OCD (Gursel et al., 2020). This study focused on the peak FC

impairment of specific networks (FPN, DMN, and SAN) rather than

the whole brain, and other key indices of dFC were not obtained. Liu

et al. used spatial group independent component analysis (GICA) and

the sliding-window approach to assess whole-brain dFC, and found

an altered number of transitions among different dynamic states in

OCD patients that correlated with obsessive–compulsive symptom

severity (Liu et al., 2020). This study used a low model order GICA

and did not explore alterations of dynamic topological properties.

Another study found that dynamic topological characteristics of a

repetitive transcranial magnetic stimulation (rTMS) target node (dor-

solateral prefrontal cortex) at baseline were positively associated

with the reductions in distress after rTMS in patients with OCD

(Douw et al., 2020). However, their study focused on the target

node of rTMS rather than the whole brain network and did not

explore differences in related dynamic global and nodal topological

metrics relative to healthy individuals. Investigation of whole brain

resting-state dynamic properties may allow the identification of

altered functional brain dynamics and their topological metrics in

patients with OCD.

In the present study, we used rfMRI and a sliding-window

approach to compare whole brain dynamics in patients with OCD and

healthy controls. Analyses of dFC states and their dynamic global and

nodal topological organization were used to evaluate brain dynamics.

We hypothesized that patients with OCD would show abnormal tem-

poral properties of dFC states and altered variability in network topo-

logical indices in brain regions of DMN and SAN, and that altered

functional brain dynamic metrics would be related to the OCD symp-

tom severity.
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2 | MATERIALS AND METHODS

2.1 | Participants

This study was approved by the local research ethics committee of

West China Hospital of Sichuan University and informed written con-

sent was obtained from all participants. Diagnosis of OCD was deter-

mined by experienced clinical psychiatrists using the Structured

Clinical Interview for DSM-IV (SCID) (Patient Edition). We recruited

29 patients with OCD, 15 drug-naive and 14 who had previously

received psychiatric medications (four clomipramine, four paroxetine,

three fluoxetine, and three sertraline) but had been medication free

for more than 2 weeks. Treatment was not controlled for this study;

prior treatment discontinuation was based on independent physician

advice or patient decisions to terminate treatment. The predominant

obsessions/compulsions of patients with OCD were determined

according to the five clinical dimensions defined by Mataix-Cols,

Rauch, Manzo, Jenike, and Baer (1999)): 21 aggressive/checking,

5 contamination/cleaning, 2 symmetry/ordering, 1 sexual/religious,

and none with hoarding symptoms. Clinical symptoms of patients with

OCD were assessed using the Yale-Brown obsessive–compulsive

scale (Y-BOCS), 14-item Hamilton anxiety rating scale (HARS), and

17-item Hamilton depression rating scale (HDRS) (Table 1).

Forty healthy controls (HCs) were recruited from the local region

through poster advertisements and screened using the SCID-I/Non-

patient Edition to identify any history of psychiatric illness. HCs had

no known history of psychiatric illness among their first-degree rela-

tives. Exclusion criteria for all participants included: (a) age younger

than 18 years or older than 60 years; (b) any history of OCD, neu-

rodevelopmental, affective or psychotic illness; (c) significant systemic

or neurologic illness or neurosurgery; (d) history of substance abuse or

dependence disorders; and (e) pregnancy and other MR contraindica-

tions. MR images were inspected by two experienced neuroradiolo-

gists to confirm the absence of gross brain abnormalities. The OCD

and HC groups did not differ significantly with respect to age

(p = .975), gender (p = .797), or years of education (p = .160). All

participants were right-handed (Table 1). Some of the rfMRI data used

in the present study have been used in a recently published paper

focusing on altered effective anterior cingulate connectivity in OCD

(Long et al., 2020).

2.2 | MRI acquisition

High-resolution three-dimensional structural MRI and rfMRI data

were collected using a 3.0 T MRI system (EXCITE, General Electric)

with an eight channel phased array head coil. High-resolution

T1-weighted scans were acquired using a spoiled gradient recall

sequence with the following parameters: repetition time/echo time

(TR/TE) = 8.5 ms/3.4 ms, flip angle = 12 , slice thickness = 1.0 mm,

field of view = 240 × 240 mm2 with an acquisition matrix comprising

256 readings of 128 phase encoding steps that produced 156 contigu-

ous coronal slices. Structural MRI images were automatically interpo-

lated in-plane to 512 × 512, which yielded an in-plane resolution of

0.47 × 0.47 mm2. The rfMRI data were obtained via a gradient-echo

echo-planar imaging (EPI) sequence (TR/TE = 2000 ms/30 ms, flip

angle = 90 , slice thickness = 5 mm with no gap, field of

view = 240 × 240 mm2, matrix size = 64 × 64, voxel

size = 3.75 × 3.75 × 5 mm3. Each brain volume comprised 30 axial

slices to cover the whole brain, and 200 volumes preceded by five

dummy volumes (without data generated) collected for shimming to

eliminate field inhomogeneities, leading to a total scanning time of

410 s. During scanning, subjects were instructed to keep their head

still and relax with their eyes closed without falling asleep or system-

atic thought. Earplugs and foam padding were used to reduce noise

and head motion.

2.3 | Data preprocessing

Preprocessing was performed using the toolbox for Data

Processing & Analysis of Brain Imaging (rfmri.org/DPABI). The first

TABLE 1 Demographic and clinical

characteristics of study participants
OCD (n = 29) HCs (n = 40) χ2/t value p-value

Gender (number) 19M, 10F 25M, 15F 0.066 .797

Age (years) 27.8 ± 9.4 (18–52) 27.9 ± 9.2 (18–52) −0.032 .975

Education (years) 13.9 ± 2.9 (8–19) 12.7 ± 3.5 (5–19) 1.422 .160

Duration (years) 6.2 ± 5.5 (1–23) – – –

Total Y-BOCS score 23.0 ± 5.4 (16–33) – – –

Obsessive subscale score 17.2 ± 4.6 (10–28) – – –

Compulsive subscale score 5.9 ± 5.8 (0–16) – – –

HARS 7.7 ± 3.0 (3–19) – – –

HDRS 9.7 ± 2.8 (5–17) – – –

Note: Values were given as mean ± SD (range). p value of gender was obtained by chi-square test and p

values of age and education years were obtained by two-sample t test.

Abbreviations: F, female; HARS, Hamilton anxiety rating scale; HCs, healthy controls; HDRS, Hamilton

depression rating scale; M, male; OCD, obsessive–compulsive disorder; Y-BOCS, Yale-Brown obsessive–
compulsive scale.
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10 volumes of rfMRI data were removed to reduce equilibration

effects, leaving a total of 190 volumes for statistical analysis. The

remaining functional images underwent slice-timing correction and

were realigned to reduce displacement between volumes. Individual

structural images were co-registered to the mean of functional

images after realignment. The transformed structural images were

then segmented into gray matter, white matter, and cerebrospinal

fluid. The diffeomorphic anatomical registration through

exponentiated lie algebra tool was used to compute transforma-

tions from individual native space to the Montreal Neurological

Institute (MNI) template and to resample functional images to

3 × 3 × 3 mm3 resolution. Then, the normalized data were spatially

smoothed using a 6 mm full-width at half-maximum Gaussian ker-

nel. Participants with a maximum head displacement more than

1.5 mm, maximum rotation greater than 1.5 , or mean framewise

displacement (FD) (Jenkinson) larger than 0.2 mm were excluded

from the analysis. No participant was excluded according to these

head motion criteria. FD did not differ between the two groups

(0.043 ± 0.031 for patients, 0.053 ± 0.026 for controls,

t = 1.48, p = .14).

F IGURE 1 Flowchart of dynamic

functional connectivity (FC) state analysis
and dynamic topological analysis. The
steps included: (a) 100 independent
components (ICs) were obtained by group
independent component analysis (GICA),
then 51 of 100 ICs were characterized as
meaningful and assigned to eight brain
networks; (b) a sliding-window approach
was used to segment the whole scan
series into consecutive windows, and the
FC covariance matrices of the 51 ICs
were computed in each window; (c) k-
means clustering was used to identify
three dFC states, and three state
transition metrics for these states were
calculated for each subject; and (d) in
graph theory analysis, each FC matrix in
each window was binarized using a series
of sparsity thresholds (from 0.10 to 0.37,
with an interval of 0.01), and then the
coefficient of variation (CV) of the area
under the curve (AUC) of both global and
nodal graph metrics was calculated across
all windows for all study participants
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2.4 | GICA analysis and identification of
independent components

The flowchart for dFC state analysis and dynamic topological analysis

is shown in Figure 1. To identify intrinsic connectivity networks, we

performed spatial GICA using the GIFT toolbox (mialab.mrn.org/

software/gift). GICA is a data-driven approach to decompose rfMRI

data into functionally homogeneous regions (Kiviniemi et al., 2009),

enabling a whole-brain analysis without resorting to atlas-defined

regions of interest that may merge or imprecisely delineate function-

ally distinct areas (Allen, Erhardt, Wei, Eichele, & Calhoun, 2012). ICA-

based studies have identified independent components (ICs) that

resemble established functional cortical and subcortical networks

(Damoiseaux et al., 2006; Zuo et al., 2010). Before ICA, principal com-

ponent analysis for subject-specific data reduction was performed, in

which 150 principal components were identified using standard

economy-size decomposition. In data reduction for group compari-

sons, the concatenated subject-reduced data were decomposed into

100 ICs.

Reliability and stability of the Informax GICA algorithm in ICASSO

(Himberg, Hyvarinen, & Esposito, 2004) was ensured by repeating the

algorithm 20 times, and using the most central run to reconstruct

subject-specific time courses and spatial maps of each IC using the

GICA back reconstruction algorithm (Calhoun, Adali, Pearlson, &

Pekar, 2001). The group ICs of the 20 runs were clustered to estimate

their reliability, and ICs with a quality index (Iq) more than 0.7 were

selected (Ma et al., 2011). Using a one sample t test across all subjects

for each IC, we obtained the t-map of each IC, which was thresholded

with t > mean (μ) + 4SD (σ) (Allen et al., 2011). The μ in the formula

represents the mean value of all voxels in the t-map for each IC, and σ

representing the SD of the values for each IC. Labels and spatial maps

of each IC are presented in Figure S1, and the peak coordinates of ICs

are provided in Table S1.

We characterized 51 of 100 ICs as meaningful based on the fol-

lowing criteria (Allen et al., 2014): peak coordinates of spatial maps

located in gray matter, with minimal spatial overlap with white matter,

vessels, ventricles, or susceptibility artifacts, and time courses charac-

terized by a high dynamic range. To provide a more informative

description of the organization and primary spatial features of the

51 ICs, we then sorted the selected 51 ICs into different functional

networks to classify the ICs. The ICs can be sorted either spatially or

temporally. We chose spatially sorting in the present study by com-

paring the IC's spatial image with a template. This step was

implemented by using the “sort components” tool of the GIFT toolbox

and the Stanford functional ROI template (findlab.stanford.edu/

functional_ROIs.html) (Shirer, Ryali, Rykhlevskaia, Menon, &

Greicius, 2012) as the reference to sort the 51 ICs into different func-

tional networks. There are four types of sorting criteria, including mul-

tiple regression, correlation, kurtosis, and maximum voxel. Among

them, the multiple regression criterion is most usually used, which can

select several template regions as a whole.

The Stanford template includes 90 ROIs that belong to eight

predefined networks. We performed multiple regression eight times,

each time selecting all ROIs belonging to one network of the template

as a whole, and spatial map intensity of all 51 ICs was selected as

regressors for each network of the template. Then we obtained the

coefficient of determination (R2) of each IC's spatial map intensity for

the spatial distribution of every network of the template (Table S1). R2

reflects the proportion of variance in the dependent variable that was

predictable from the independent variable. Therefore, a higher R2 indi-

cates a higher similarity between an IC and a specific network of the

template. Each IC was assigned to the network to which it had the

highest R2. We also visually confirmed that IC linkages to brain net-

works by establishing that the peak coordinates of ICs were located

within the template for this network. This procedure guided assigning

each of the 51 ICs into one of the eight functional brain networks for

the subsequent analyses: auditory network (AN), DMN, ECN, lan-

guage network (LAN), SAN, subcortical network (SC), sensorimotor

network (SMN), and visual network (VN) (Figure 2).

2.5 | Computation of dFC

dFC was examined using the temporal dFNC toolbox in GIFT. Before

computation for windowed matrices, additional postprocessing steps

were performed for time courses of all ICs to regress out the influence

of noise sources including: (a) detrending (regressing linear, quadratic,

and cubic trends); (b) despiking using 3D DESPIKE; (c) low-pass filter-

ing using a high-frequency cut-off of 0.15 Hz; and (d) reducing influ-

ence of six parameters of head movement using regression.

A sliding-window approach was used to explore the time-varying

changes of FC within the 51 ICs identified during rfMRI scans. We

chose a 22-TR window (44s) because previous studies have suggested

that windows of 30 to 60s can successfully capture patterns of

resting-state fluctuations of dFC (Preti et al., 2017). We used a Gauss-

ian (σ = 3 TRs) function to create a tapered window, slid step-wise by

one TR along the scan image time series, and then computed the

51 × 51 pairwise FC matrix by Pearson's correlations in every sliding

window. To promote sparsity in estimations, the L1 norm penalty was

implemented in the LASSO framework with 50 repetitions (Friedman,

Hastie, & Tibshirani, 2008). Then the correlation values of the 51 × 51

pairwise functional matrices were converted to z-values with Fisher's

z-transformation to improve normality and comparability. We

removed variance from the windowed FC correlations related to age,

sex, education years, and mean FD for each participant.

2.6 | dFC states analysis

To assess reoccurring dFC patterns, k-means clustering was per-

formed on the 51 × 51 FC matrices of all sliding windows for all par-

ticipants. The k value was varied from two to 10 to identify the

optimal value. To reduce the potential bias of the initial random selec-

tion of cluster centroids, the k-means clustering algorithm was iter-

ated 50 times for each k value. In this procedure, we used the

Manhattan distance (Aggarwal, Hinneburg, & Keim, 2001) to measure
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the similarity of FC matrices between time windows. Then we per-

formed an analysis for cluster number validity (using the best run of

each 50 iterations under different k values and Dunn's index) (Havens,

Bezdek, Keller, & Popescu, 2008), which determined the optimal k

value to be three in the present study (Figure S2). The best run across

the 50 iterations of k = 3 was kept for further analysis. We used the

three cluster centroids of all study participants to represent three

reoccurring FC states (Figure 3a). For visualization of dFC patterns in

the two groups, respectively, we calculated the group-specific cen-

troid of each state by averaging subject-specific centroids of each

group (Figure 4a).

As the interpretation of the meaning of dFC states is essential in

dynamic studies, we described two aspects of the three dFC states:

the global integration level of the 51 ICs and the connection charac-

teristics of the eight functional networks. First, we calculated the

modularity index Q (Yue et al., 2017) of 51 ICs in each state to

describe the integration level of each state. Modularity is defined as

the ability of a graph to be subdivided into modules that are maximally

connected within modules and sparsely connected between modules

(Newman & Girvan, 2004), which thus measures both integration

within modules and separation between modules. The Brain Connec-

tivity Toolbox (www.brainconnectivity-toolbox.net) was used to calcu-

late the modularity index Q using a normal Louvain community

detection algorithm. A larger Q value indicates that the 51 functional

ICs in the brain are more likely to aggregate into specific modules

(Wu et al., 2019). Further, to describe the connection characteristics

of each functional network formed by disparate ICs, we calculated the

mean FC value within and between the eight networks investigated in

the present study for each state using the cluster centroid.

To quantify temporal properties of the FC states, we assessed

three state transition metrics (Kim et al., 2017): (a) fractional time, which

represents the proportion of time spent in each state as measured by

percentage; (b) mean dwell time, which represents the average duration

of time intervals spent in each state before switching into other states;

and (c) number of transitions, representing the number of switches

between states throughout the scan acquisition. Nonparametric permu-

tation tests (10,000 iterations) were used to assess differences of the

fractional time, mean dwell time in each state and number of transitions

between groups. Because of the wide age range of participants in our

study, we also tested whether there were age-by-diagnosis interactions

by using a general linear modal on the state transition metrics between

groups. To test for the possible effect of prior psychopharmacological

treatment, we compared the differences of three state transition met-

rics between drug-naive and previously medication-treated patients.

Significance was set at p < .05 and the false discovery rate (FDR) cor-

rection was used for all group comparisons.

To evaluate the consistency and validity of the k-means clustering

at different window sizes, we used a 30-TR window and repeated the

above dFC states analysis. We calculated Pearson's correlation coeffi-

cients between the cluster centroids under the two different window

sizes, and the states with the highest correlation coefficient were

defined as the same state as in the primary analysis (Wu et al., 2019).

2.7 | Dynamic topological metrics analysis

To explore the dynamic topological organization of the resting-state

functional brain network, we applied a graph theory approach to

examining topological metrics across all sliding windows using

GRETNA software (www.nitrc.org/projects/gretna). There are many

ways to define nodes for the analysis of a topological network, some-

thing that has often been done using a brain atlas. Alternatively, ICA is

F IGURE 2 Fifty-one independent components (ICs) were divided into eight functional networks for all participants in the present study. The
networks included the auditory network (AN), default mode network (DMN), executive control network (ECN), language network (LAN), salience
network (SAN), subcortical network (SC), sensorimotor network (SMN), and visual network (VN)

2066 LUO ET AL.

http://www.brainconnectivity-toolbox.net
http://www.nitrc.org/projects/gretna


a data driven approach that reveals ICs in the data (represented by

spatial maps of regions with associated time courses), which avoids

assumptions about brain maps and region borders defined primarily

on anatomy rather than function. The inter-relationship of identified

ICs can be examined with graph theory approaches (Smith

et al., 2011). Using this strategy, in the present study, the 51 ICs were

defined as functionally independent nodes and the FC between pairs

of ICs as edges.

F IGURE 3 Cluster centroids and characteristics of each dynamic functional connectivity (FC) state under 22-TR window size for all

participants. (a) Cluster centroids for each state. (b) Modular distribution for each state. (c) The radar map and line graph of the mean FC strength
within and between networks for all three states

LUO ET AL. 2067



To achieve this aim, we first binarized the FC matrices of all win-

dows with a series of sparsity thresholds. In graph theory, sparsity is

defined as the ratio of the number of existing edges divided by the

maximum possible number of edges in a network. This approach nor-

malized networks to have the same number of edges by applying a

subject-specific FC threshold and minimized possible discrepancies in

F IGURE 4 Centroids of dynamic functional connectivity (FC) states and connections with the top 5% in FC strength in patients with
obsessive–compulsive disorder (OCD) and healthy controls (HC) under the window size of 22-TR

2068 LUO ET AL.



estimation of FC strength (He et al., 2009). Instead of selecting a sin-

gle threshold, we thresholded each FC matrix repeatedly over a wide

range of sparsity levels, and computed the area under the curve (AUC)

for each network metric across sparsity thresholds. This provided an

overall scalar value for the topological characterization of brain net-

works independent of any specific sparsity threshold. The selection of

sparsity thresholds was based on the following criteria: (a) the average

degree (the degree of a node is the number of edges connected to the

node) over all nodes under a specific sparsity threshold was larger

than 2 × log(N) (He, Chen, & Evans, 2007), where N represents the

number of nodes (N = 51 in the present study); and (b) the small-

worldness scalar sigma (σ) of the thresholded network was larger than

1.1 for all subjects (Zhang et al., 2011) (Figure S3). The generated

thresholds ranged from 0.10 to 0.37 (with an interval of 0.01) for the

subsequent analyses.

At each sparsity threshold, we calculated both global and regional

network metrics in each 51 × 51 pairwise FC matrix of all sliding win-

dows for all subjects (Zhang, Wang, Wu, et al., 2011). Global measures

included: (a) small-world global metrics of clustering coefficient (C),

normalized clustering coefficient (γ), characteristic path length (L), nor-

malized characteristic path length (λ), and small-worldness (σ); and

(b) measures of global (Eglob) and local network efficiency (Eloc). The

regional properties were nodal degree centrality and nodal efficiency.

The interpretation of these topological network measures is pres-

ented in Table S2. For the dynamic networks, we calculated the coef-

ficient of variation (CV = SD/mean) of AUC of network parameters

across all sliding windows to assess the variability of topological met-

rics over time. The CV is useful for comparing the variability of fea-

tures that are measured on different units or that exhibit different

means (Pauly & Smaga, 2020).

The nonparametric permutation approach (10,000 iterations) was

used to test for dynamic topological property differences in the AUC

of each metric (small-world metrics, network efficiency, and nodal

degree, centrality, and efficiency) between groups. To test for statisti-

cal significance of group differences in the temporal variability of

global network properties, we set the significance at p < .05 with FDR

correction for these multiple comparisons. To test for significance of

group differences in the larger number of nodal properties, a false

positive adjustment approach was used to control the false-positive

rate to one per analysis (Fornito, Yoon, Zalesky, Bullmore, &

Carter, 2011; Lynall et al., 2010). We also tested whether there were

age-by-diagnosis interactions in dynamic topological metrics. To test

for the possible effect of prior psychopharmacological treatment, we

compared the differences in global and nodal dynamic topological

metrics between drug-naive and previously medication-treated

patients.

2.8 | Correlational analyses

Because of the nonnormality of dynamic measures, we performed

Spearman's partial correlation analyses to examine relations of altered

network properties (state transition metrics and CV of topological

metrics) with illness duration and OCD symptom severity, treating

head motion (FD Jenkinson) and demographics (age, sex, and educa-

tion years) as covariates. Nominal significance was set at p < .05 for

these exploratory analyses conducted for descriptive and heuristic

purposes.

3 | RESULTS

3.1 | General temporal properties of dFC states

Using k-means clustering, we identified three dFC states in analyses

of all study participants: State 1 occurred in a moderate frequency

(31%), State 2 occurred at a low frequency (14%), and State 3 occurred

most frequently (55%). The correlation matrix of centroids in each

state is shown in Figure 3a.

The three states showed different characteristics with respect to

their modularity. The modularity analysis (Figure 3b) showed that

State 1 had the highest Q (0.421), and ICs in State 1 aggregated pri-

marily into two functional modules, a module mainly involving ICs in

AN, ECN, and SAN, and another module mainly involving ICs in DMN,

LAN, SC, SMN, and VN. State 2 had the lowest Q (0.148). ICs in State

2 also tended to aggregate into two modules, one mainly involving ICs

in AN, SAN, SMN, and VN, and another mainly involving ICs in DMN,

ECN, LAN, and SC. State 3 had a moderate Q (0.246). ICs in State

3 aggregated into four modules, module 1 mainly involving ICs in ECN

and SC, module 2 mainly having ICs in AN and SAN, module 3 mainly

involving ICs in DMN, SMN, and VN, and module 4 mainly involving

ICs in DMN and LAN.

The three states also show different mean FC within and

between eight functional networks, and the mean FC within networks

in each state was higher than the mean FC between networks

(Figure 3c and Table S3). State 1 and State 3 showed similar mean

within-network FC, while mean within-network FC was the highest in

State 2. The mean FC between a network and all other networks was

weakest in state 1, the strongest in State 2, and moderate in State

3. In State 1 using a one sample t test, there were significant but mod-

est negative between-network FC effects between DMN and other

networks such as SAN (predominantly, mean FC = −0.029, 95% confi-

dence intervals [CI] = −0.030 ~ −0.027, t = −36.302, p < .001) and

ECN (mean FC = −0.017, 95% CI = −0.020 ~ −0.015,

t = −15.988, p < .001).

3.2 | Group differences in temporal properties of
dFC states

Patients with OCD and controls showed similar cluster centroids.

However, there were patient-control differences in key dFC features.

In patients with OCD, the total occurrences of States 1, 2, and 3 were

41, 11, and 48%, respectively. In HC, the total occurrences of the

three States were 24, 16, and 60%, respectively, which differed signif-

icantly from findings in patients (χ2 = 387.11, p < .001) (Figure 4a). In
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State 1, the top 5% FC with the strongest connections were mainly

located within DMN and SAN with positive coupling, and between

DMN and SAN (predominantly) or between DMN and other task-

positive networks such as ECN, SAN, or LAN with negative coupling.

In State 2, the top 5% of FC metrics were scattered between many

networks with positive coupling. In State 3, the top 5% FC were dis-

tributed within and between many networks with positive coupling

(Figure 4b).

For all analyses, p values are reported with correction for multiple

comparisons, except where uncorrected p values were presented as

noted for specific exploratory studies of clinical or demographic corre-

lations with brain features. For state transition metrics, patients with

OCD showed both greater fractional time (p = .034, 95%

CI = 0.049 ~ 0.338, Cohen's d = 0.611, Power = 0.694) and mean

dwell time (p = .017, 95% CI = 3.706 ~ 28.197, Cohen's d = 0.752,

Power = 0.860) in State 1 than controls; in States 2 and 3, there were

no differences between OCD patients and controls (Figure 5a,b). We

did not find a significant difference in the number of state transitions

between the two groups (Figure 5c). Age-by-diagnosis interactions on

all altered state transition metrics were not significant (Table S4).

Subgroup analysis showed no differences between drug-naive and

previously medication-treated patients in altered state transition met-

rics (Table S5). In patients with OCD, fractional time of State 1 was

positively correlated with HARS scores (r = .487, uncorrected

p = .017, 95% CI = 0.101 ~ 0.760, Power = 0.825) (Figure 5d). Other

state transition metrics were not significantly correlated with clinical

scales or duration of illness.

In validation analysis with the window size set to 30-TR with

other parameters unchanged, three dFC states for all the subjects

were revealed (Figure S4A). State 2 under 30-TR window size and

State 1 under 22-TR window size (r = .962, p < .001), state 1 under

30-TR window size and State 2 under 22-TR window size (r = .975,

p < .001, and State 3 under both window sizes (r = .976, p < .001) pro-

vided similar characterization of dFC states (Table S6). The statistical

comparison of state transition metrics showed the same between-

group differences under both window sizes (Figure S4b–d) and the

fractional time of State 2 under 30-TR window size (corresponding to

State 1 under 22-TR window size) was positively correlated with

HARS scores (r = .492, uncorrected p = .012, 95% CI = 0.036 ~ 0.739,

Power = 0.835) (Figure S4e).

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

＊ ＊
(a) (b)

(c) (d)

F IGURE 5 State transition vectors in patients and controls, and the correlation between state transition vectors and clinical symptom ratings,
in patients with obsessive–compulsive disorder. * indicated p-value < 0.05
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3.3 | Dynamic topological metrics

Comparison of dynamic topological metrics between patients with

OCD and controls failed to identify significant group differences in

CV of AUC of small-world metrics (for σ, p = .922; for γ, p = .700; for

λ, p = .367) or network efficiency (for Eglob, p = .780; for Eloc, p = .219).

For temporal variability of nodal metrics, patients showed decreased

variability of degree centrality in IC28 (p = .004, 95% CI = − 0.100 ~ −

0.026, Cohen's d = 0.659, Power = 0.759), IC 36 (p = .006, 95% CI = −

0.117 ~ − 0.041, Cohen's d = 0.778, Power = 0.882), and IC

57 (p = .019, 95% CI = − 0.086 ~ − 0.021, Cohen's d = 0.656,

Power = 0.755), as well as decreased variability of efficiency in IC

28 (p = .004, 95% CI = − 0.055 ~ − 0.014, Cohen's d = 0.843,

Power = 0.926) and IC 36 (p = .005, 95% CI = − 0.058 ~ − 0.020,

Cohen's d = 0.795, Power = 0.895) compared with controls

(Figure 6a). IC 28 (peak MNI coordinate: 1, −70, −40) mainly located

in precuneus, IC 36 (−3, −78, 33) located in precuneus/cuneus, and IC

57 (33, 46, 25) located in the right middle frontal gyrus (Figure 6c).

The age-by-diagnosis interactions of altered dynamic topological met-

rics were not significant (Table S4). Subgroup analysis showed no dif-

ferences between drug-naive and previously medication-treated

patients for any altered dynamic topological metrics (Table S5).

Correlation analysis showed that CV of AUC of nodal degree cen-

trality and efficiency in IC 36 was negatively correlated with the

F IGURE 6 Group comparisons of dynamic topological metrics (a) and the correlations between dynamic topological metrics and illness
duration and clinical symptom ratings in OCD patients (b and c). * indicated p-value < .05
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duration of illness (r = −.468, uncorrected p = .018, 95% CI = −

0.669 ~ − 0.239, Power = 0.785; r = −.457, uncorrected p = .022,

95% CI = − 0.584 ~ − 0.232, Power = 0.760, respectively), and CV of

AUC of nodal degree centrality in IC 57 was negatively correlated

with obsessive subscale score (r = −.398, uncorrected p = .049, 95%

CI = − 0.805 ~ −0.032, Power = 0.615) (Figure 6b). Other dynamic

topological metrics showed no correlation with clinical scales or illness

duration for patients with OCD.

4 | DISCUSSION

In this study, we focused on temporal properties of whole brain dFC

states in OCD. We found three discrete intrinsic connectivity configu-

rations: a most frequent and moderately interconnected state (State

3), a least frequent and most strongly interconnected state (State 2),

and a moderately frequent state with the lowest mean FC between

networks (State 1). There were three major findings associated with

OCD in our study: (a) Patients with OCD spent more fractional and

dwell time in State 1, a state characterized by the highest modularity

index with positive connections within DMN and SAN and negative

coupling between DMN and SAN; (b) OCD patients demonstrated

decreased temporal variability of nodal degree centrality and efficiency

in the precuneus and middle frontal gyrus; and 3) Clinical relevance of

these findings was reflected in a positive correlation between frac-

tional time of state 1 and anxiety level, a negative correlation between

nodal dynamic properties of precuneus and illness duration, and a neg-

ative correlation between dynamic nodal degree of the middle frontal

gyrus and obsession symptom severity in patients with OCD. These

findings indicate that the altered dynamic properties of dFC states and

the variability of nodal topological metrics mainly involving DMN and

SAN may be critical in the pathophysiology of OCD.

4.1 | dFC states

In the three dFC states, we observed the lowest overall mean FC

between brain networks in State 1 compared with the other two

states. Compared with controls, patients with OCD spent more time in

State 1, characterized by positive connections within DMN and SAN

and negative coupling predominantly between DMN and SAN. These

observations indicate an abnormal functional relationship between

DMN and SAN as a core feature underpinning the neurophysiology of

OCD. The DMN is activated when a person is “mind-wandering” or

with internally focused self-reflection, and deactivated when exter-

nally focused on cognitive tasks and activities (Li et al., 2020; Raichle &

Snyder, 2007). The SAN plays an important role in switching between

processing modes, triggering the activation of executive regions, and

disengagement from DMN regions when an external event requiring

attention is detected (Menon, 2011; Sweeney et al., 1996).

Previous static rfMRI studies in patients with OCD found

decreased FC between DMN and SAN and other task-positive net-

works (Chen et al., 2018; Cyr et al., 2020), and a meta-analysis of

static FC studies found hypoconnectivity among FPN, SAN, and DMN

(Gursel et al., 2018). The present findings suggest that a higher occur-

rence of a state with the lowest FC between networks might be the

neural substrate for the decreased static FC between DMN and SAN

in OCD. Reduced DMN-SAN connectivity may contribute to

decreased attention to the outside world (Posner et al., 2017) and the

reduced behavioral flexibility and poor insight in patients with OCD

(Fan et al., 2017). In our study, the ICs in State 1 tended to be sub-

divided into two functional modules with a high modularity index,

indicating nodes that are maximally connected within the module but

minimally connected with other modules. In State 1, DMN and SAN

belonged to different modules, paralleling the low mean FC between

DMN and SAN. Therefore, the increased fractional and mean dwell

time, lowest FC between networks especially between DMN and

SAN, and highest modularity in State 1 in patients indicates increased

periods of excessive functional segregation in OCD and potentially a

reduced ability to flexibly shift out of State 1.

In OCD patients, the fractional time of State 1 was positively cor-

related with anxiety ratings, which are a characteristic of OCD (Swartz

et al., 2014; Weidt et al., 2016). Thus, from a clinical perspective, the

inability to shift from State 1 might reflect a parallel inability to shift

thinking about obsessive concerns that leads to increased anxiety

(Hirschtritt, Bloch, & Mathews, 2017). Previous evidence also has

shown abnormal functional interaction between DMN, central execu-

tive network (CEN), and SAN, and altered FC between SAN and CEN

to be significantly correlated with anxiety level in OCD patients (Fan,

Zhong, Gan, et al., 2017). Our findings on dFC states demonstrated

that the functional network of patients with OCD has lost normal

dynamic rhythms, and that this alteration with increased dwell time in

a brain state with isolated network activity was related to clinical

manifestations of the illness. These alterations may be considered as a

potential neural marker for OCD and provide a novel target for

intervention.

In contrast to findings in State 1, we did not find significant

between-group differences in the occurrence of States 2 and 3, or

number of transitions among those states. These findings differ some-

what from findings of Liu et al. (2020)), who found an altered number

of transitions. The patients in their study were all first-episode and

treatment-naive, while half of patients in our study were previously

medicated. In addition to patient cohort differences, methodological

differences in the analysis stream may have contributed to these dif-

ferences. Firstly, Liu et al. using a low model order GICA so that the

brain rfMRI data were decomposed into 28 ICs, while we used a

higher model order in our GICA that resulted in more refined delinea-

tions. Secondly, FC matrices of all sliding windows for all participants

were clustered into four states in the Liu et al. study, altering state

transition metrics.

4.2 | Temporal variability of topological metrics

Global topological metrics of dFC were not robustly altered in patients

with OCD, suggesting an intact temporal variability of the overall
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organization of functional brain networks. However, the temporal var-

iability of nodal topological metrics, including degree centrality and

efficiency of the precuneus in DMN and degree centrality of the right

middle frontal gyrus in SAN, was decreased in patients compared with

controls. In general, dFC in resting-state analysis reflects the fluctuat-

ing exchange of information among brain regions at rest which occurs

in an organized sequential way as shown in our analyses. Thus,

decreased temporal variability of nodal properties of these regions in

our study suggests reduced efficiency or flexibility in their communi-

cation with other brain regions. This pattern parallels the clinical

expression of being locked into an obsessive preoccupation or behav-

ioral pattern with high anxiety, with reduced flexibility in shifting men-

tal sets and limited impact of external experiences to shift patients

back to a more adaptive mode of function.

Interestingly, an electroencephalogram study of healthy partici-

pants found that regions in SMN, SAN, and DMN exhibit stronger

mean FC strength and lower temporal variability than other brain

areas (Shou et al., 2020). Regions that tend to maintain a high level of

FC are likely to be less easily modulated based on contextual demands

(Allen et al., 2014), perhaps contributing to their vulnerability in ways

that increase the cognitive and behavioral rigidity that characterizes

OCD. Previous rfMRI studies have found significant activation of the

left precuneus (Menzies et al., 2008) as well as greater activity

(Bohon, Weinbach, & Lock, 2020) and regional homogeneity in the

middle frontal gyrus in patients with OCD (Yang et al., 2019), areas

where we observed reduced dynamic flexibility. These observations

are consistent with a relation between increased activity and connec-

tivity with decreased temporal variability of these core regions in

DMN and SAN, and that together these alterations may contribute to

lower behavioral flexibility in OCD.

Furthermore, we found negative correlations between dynamic

variability of regions in DMN and SAN and both illness duration and

obsession symptom ratings in patients with OCD. The clinical rele-

vance of the correlations can be interpreted in light of the function of

these brain regions. The precuneus resides in the medial posterior

parietal cortex and is a major constituent of the DMN involved in the

generation of conscious self-perception (Raichle et al., 2001). Patients

with OCD have increased self-referential thinking, often rethinking

recent events and repetitively imagining future events in an attempt

to increase control and decrease uncertainty (Pinto, Steinglass,

Greene, Weber, & Simpson, 2014). The relation of this alteration with

illness duration offers preliminary evidence for progressive brain

abnormalities in this network in OCD.

The right middle frontal gyrus is part of the SAN, and it links the

ventral and dorsal attention networks by acting as a “circuit-breaker”
responsible for the flexible modulation of endogenous and exoge-

nous attention (Corbetta, Patel, & Shulman, 2008). Patients with

OCD are less able to use available external information to counteract

their negative thoughts and fears, which might be related to an imbal-

ance or reduced flexibility in brain systems that subserve internally

and externally focused attentional states (Stern & Taylor, 2014).

Therefore, altered dynamics of the precuneus and right middle frontal

gyrus may contribute to the clinical persistence and severity of

symptoms in patients with OCD. Dynamic topological analysis rev-

ealed decreased temporal variability of brain regions located within

DMN and SAN, and correlational analyses revealed that these were

related to illness duration and symptom severity in OCD, suggesting

these brain regions could be treated as biomarkers for illness progres-

sion and may have implications for precision medicine in patients

with OCD.

4.3 | Limitations

Certain limitations of our study need to be considered. First, the sam-

ple size was not large, perhaps providing insufficient statistical power

to detect more modest alterations, and the generalization of the pre-

sent results to other centers needs to be interpreted with caution.

While replication is required, our validation analysis using different

window sizes suggested that our findings were not a result of the spe-

cific window size choice used in our primary analyses. Second, 14 of

29 patients in the present study previously received psychopharmaco-

logical treatment. Although we found no differences between drug-

naive and previously treated patients in all dynamic metrics, the

potential influences of prior medication on brain function cannot be

completely excluded given limited statistical power to identify such

differences. Longitudinal studies with controlled treatment are

needed to establish medication effects on brain functional dynamic

metrics investigated in the present study. Third, dFC analyses are par-

ticularly sensitive to head motion (Laumann et al., 2017). While we

applied stringent inclusion criteria and found no group differences in

head motion parameters, and motion parameters were regressed out

in statistical analysis, head motion remains a potential source of arti-

fact. Fourth, the scanning length of rfMRI in our study was not long. A

longer scan with higher temporal resolution may provide a more

refined assessment of dynamic FC features in OCD (Fu et al., 2018).

Finally, although the sliding-window method has been widely used,

controversy remains regarding the optimal method to best capture

dynamic fluctuations (Hindriks et al., 2016). Evaluating dFC with more

novel methods and metrics might contribute to future advances in this

field.

5 | CONCLUSION

In summary, we found three dFC states in rfMRI scans, and patients

with OCD exhibited a higher occurrence of State 1 than controls,

characterized by the lowest mean FC between DMN and SAN and

highest modularity. Additionally, we observed decreased temporal

variability of topological organization, and potentially reduced func-

tional flexibility, in brain regions within the DMN and SAN. This alter-

ation, related to illness duration and symptom severity, may represent

an important aspect of the pathophysiology of OCD. Our investiga-

tions of the temporal dynamics of brain FC states and topological net-

works facilitate understanding of the neural bases of the clinical

presentation of OCD.
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