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Abstract: Amino acids have a wide range of biological activities, which usually rely on the stereoiso-
mer presented. In this study, glycine and 21 common α-amino acids were investigated for their
herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa
crus-galli (L.) Beauv.). Both D- and L-isomers, as well as a racemic mixture, were tested and found
that most compounds barely inhibited germination but moderately suppressed seedling growth.
Various ratios of D:L-mixture were studied and synergy between enantiomers was found. For
Chinese amaranth, the most toxic D:L-mixtures were at 3:7 (for glutamine), 8:2 (for methionine),
and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms;
however, D-tryptophan exhibited greater activity than racemate and L-isomer, indicating the sign
of enantioselective toxicity. The mode of action was unclear, but D-tryptophan caused bleaching of
leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enan-
tioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical
structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides
a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from
natural substances.

Keywords: herbicidal; inhibitory; synergistic; enantioselective; amino acids; D-isomer; racemic
mixture; racemate; L-isomer; Chinese amaranth; barnyard grass

1. Introduction

It is well-known that to produce enough agricultural crops to feed the growing world
population, farmers must rely on synthetic chemicals to eliminate pests and weeds. How-
ever, the use of these chemicals is like a double-edged sword, which has both advantages
and disadvantages [1,2]. On the one hand, these herbicides allow us to achieve high crop
yields. On the other hand, these chemicals, when left behind in the environment, are usu-
ally toxic to plants, animals, or even humans. Therefore, recently, agricultural scientists are
looking for a new approach for weed control [3–5]. Many chemists believe that alternative
herbicides should be natural products [6,7]. This concept is widely accepted because of the
long-standing belief that natural substances are relatively safer than synthetic compounds.
Also, they are likely to degrade quickly and not accumulate in the environment.

Since it has been discovered that some plants are harmful to other plants by releasing
natural substances, called “allelochemicals”, into the environment, many chemists have
investigated the effects of these compounds on weeds, both in controlled laboratory and
field conditions [8–11]. Particularly, those works did not focus only on pure forms, but also
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crude extracts, or even mixtures of crushed plant samples [12]. Recently, this research has
received increased attention, due to the ongoing evolution of organic agriculture.

Amino acids are molecules in which the chemical structure consists of amino and
carboxyl groups. Generally, in biochemistry [13], amino acids often refer to a specific
group—the alpha (α-) amino acids, compounds that containing both functional groups
on the same carbon atom. In nature, protein chains of all living species are constructed
by joining various combinations of about 20 natural α-amino acids [14,15]. Therefore,
those compounds are crucially important to living creatures. Apart from being used as
a food supplement, natural amino acids are also used for other purposes. For example,
several research groups have reported that common amino acids or related compounds
could show anticancer [16,17] and antimicrobial [18–20] activities or even prevent some
diseases [21–23]. In addition to those medicinal properties, natural amino acids also show
herbicidal activities against some plants [24–32]. For example, a study on the herbicidal
potential of 20 common amino acids on a dicotyledonous parasitic plant, Orobanche minor,
revealed that among the tested substances lysine, methionine, and tryptophan strongly
inhibited the early development of the plant [25]. Although this provided us with useful
information about the role of amino acids as herbicides, it was still limited to racemic
mixtures and some D- or L-isomers [29]. The weed-control ability of both D- and L- isomers,
as well as racemic mixtures of common amino acids, has rarely been compared.

In general, a biological activity of active compounds relies on molecular conforma-
tions and absolute configurations [33]. Sometimes, both enantiomers of drug show similar
pharmaceutical effects, but mostly the two isomers have different biological activities [34].
In this regard, the tissues of a living creature are responsible for the differences in biolog-
ical effects. Normally, biological systems exist exclusively in one enantiomeric form, so
that they will interact differently with the two enantiomers of active compounds [35,36].
Numerous herbicides have chiral structures, and the two enantiomers have different ac-
tions against target weeds [37–41]. Therefore, we studied the different herbicidal effects
of isomers of common amino acids (Figure 1), together with their racemic mixtures, on
representative monocot and dicot plants. We aimed to clarify types of active compounds
and their configurations, which could be used in the development of natural herbicides for
organic agriculture.
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nine and tryptophan had the highest inhibitory activity, and the racemic mixtures were 
still more effective than the D- and L-isomers. rac-Methionine inhibited shoot growth by 
~28% and rac-tryptophan by ~24%. Most compounds inhibited root growth, and the activ-
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tive. Among 22 tested compounds, Chinese amaranth root elongation was suppressed by 
L-glutamine (34%), rac-methionine (58%), and rac-tryptophan (35%). 

Figure 1. Common amino acids used in this study.

2. Results
2.1. Herbicidal Activity of Glycine and 21 Common Amino Acids on Chinese Amaranth

Glycine, together with another 21 common amino acids at concentration of 2 mM [29],
were evaluated for herbicidal activity against a representative dicot plant, Chinese ama-
ranth (Amaranthus tricolor L.) (Figure 2). The amino acids were used as single enantiomers
and as racemic mixtures. All tested amino acids showed weaker inhibitory activity than
commercial butachlor. For seed germination, only methionine and tryptophan showed
a very small inhibition, but other amino acids had no activity. Also, racemic mixtures
were slightly more harmful than the pure forms. For shoot growth, again, methionine and
tryptophan had the highest inhibitory activity, and the racemic mixtures were still more
effective than the D- and L-isomers. rac-Methionine inhibited shoot growth by ~28% and
rac-tryptophan by ~24%. Most compounds inhibited root growth, and the activity level
depended on absolute configurations and compound types. For some amino acids—i.e.,
aspartic acid, glutamic acid, serine, and valine—the D-isomers were a little more active than
the racemic mixtures and L-forms. However, for most compounds—including asparagine,
histidine, lysine, methionine, phenylalanine, and tryptophan—the mixtures had stronger
inhibitory effects than the pure forms. For other amino acids—e.g., arginine, glutamine,
isoleucine, threonine, tyrosine, and valine—the L-isomer was a little more active. Among
22 tested compounds, Chinese amaranth root elongation was suppressed by L-glutamine
(34%), rac-methionine (58%), and rac-tryptophan (35%).
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Figure 2. Inhibitory effects of amino acids at 2 mM on (A) seed germination, (B) shoot, and (C) root growth of Chinese
amaranth. Butachlor and distilled water were used as positive and negative controls. Horizontal bars represent the standard
error of an average of four replicates.

2.2. Herbicidal Activity of Glycine and 21 Common Amino Acids on Barnyard Grass

For a monocot species, barnyard grass (Echinochloa crus-galli (L.) Beauv.) (Figure 3),
all tested amino acids had very low or no inhibitory activity compared to the commercial
butachlor. Among these compounds, only rac-tryptophan was toxic to plant germination,
and it very slightly inhibited seed germination of the plant (~12%). For shoot growth,
again, nearly all tested substances had no significant effect on shoot elongation, except
tryptophan, which moderately inhibited shoot length. At 2 mM, the tryptophan racemic
mixture suppressed shoot extension by 25%. For root growth, it was clear that most amino
acids had low to moderate herbicidal activities against root elongation, and sometimes
the mixtures and individual isomers showed different levels of activity. Tryptophan was
again the most active root inhibitor, with root elongation suppressed by 57% by the D-
isomer, 43% by the racemic mixture, and 28% by the L-isomer. This indicated that, the
D-form was more toxic than the others, and the effect of tryptophan was enantioselective.
Apart from tryptophan, the basic amino acids, arginine, histidine, and lysine, also showed
some harmful effects, especially the L-form and the mixture, which inhibited root length
by 14–28%. Glutamine was the second most active compound against root growth. Its
D-isomer, racemic mixture, and L-isomer restrained root growth by 13%, 37%, and 19%
respectively. This was a sign of synergism among the enantiomers, where the mixture was
the most active form.
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Figure 3. Inhibitory effects of amino acids at 2 mM on (A) seed germination, (B) shoot, and (C) root growth of barnyard
grass. Butachlor and distilled water were used as positive and negative controls. Horizontal bars represent the standard
error of an average of four replicates.

2.3. Synergistic Effects of D- and L-Amino Acids on Tested Plants

These results suggested that types of amino acids and isomers affected toxicity. To
clarify this hypothesis, D-isomer, L-isomer, and different D:L mixtures of the most active
substances, were tested against plant growth (Figure 4). Glutamine, methionine, and
tryptophan were chosen for Chinese amaranth, and arginine, glutamine, and tryptophan
were evaluated for barnyard grass.

2.3.1. Chinese Amaranth

For Chinese amaranth, it was clear that all mixtures of D- and L-glutamine had no
harmful activity on seed germination (Figure 4A). However, some mixtures were able to
inhibit shoot length, where the L-isomer was more effective than the D-isomer, and 3:7
D:L-mixture had the highest inhibitory effect on shoot length (17%). Likewise, all mixtures
highly inhibited root growth, with, in order, D-, L-, and 3:7 D:L ratio, being the most effective
(45% inhibition).

Methionine (Figure 4B), all ratios, little inhibited seed germination of Chinese ama-
ranth, with only the 8:2 ratio slightly inhibiting germination (~15%). However, for shoot
growth, every mixture inhibited the shoot growth by more than 20%. The 8:2 D:L-mixture
was still the best ratio, suppressing shoot growth by 36%. For all ratios, root growth was
inhibited similarly, with 8:2 ratio suppressing root elongation by 65%. Thus, the 8:2 D:L
ratio led to the greatest synergy.
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For tryptophan (Figure 4C), clearly, all mixtures did not inhibit seed germination,
but inhibited shoot growth by more than 17%. The racemic mixture was the most active,
suppressing shoot growth by 24%. The harmful effect on root growth was similar that
for shoot. All ratios suppressed root growth, but the racemic mixture was more effective,
inhibiting root growth by 38%.
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Chinese amaranth and barnyard grass. Distilled water was the control. Vertical bars represent the standard error of an
average of four replicates.

2.3.2. Barnyard Grass

For barnyard grass, all mixtures of D- and L-asparagine were unable to inhibit seed
germination (Figure 4D). However, all ratios clearly suppressed root growth at similar rate
(22–28%). Although glutamine (Figure 4E) did not significantly inhibit seed germination
and shoot growth, but it clearly suppressed root growth. Moreover, the L- was slightly
more toxic than the D-isomer. All mixtures between D- and L-isomers showed synergy.
Among those, the racemic mixture was more effective, inhibiting root growth by 37%.

Insignificant detrimental effect of tryptophan on seed germination was found (Figure
4F). However, for seedling growth, it slightly inhibited shoot length. The inhibitory effect
on shoots was quite similar in almost all D- and L-mixtures, 21–25% inhibition, with the
pure L-form exhibited weakest activity (18%). For root growth, the D-isomer suppressed
root elongation the most (57%). The inhibition decreased when the ratio of the D-isomer
decreased. Also, pure L-isomer was least active and reduced root growth by only 28%.
Thus, D-tryptophan was more harmful than the mixture and L-tryptophan.
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2.4. Dose Responses of Active Amino Acids on Chinese Amaranth

At 2 mM, we showed that various mixtures had different herbicidal activity. So
here we measured the effect of concentrations on activity, ranging from 0.25 to 16 mM,
with distilled water as a reference. For Chinese amaranth, three amino acids—glutamine,
methionine, and tryptophan—were chosen. The results are shown in Figures 5 and 6.

Glutamine, at concentrations of 0.25–2 mM, did not inhibit seed germination (Figures 5A
and 6A–D, but at higher concentrations, it showed greater activity. At 4–16 mM, 3:7 D:L-
mixture and L-form were most effective, and suppressed plant germination by 15–77%.
However, D-glutamine was least active, while racemate moderately affected plant germi-
nation. For shoot and root growth, 3:7 D:L-mixture and L- were still more toxic than the
racemate and D-form, especially at high concentrations. At 16 mM, the mixture suppressed
shoot elongation up to 93%, and completely inhibited root growth. These results clarified a
little synergy between D- and L-glutamine against plant growth.
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Regarding methionine, clearly, D:L-mixtures were more harmful than the pure forms
Figures 5B and 6E–H, especially the 8:2 D:L-mixture, which highly reduced germination
(50%), shoot (70%), and root (95%) growth of the plant. However, the D- and L-isomers
averagely suppressed Chinese amaranth growth. For tryptophan (Figure 5C), a racemic
mixture significantly inhibited seed germination and seedling growth of the plant, and the
effect was greater than that of pure isomers, particularly for shoot growth. These results
indicated a synergistic toxicity between pure enantiomers of the amino acids.

Dose response results revealed that glutamine, methionine, and tryptophan, affected
roots more than shoots, and the least impact was found on plant germination. In addition,
the inhibition was concentration-dependent, where the weed control ability increased with
the increase in concentration of the substances.

2.5. Dose Responses of Active Amino Acids on Barnyard Grass

For barnyard grass (Figures 7 and 8), we chose glutamine and tryptophan for further
study, but not arginine, because glutamine showed a sign of synergistic effect towards root
growth. Also, D-tryptophan was clearly more effective than the racemate and L-form, but
all mixtures of arginine provided similar level of activity.

Both D- and L-, as well as rac-glutamine, had relatively similar activity against seed
germination (Figures 7A and 8A–C). However, for shoot growth, rac-glutamine was much
more toxic than the pure forms, especially at high concentrations. At 16 mM, rac-glutamine
suppressed shoot elongation by 42%, but D- and L-isomers exhibited weaker activity (~8%
and 18%). Similarly, roots of the grass were more affected by rac-glutamine than by the
pure enantiomers. At 4, 8, and 16 mM, this mixture suppressed root growth by 57%, 89%,
and 95%. The results indicated synergistic behavior between D-glutamine and L-glutamine.
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mM on seed germination, shoot, and root growth of barnyard grass. Distilled water was used as a reference.

Herbicidal effect of tryptophan was showed in Figures 7B and 8D–F. Racemic mixture
and pure isomers exhibited similar activity against seed germination. However, for shoot
growth, at low concentrations, the D- and racemate had a little stronger effect than L-form.
In terms of root growth, L-isomer was less effective than other forms, while D- was most
toxic. At 4, 8, and 16 mM, D-tryptophan suppressed root elongation by 66%, 84%, and 90%.
The level of root inhibition of rac-tryptophan was in between the D- and L-form, but, at 4
and 8 mM, its effect was closer to that of D-isomer than L-isomer.

The harmful effect of tryptophan was determined not only by percent inhibition of
seed germination and growth, but also by physical characteristics of the plant. It was
revealed that D-tryptophan caused the color of shoots (or leaves) noticeably faded or
bleached, especially at high concentrations (Figure 8D). rac-Tryptophan, at high concentra-
tions, also showed this symptom (Figure 8E), but L-tryptophan did not decolor of shoots.
This indicated that the D-form was more toxic to the plant than the L-, especially for the
pigmentation in plants.

From dose–response curves, both glutamine and tryptophan more affected to roots
than shoots and germination. Again, the herbicidal effect of these amino acids was dose-
dependent, where the inhibition increased as the concentration of the compounds increased.
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Distilled water was used as a reference.

3. Discussion

Our preliminary screening revealed that some of the 22 common amino acids moder-
ately inhibited shoot growth and highly suppressed root growth of both Chinese amaranth
and barnyard grass. However, most of them weakly or not at all inhibited the germination.
Similarly, Fernández-Aparicio et al. [42] investigated the inhibitory effects of allelochemi-
cals identified in cereals (benzoxazolinones, hydroxycinnamic acids, L-tryptophan, and
other compounds) on a parasitic plant, broomrapes (Orobanche crenata), and found that L-
tryptophan strongly inhibited radicle growth, but it had no significant effect on germination.
This is consistent with our results, indicating that common amino acids would potentially
be active as a post-emergent rather than a pre-emergent herbicide, for certain species.

We also observed differential responses for shoots and roots. This is consistent with
our earlier reports [43–45], that some natural and synthetic substances exhibited more
harmful effect on roots of Chinese amaranth and barnyard grass than shoots. Compa-
rably, Thi et al. [46] reported that root growth of barnyard grass was more sensitive to
N-trans-cinnamoyltyramine herbicide than shoot growth. This was attributed to different
permeabilities of active chemicals into roots and shoots, different enzyme profiles, plant
organs, and growth stages.

Moreover, for some amino acids, the type of enantiomer clearly affected the level
of inhibition. For example, D-tryptophan was more toxic to barnyard grass than the L-
isomer or the mixture. The reason was unclear, in general, herbicidal activity of chiral
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compounds depends very much on their configuration [31,34,37]. Sometimes, only R-
isomers are active or more active and sometimes only S-isomers are active. For instance,
Zhang et al. [47] investigated the enantioselective damage of dicloflop on Arabidopsis
thaliana, and found that R-isomer could show a greater toxicity than the racemate and S-
isomer. Enantioselective activity of imazapyr [48] was reported against A. thaliana growth:
(+)-imazapyr had a stronger herbicidal effect than rac-imazapyr and (−)-imazapyr. A
freshwater algae, Microcytis aeruginosa [49], was also showed that (S)-metolachlor was
significantly more harmful to algal growth, chlorophyll a content, and cell integrity of the
algae, than any other isomers.

Previously, many reports [50] focused on plant responses to amino acids. For example,
the effects of amino acids on barley (Hordeum vulgare) and peas (Pisum sativum) [51],
duckweed (Spirodela oligorrhiza) [52], rice (Oryza sativa), and tobacco (Nicotiana tabacum) [53],
showed that several D- isomers (e.g., alanine, histidine, and methionine) and some L-amino
acids (e.g., histidine and methionine), reduced plant growth. Also, none of D-amino acids
promoted duckweed growth, with D-Serine and D-alanine were most toxic among those
tested D-isomers. Similarly, the ability of model plants (Arabidopsis) to use 15 amino acids
(glycine, L-glutamine, L-asparagine, L-glutamic acid, L-aspartic acid, L-alanine, L-serine, L-
arginine, L-valine, L-isoleucine, D-alanine, D-serine, D-arginine, D-valine, and D-isoleucine)
as nitrogen sources was investigated [54]. Obviously, when applied as the sole nitrogen
source, many L-amino acids could support plant growth, but nearly all D-forms inhibited
plant development. Among those, D-isomers, D-alanine, and D-serine were absorbed by
plant at the highest rates, and they were also the most effective growth inhibitors. This
result supported their hypothesis that D-amino acids cannot be used for plant growth.

As documented above, usually, D-amino acids were more toxic to plants than the
L-isomers, but Bertin et al. [24] found an opposite result. By the filter-paper bioassay, both
D- and L-m-tyrosine showed equal toxicity against lettuce (Lactuca sativa) growth, but in
an agar-based Arabidopsis bioassay, L-m-tyrosine was ten times stronger as an inhibitor
than the D-form. This was believed to be the difference in uptake profiles and biochemical
mechanisms of both enantiomers in the tested plants, which would be very complex.
Similarly, Fernández-Aparicio et al. [25] suggested species, plant development stages,
and experimental conditions, affected the herbicidal activity of amino acids. In in vitro
experiments, lysine was the most toxic to the parasitic plant, Orobanche minor, followed
by methionine and tryptophan; however, in field studies, methionine was most effective
against plant emergence.

In our work, both isomers of some active amino acids showed a synergy as a herbicide.
For instance, the effect on Chinese amaranth, 3:7 D:L mixture of glutamine, 8:2 D:L mixture
of methionine, and rac-tryptophan, were more toxic than pure isomers. Similarly, for the
monocot grass, rac-glutamine had greater activity than both pure forms. These results
indicated that synergy was crucial for growth inhibition. Similarly, Ye et al. [41] investi-
gated the enantioselective physiological effects of diclofop on cyanobacterium, Microcystis
aeruginosa. They found that rac-dicoflop inhibited protein production and biomass growth,
while both R- and S-isomers stimulated. It was believed that the synergy resulted from the
in vivo enantiomerization in organisms, or the differences in toxicity mechanisms, where
one isomer facilitated or hindered the other from binding to the active sites.

Apart from inhibiting plant growth, D-tryptophan also caused bleaching in plant
leaves, especially at high concentrations. Although L-isomer did not show this symptom,
the racemic mixture had a similar sign of injury. The reason was unclear, but we believed
that the D-form induced leaf bleaching by inhibiting pigment synthesis. There are many
modes of action [36,55,56] of herbicides, which often show different symptoms. Pigment
inhibitors disrupt biosynthetic pathways, leading to leaf bleaching, and eventually plant
death [36,55].

Our current study revealed that certain compounds (e.g., glutamine, methionine,
tryptophan, arginine, histidine and lysine) inhibited plant growth. These results were in
agreement with the previous reports [25,29], showing that arginine, lysine, methionine
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and tryptophan affected broomrape growth. Also, we found that substituents had a
significant impact on herbicidal property. All basic amino acids, namely arginine, lysine
and histidine, moderately inhibited root elongation. A trend of activity relied on the
basicity, which the most basic arginine highly inhibited plant root. Besides, methionine, a
thioether-substituted compound, was more toxic than thiol (cysteine) or disulfide (cystine).
These results together with our previous work [45] highlighted the significant effect of
sulfur-containing compounds on herbicidal property. For amidic amino acids, the longer-
chain glutamine affected plant growth more than the shorter-chain asparagine. It was not
fully understood, but the size of hydrocarbon chain was crucial for activity. For amino
acids with aromatic rings, tryptophan, an indole containing compound, affected plant
growth the most. Previously [57], some indole amides strongly inhibited radicle and shoot
growths of lettuce (Lactuca sativa) and onion (Allium cepa). The effect was structure and
concentration dependent, where at low concentrations, some derivatives stimulated plant
growth. A series of indoles were also evaluated as plant growth inhibitors [58], some
derivatives averagely suppressed germination and growth of Ipomoea grandifolia. Moreover,
a research on Piriformospora indica-barley symbiosis revealed that indoles, elicited by root
endophyte, P. indica, are not required for growth promotion but for colonization of barley
root [59]. Apart from those mentioned groups, other substituents—i.e., alkyl, carboxyl, and
hydroxyl—did not affect or slightly affected the tested species. Our results emphasized the
importance of substituents on activity.

Another significant factor, affecting herbicide efficacy, was concentration. Herbicides
are usually more effective at high concentrations, but at low concentrations they are less
effective, instead, they become a growth-promoter [60,61]. Similar to our work, at high
concentrations, amino acids inhibited plant growth, but at low concentrations, some of
them slightly promoted plant development. In addition, we demonstrated that tested plants
response differently to amino acids. Chinese amaranth was usually more susceptible than
barnyard grass, in other words, the herbicides were more toxic to Chinese amaranth than
the grass. It is common that the responses of plants to chemicals depend on physiological
and biochemical properties of each species [62].

Factors that cause amino acids to show different inhibitory levels are not yet fully
understood, but these herbicides may have different capabilities to bind to the molecular
target sites of the plants. From a wider perspective, the amino acids would have different
mechanisms within plant organisms, and these modes of action could be very complex and
require further investigation.

4. Materials and Methods
4.1. Chemicals

Glycine and all 21 amino acids (both D- and L isomers) were purchased from Tokyo
Chemical Industry (TCI, Tokyo, Japan) and Sigma-Aldrich (Singapore). rac-Amino acids and
other ratios of D:L-mixture were prepared by mixing the solutions of D- and L-isomers in the
required ratios. Butachlor (or N-(butoxymethyl)-2-chloro-N-(2,6- diethylphenyl)acetamide)
was available from Sinon Corporation (Bangkok, Thailand).

4.2. Tested Plants

Similar to our previous report [44], Chinese amaranth (Amaranthus tricolor L.) and
barnyard grass (Echinochloa crus-galli (L.) Beauv.) were used as representative dicotyledon
and monocotyledon plants. Seeds of the former were purchased from Thai Seed & Agricul-
ture Co. Ltd. (Bangkok, Thailand), and seeds of the latter were collected from rice field
in the northern part of Thailand (Phitsanulok), in December 2019. Both species have a
germination rate around 85–90%.

4.3. Preparation of Aqueous Solutions of Amino Acids at 2 mM

Two hundred micromoles of amino acid were thoroughly mixed with distilled water,
in a 100 mL–volumetric flask. This solution is a 2 mM aqueous solution of amino acid.
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In terms of amino acids, available in monohydrochloride form (namely L-arginine
HCl, L-cysteine HCl, L-histidine HCl, and L-lysine HCl), they were dissolved in a 2 mM
NaOH solution to afford the same concentration of 2 mM.

4.4. Preparation of Aqueous Solutions of Amino Acids at 0.25–16 mM

3.2 Millimoles of amino acid were thoroughly mixed with distilled water in a 200 mL
volumetric flask. This solution is a 16 mM stock solution of amino acid. Again, for amino
acids that available in monohydrochloride form, they were dissolved in a 16 mM NaOH
solution, to afford the same concentration of 16 mM.

Other concentrations were prepared by dilution of the 16 mM stock solution with
distilled water to afford concentrations of 0.25, 0.5, 1, 2, 4, and 8 mM, respectively.

4.5. Bioassay for Seed Germination and Seedling Growth

Similar to our previous work [44], a small glass vial (4.5 × 2 cm), lined with ger-
mination paper, was filled with a 0.5 mL aqueous solution of amino acids. Ten seeds of
Chinese amaranth (or barnyard grass) were then placed in the vial, followed by sealing the
vial with Parafilm®. All prepared vials were kept at 28–30 ◦C, in a conditioned chamber
(Climacell 707, Munich, Germany), with a photoperiod of 12 h and a relative humidity of
80%. After period of 7 days, germinated seeds were counted, and shoot and root lengths
were measured. The percent inhibitions were calculated with this equation:

Inhibition (% of control) = 100 − ((amino acid/control) × 100) (1)

5. Conclusions

In summary, herbicidal activity of 22 common α-amino acids has been investigated.
Weed control property depended on several factors, including type of enantiomer, chemical
structure (substituent), and applied concentrations of the active compounds, as well as
species and organs of the tested plants. Comparative studies of D-isomer, L-isomer, and
D:L-mixture revealed a sign of enantioselective and synergistic toxicity. Also, type of
substituents significantly affected the activity, in which amide (for glutamine), thioether
(for methionine), and heteroaromatic (for tryptophan) suppressed plant development the
most. D-tryptophan caused leaf breaching in barnyard grass, indicating the mode of action
of the compound, which could be the interference of pigment biosynthesis of the plant.
Roots were more sensitive to chemicals than shoots. When compared between the two
tested species, Chinese amaranth and barnyard grass, the symptom of injury was different.
Overall, the current finding would be crucial in the research and development of natural
herbicides. Also, the synergistic property will benefit both herbicide manufacturers and
farmers, as racemic mixtures are cheaper and easier to make than pure forms. Due to the
low production cost, farmers would be easily access to the amino acid herbicides.
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