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Abstract

Adaptive behavior requires balancing approach and avoidance based on the rewarding and

aversive consequences of actions. Imbalances in this evaluation are thought to characterize

mood disorders such as major depressive disorder (MDD). We present a novel application

of the drift diffusion model (DDM) suited to quantify how offers of reward and aversiveness,

and neural correlates thereof, are dynamically integrated to form decisions, and how such

processes are altered in MDD. Hierarchical parameter estimation from the DDM demon-

strated that the MDD group differed in three distinct reward-related parameters driving

approach-based decision making. First, MDD was associated with reduced reward sensitiv-

ity, measured as the impact of offered reward on evidence accumulation. Notably, this effect

was replicated in a follow-up study. Second, the MDD group showed lower starting point

bias towards approaching offers. Third, this starting point was influenced in opposite direc-

tions by Pavlovian effects and by nucleus accumbens activity across the groups: greater

accumbens activity was related to approach bias in controls but avoid bias in MDD. Cross-

validation revealed that the combination of these computational biomarkers were diagnostic

of patient status, with accumbens influences being particularly diagnostic. Finally, within the

MDD group, reward sensitivity and nucleus accumbens parameters were differentially

related to symptoms of perceived stress and depression. Collectively, these findings estab-

lish the promise of computational psychiatry approaches to dissecting approach-avoidance

decision dynamics relevant for affective disorders.
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Author summary

Many of the decisions we make involve weighing the costs and benefits of options in

order to decide whether to approach or avoid an offer, such as deciding whether a new

and advanced phone is worth the price. Major depressive disorder is associated with alter-

ations in approach and avoidance behavior, but we know less about how the disorder is

associated with solving the conflict of approaching or avoiding options with costs and

benefits. Here we apply a computational model to investigate the cognitive mechanisms of

solving this conflict, how these mechanisms are affected in depression, and how activity in

brain regions involved in this process are informative for identifying the disorder. We

found that depressed participants differed from healthy controls in both cognitive pro-

cesses and in how brain activity was linked to these processes. Specifically, depression was

associated with reduced sensitivity to benefits, but not costs (represented in the task by

reward points and aversive images, respectively), a lack of bias to approach offers, and

alterations in how the mapping of motor responses to approach or avoid offers influenced

this bias. Further, we found that activity in nucleus accumbens and the pregenual anterior

cingulate were informative in classifying disease status. Altogether, these findings indicate

the utility in applying computational models to identify biomarkers of MDD in approach-

avoidance conflict.

Introduction

Adaptive decision making relies on using information in the environment to decide whether

to approach or avoid stimuli, as when a predator chooses to approach or avoid a prey [1].

These decisions depend on the weighting of costs and benefits of approaching a stimulus (e.g.,

eating a mushroom that will increase satiety but might be toxic). In the example of foraging,

too much approach (due to increased subjective value of reward or ignoring aversive out-

comes) can be risky, while too much avoidance (due to decreased subjective value of reward or

increased sensitivity to aversive outcomes) results in forgoing positive outcomes.

How individuals solve the conflict of whether to approach or avoid is of great interest to

understanding behavior in mood disorders such as major depressive disorder (MDD), which

is associated at the group level with both decreased approach behavior [2] and increased avoid-

ance behavior [3,4]. However, ultimately, for cognitive or neural measures to be clinically use-

ful, the field needs to go beyond group-level differences to making predictions about

individuals. Here, we apply "computational multidimensional functional profiling" [5–7] to

disentangle parameters underlying the dynamics of the decision process [8], and to leverage

data-driven methods to assess whether a combination of such parameters is maximally predic-

tive of relevant phenotypes and brain states [5–7]. Previous studies in movement disorders

have shown that these methods can improve identification of relevant clinical variables, and

that they can be superior to classification based on the raw data, or summary statistics thereof

[6]. This approach therefore shows promise toward development of more effective, principled

diagnostic and therapeutic strategies for mental illness.

Here, we decomposed the cognitive processes underlying approach-avoidance decision-

making with an affective variant of the drift diffusion model (DDM) [9], a sequential sampling

model often applied to two-choice decision making as an accumulation-to-bound process.

Although originally used for perceptual or memory-based decisions, the DDM has been

extended to capture value-based decisions, and their response time (RT) distributions, based

on costs and benefits [10–13]. We further extend this model to capture approach-avoidance
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decision-making in the presence of conflicting rewarding and aversive consequences (see [14]

for a related approach). To do so, we consider various factors that could impact the underlying

decision dynamics and could account for distinct forms of variability in MDD.

First and foremost, an instrumental decision to approach involves a larger weighting of the

potential benefits over the potential costs of that decision. This relative weighting is thought to

involve striatal mechanisms including the caudate nucleus [15], and, for approach-avoidance

conflict, the pregenual anterior cingulate (pACC) [16–18]. Second, a Pavlovian bias could

potentiate approach when the response needed to do so is congruent with approach tendencies

(i.e., bringing a stimulus toward vs. away from oneself [19,20]). Such tendencies are related to

nucleus accumbens and striatal dopamine mechanisms [21–23]. Third, according to sequential

sampling models, a decision maker accumulates evidence to a bound, where the height of that

bound determines the level of cautiousness and hence the speed-accuracy tradeoff [24]. The

DDM allows us to assess both any starting point biases toward one bound or another (mani-

fested in terms of changes in response proportions and fast RTs), but also how malleable the

decision bound is. In particular, when decision conflict is experienced, the ACC and subthala-

mic nucleus (STN) are typically engaged to adjust the decision bound and to regulate impul-

sive choice [13,25,26].

MDD is a heterogeneous condition that may involve disturbances in any or all of the above

processes. Indeed, MDD has been associated with decreased reward sensitivity [27] and altered

neural responses in the caudate nucleus across several tasks [28,29]. MDD has also been linked

to alterations in Pavlovian-Instrumental-Transfer, which captures the influence of background

Pavlovian valence on instrumental decision making [30,31]. Finally, midcingulate responses to

conflict and errors, which may be used in adjusting decision bounds, have also been linked to

anxiety and depression [32].

Here, we quantitatively assessed the dynamic processes of approach-avoidance conflict

decision-making in individuals with MDD and healthy controls, using hierarchical Bayesian

parameter estimation of the DDM applied to behavioral and neuroimaging data described in

[33]. We found that, as a group, MDD individuals exhibited (i) a reduced starting point bias to

approach offers, (ii) a reduced reward sensitivity on evidence accumulation, and (iii) an oppo-

site Pavlovian bias compared to controls. Moreover, these associations were further moderated

by the differential impact of key neural signals on model parameters. In particular, MDD indi-

viduals exhibited trends for differences in the impact of pACC activity on evidence accumula-

tion, and differential impact of nucleus accumbens on starting point bias. The combination of

these computational biomarkers aided in classifying individual patient status and were associ-

ated with clinical measures in MDD. Finally, computational modeling of behavioral data col-

lected during a follow-up session 6 months after the baseline session replicated the effect of

reduced reward sensitivity in MDD, corroborating this effect as a promising computational

biomarker of MDD.

Methods

The current study utilized human data described in [33], which provides more details about

data collection. Here, we describe the sample, the task, the methods used to extract trial-by-

trial BOLD activation from regions of interest and the computational model fitted to data.

Ethics statement

All participants gave written informed consent to a protocol approved by the Partners Human

Research Committee.
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Participants

Twenty-one unmedicated female adult participants (mean age 25.2 ± 5.1 years) with Major

Depressive Disorder (MDD) and 35 age-matched healthy female controls (mean age 26.3 ± 7.6

years) participated in the study. Six healthy control (HC) participants and one participant with

MDD did not complete the study. Two additional MDD participants were excluded from analy-

ses because their diagnosis was later found to be unreliable. Two HC participants were excluded

because of a technical issue with registering their task responses. Three additional HC partici-

pants were excluded as their task performance was unreliable. The final sample included 18 par-

ticipants diagnosed with MDD and 24 healthy controls. For more details about the sample, see

S1 Text and [33]. A subset of 10 participants diagnosed with MDD and 17 healthy controls also

performed the same task at 6-month follow-up and were administered several clinical scales.

Task

Participants performed 105 trials of an approach-avoidance conflict task (Fig 1A) adapted

from a prior non-human primate study [16]. For each trial, participants had to choose whether

to approach or to avoid an offer. Approach decisions would lead to points, but also an aversive
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Fig 1. Experimental task and computational model. a, Participants used a joystick to decide whether to approach or

avoid a combined offer of reward (points) and aversiveness (aversive stimuli). The magnitude of offered reward and

aversiveness were represented by the width of the blue and red bar, respectively. b, Illustration of drift diffusion model

applied to approach-avoidance conflict task. Trial-by-trial BOLD activity from regions of interest were used as

regressors to measure their impact on decision parameters in the DDM. The DDM adapted to the approach-avoidance

conflict task was used to estimate how trial-by-trial changes in offered reward and aversiveness (as well as neural

correlates) altered the speed and sign of evidence accumulation (controlled by the drift rate (v)) to decide to approach

(upper bound) or avoid (lower bound) offers. The boundary separation (a) parameter measures the distance between

decision thresholds, the starting point bias (z) measures a priori tendencies to approach or avoid offers, while the non-

decision time (ndt) parameter captures time spent on stimulus encoding and motor response. The illustration of the

DDM is adapted from [41].

https://doi.org/10.1371/journal.pcbi.1008955.g001
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outcome (seeing an aversive picture accompanied by a matched aversive sound). Avoidance

decisions resulted in no reward accompanied by the presentation a neutral image and neutral

sound. Images were taken from the IAPS database [34]. The amount of points and the degree

of aversiveness offered on each trial were parametrically varied and represented as the width of

a blue (points) and a red bar (aversiveness of the image based on IAPS normative values). Six-

teen levels of reward points and six levels of aversiveness of images, based on normative ratings

from [34], were used. The value of both stimuli ranged from 0 to 5. Participants did not receive

offers in which both stimuli had values of 0. Approach decisions were made by using a joystick

to move a cursor to a plus sign, while avoidance decisions were made by moving the cursor to

a square sign. The position of the response signs (above or below the bars) varied from trial to

trial in a random and counterbalanced way. The task was separated into three runs with short

breaks between runs. The entire task took approximately 15 minutes to complete. Six months

after the baseline session, participants were invited to return to the laboratory for a follow-up

session, in which the approach-avoidance task was re-administered and clinical symptoms

were assessed.

fMRI preprocessing and extraction of trial-by-trial activity

Functional MRI data were preprocessed and analyzed using Statistical Parametric Mapping

software (SPM12; http://www.fil.ion.ucl.ac.uk/spm). Distortion correction was applied using

field maps. Functional images were then realigned to the mean image of the series, corrected

for motion and slice timing related artifacts, co-registered with the anatomical image, normal-

ized to the 2 x 2 x 2 mm MNI template, and smoothed with an 8mm Gaussian kernel. We

extracted trial-by-trial parameter estimates during the decision phase of regions of interest

(ROIs) using a least squares separate (LS-S) approach [35], in which a separate trial-specific

design matrix is used to obtain the activation estimate for each trial. In this approach the

design matrices contain two regressors, one for the trial of interest plus a second that models

all other trials simultaneously and additional covariates of no interest including motion

realignment parameters and outliers calculated using Artifact Removal Tool in SPM [36]. For

example, the activation estimate for trial 1 has a regressor modeling that trial and a second

regressor modeling all other 104 trials. The estimate for β1 from this first design is the activa-

tion for trial 1. This process is repeated 105 times to obtain estimates for all trials. Based on

prior findings in this area (e.g. [17], regions of interest included pregenual anterior cingulate

cortex (defined as a single 12-mm sphere drawn around coordinates from a meta-analysis

[37], caudate nucleus and nucleus accumbens (Oxford-Harvard subcortical atlas, 50% thresh-

old) and subthalamic nucleus (FSL subthalamic nucleus atlas, 50% threshold).

Behavioral analysis

Measures of response time and rate of approach across individuals with MDD and healthy

controls were analyzed with linear and logistic regression models, respectively, using the

BRMS package [38] created in STAN [39], a toolbox in R for doing Bayesian hierarchical esti-

mation through Markov chain Monte Carlo (MCMC) sampling. MCMC sampling is a method

for approaching the posterior distribution through sampling and can be used to estimate not

only the mean and standard distributions of parameters from data fit to likelihood distribu-

tions, but also the uncertainty in these estimates, reflected in the width of the sampled poste-

rior distribution. Further, we ran the models in separate chains (running the same model

multiple times) and calculated the R̂ convergence statistic [40], to verify that similar posterior

distributions were approximated across chains. Finally, in hierarchical Bayesian analysis, esti-

mation of group and subject parameters mutually informs each other using the group
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distribution as a prior for the likelihood of individual estimates. This can improve estimates of

individual parameters in models with few trials per subject [41].

Modeling analysis

To quantify the dynamics of decision-making processes for approach-avoidance, we leveraged

the drift diffusion model (DDM), a sequential sampling model that provides an algorithmic

account of how evidence accumulation contributes to a binary decision process (Fig 1B)

[9,24]. The DDM quantitatively captures the degree to which RT distributions and choices are

accounted for by changes in latent decision parameters such as drift rate and decision thresh-

old, which have orthogonal influences on accuracy and RT: higher drift captures greater infor-

mation in the stimulus and results in shorter RT and better accuracy, whereas higher threshold

captures increased response caution and results in longer RT and better accuracy. For prefer-

ence-based decision-making tasks such as the approach-avoidance conflict task, in which nei-

ther decision is ‘accurate’, the decision threshold captures a tradeoff between speed and choice

consistency (i.e., the tendency to make the same choice across trials with equal offers of reward

and aversiveness) rather than speed-accuracy, while the drift rate captures the speed of evi-

dence accumulation towards approaching or avoiding offers. The bias parameter captures the

starting point of the accumulation process. Non-decision time (ndt) accounts for time spent

on sensory encoding and motor response. The DDM is most commonly used to account for

decision making in noisy sensory environments, but it has proved equally valuable for under-

standing dynamics of value-based decisions, whether during [12] or after value acquisition

[13] or selected based on preference [42]. Here, we modeled motivated decisions by assuming

that trial-by-trial values of reward and aversiveness drive evidence accumulation (captured by

the drift rate parameter v) towards choosing to approach or avoid an offer (Fig 1, left). We

adopted a Hierarchical Bayesian parameter estimation of the DDM using the HDDM-tool-

box [41] to assess the impact of reward and aversiveness across MDD and healthy controls.

Model comparison. Model comparison was performed by beginning with a base model

and systematically assessing whether adding a theoretically meaningful component improved

model fit. The final model included all components that improved model fit. For drift rate, we

assessed whether the impact of reward and aversiveness was of a linear or a logarithmic form,

and whether there were additional effects of offers of 0 value (i.e., no reward or neutral aversive

stimuli). For decision threshold, we tested whether it was modulated by decision conflict (mea-

sured as the absolute difference in values of offered reward and aversiveness [26]). Lastly, as a

measure of Pavlovian bias, we tested whether approaching (avoiding) offers by pushing (pull-

ing) the joystick to respond or vice-versa affected the starting point bias. The final model

reported here included a log-transformation of reward, an impact of offers of 0 reward, the

effect of conflict on decision threshold and Pavlovian bias on starting point bias (see Table A

in S1 Text for model description and model fit metrics).

After establishing the best-fitting model to average behavior, we augmented the model to

determine whether decision parameters are altered on a trial-by-trial basis as a function of

BOLD activity in the pACC, caudate nucleus, nucleus accumbens and subthalamic nucleus,

and to assess how this impact differed between groups. Estimating the impact of neural corre-

lates on decision parameters quantifies how ROIs are linked to mechanistically meaningful

parameters, over and above the effect of behavioral manipulation. Thus, trial-by-trial drift rate

(V) was calculated as:

vt � logðrewardtÞ � caudate nucleust þ aversivenesst � pACCt þ dRewardt;

where reward and aversiveness represented the offered reward and offered aversiveness on
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trial t, caudate nucleus and pACC were the activation during the decision phase on trial t. The

pACC was hypothesized to be associated with aversiveness due to its causal role in increasing

avoidance decisions in non-human primates [16], while the caudate nucleus is commonly

associated with representing reward (e.g. [15]), and specifically found to correlate with reward

during approach-avoidance conflict [43]. Offered reward was found to have a non-linear

impact on drift rate, resulting in improved model-fit when offered reward was log-trans-

formed, and when allowing drift rate to vary depending on whether offered reward was zero

(dReward = 1) or non-zero (dReward = 0).

Decision threshold (a) was calculated as a baseline distance between decision boundaries

and the impact of trial-by-trial conflict and activation in the STN, a region strongly implicated

in adjusting decision threshold under conflict [25,26]:

at � jrewards;t� aversivenesstj � subthalamic nucleust

Starting point bias (Z) was calculated as a baseline starting point and the influence of Pav-

lovian bias and activity in nucleus accumbens:

zt � PavlovianBiast � nucleus accumbenst

where ‘PavlovianBias’ was a dummy variable representing whether the mapping of response

was push to approach and pull to avoid (PavlovianBias = 1) or vice-versa. The mapping

changed from trial-to-trial, and participants used response cues (plus sign for approach and

square sign for avoid) to figure out the mapping on each trial. The nucleus accumbens was

assumed to impact starting point bias due to its association to Pavlovian biases reported in pre-

vious studies [21,23]. The model captured choice and RT for each trial (t) with the Wiener first

passage time (wfpt) likelihood function of the DDM using the following calculation:

choiceþ rtt � wfptðat; ndt; zt; vtÞ;

Where ndt = non-decision time. For baseline/intercept-parameters we used priors from the

HDDM package, which are informed by a wide range of empirical studies but are sufficiently

conservative to allow for deviations in mean parameters based on the data [41]. Slope-coeffi-

cients used noninformative priors centered at 0. Intercept-parameters were estimated sepa-

rately for each participant, while other coefficients were estimated on a group level, due to the

inherent noise in neural signals. All predictor variables, with the exception of dummy-coded

variables, were z-transformed prior to analysis.

Model validation. We used Bayesian hierarchical estimation to fit the DDM to data. The

models were run 5 times, each time with 5000 samples. The first 2500 samples were discarded

as burn-in, i.e., to let the sampler identify the region of best fitting values in the parameter

space. To capture potential differences between individuals with MDD and healthy controls

we ran the model separately for the two groups, using the same prior distributions. We also

modeled data from the two groups together in a mixed-effect regression model to directly esti-

mate their group differences in BRMS, which gave nearly identical results (see Fig A in S1 Text

for results from mixed-effect model).

The models were run 5 times to test whether for each so-called chain the model would con-

verge on the same estimated parameter values. The models were deemed to have converged as

the R̂ statistic was below 1.1 for all parameters. The R̂ statistic measures the degree of variation

between chains relative to variation within chains [40]. This statistic will be close to 1 if the

samples of the different chains are indistinguishable, and values below 1.1 are commonly

deemed to identify a converged parameter.
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The models’ ability to capture choice and response time patterns was assessed by comparing

observed and model-generated choice and response times (Fig 2). This posterior predictive

check shows that the model captures changes in choice patterns and the distribution of

response times across combinations of reward and aversiveness. See Fig B in S1 Text for poste-

rior predictive checks for each subject.

In the Bayesian tradition we test effects as the posterior distribution of difference between

group posterior distributions and report the probability of one group having a higher esti-

mated parameter value as the proportion of the distribution of difference above 0 [44]. We

report the 95% highest density interval (HDI) as uncertainty in the posterior distribution [44].

Classification

To estimate any potential advantage of the computational modeling approach, we trained two

classifiers on disorder status. One classifier used individual measures of brain activity (from

ROIs) and behavioral results (RT and rate of approach), while the other used individually-esti-

mated DDM parameters and their modulation by neural regressors. Importantly, these
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decisions are set to have negative response times to distinguish the reaction time distribution of decisions to approach

and avoid offers and to indicate the relative proportion of (observed and predicted) approach and avoidance decisions

across combinations of reward and aversiveness.

https://doi.org/10.1371/journal.pcbi.1008955.g002
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parameters are estimated from a model that did not have access to clinical status (i.e., all sub-

jects are estimated with a single group distribution), to prevent classification bias that could

otherwise arise due to shrinkage (an effect in hierarchical Bayesian model estimation where

individual parameters can be estimated closer to the group mean). A logistic regression classi-

fier was trained 100 times using 10-fold cross-validation. The best-performing classifier from

the training was then used to iteratively predict diagnosis status on 30% of held-out data. The

performance of the classifier was measured on held-out data using the Area Under the

Receiver-Operator-Curve (AUC) statistic, which can be interpreted to measure the probability

of correctly choosing two randomly drawn samples from each the two classes (MDD and

controls).

Results

To investigate the mechanisms underlying approach-avoidance conflict decision-making in

MDD, we applied a drift diffusion model to data from 18 adult females diagnosed with MDD

and 24 psychiatrically healthy controls.

Behavioral results

Overall rates of approach and response times across groups were analyzed with logistic and lin-

ear regression models, respectively. These analyses did not show an effect of MDD on either

rate of approach (p(HC>MDD) = 0.606) or response time (p(HC>MDD) = 0.536).

Computational modeling

Model comparison was performed by beginning with a base model and systematically assess-

ing whether adding a theoretically meaningful component improved model fit. The final

model reported here included a log-transformation of reward, an impact of offers of 0 reward,

the effect of conflict on decision threshold and Pavlovian bias on starting point bias. We pos-

ited that if the ROIs of interest are related to approach/avoidance decision making as informed

by prior literature on these regions, then taking into account their variability could improve

estimation of decision parameters. We thus estimated how neural regressors impacted these

processes, specifically estimating the influence of trial-by-trial variability in pACC and caudate

nucleus on drift rate (ie. weighting of reward vs aversive attributes [16,17,33]), of STN on deci-

sion threshold [13,26,45,46] and of nucleus accumbens on starting point bias toward approach

[21–23]. The best-fitting model was estimated to have converged as the R̂ statistic was below

1.1 for all parameters [40], and was shown to recreate observed choice and RT patterns (Fig 2

and Fig B in S1 Text). See Methods for more details on model comparison and model

validation.

Drift rate

By capturing motivated approach-avoidance conflict decisions with the DDM, we assumed

reward values would be accumulated as evidence for an approach response, whereas aversive

values would contribute evidence for an avoidance response. These assumptions were con-

firmed; in both groups, trial-to-trial variations in reward were estimated to drive drift rate

toward approach decisions while values of aversiveness influenced drift rate towards avoiding

offers, indicated by coefficients that were credibly different from 0 (Fig 3 and Table 1). How-

ever, the impact of reward on drift rate was reduced in MDD compared to controls (p

(HC>MDD) = 0.99). By contrast, sensitivity to changes in aversiveness did not differ between

groups (p(HC>MDD) = 0.575) (Table 1). The intercept of drift rate did not differ between
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MDD and controls (p(HC>MDD) = 0.305), consistent with the behavioral results of similar

rates of approach in MDD and HC.

While the trial-by-trial variations in reward and aversion affected drift rate in opposing

directions, we hypothesized that trial-by-trial BOLD activity could serve as a proxy for motiva-

tional state and further modulate drift rate over and above the objective offered reward and

aversion metrics. Accordingly, we modeled the impact of activity in the caudate nucleus and

pACC onto drift rate with the a priori assumption that caudate nucleus would be associated

with increased sensitivity to reward and pACC to aversiveness. Activation in caudate was not

found to credibly influence drift rate, as the coefficient was estimated to overlap with 0 in both

groups (Table 1), although it was estimated to be somewhat more positive in healthy controls
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Fig 3. Selected results from the computational model. For each coefficient the left plot shows the group posterior

distribution for healthy controls (HC) and individuals with major depressive disorder (MDD). The right plot shows

the posterior distribution of difference as a measure of the effect of group on each coefficient, and the probability given

data that the coefficient is higher in HC than MDD. a, weight of aversiveness onto drift rate (v), b, weight of reward

onto drift rate (v), c, estimated relative starting point (z) between decision thresholds, d, impact of Pavlovian effect

onto starting point (z), e, impact of activity in nucleus accumbens (NAcc) onto starting point (z), f, impact of activity

in the pACC onto drift rate (v). For the entire set of coefficients see Table 1.

https://doi.org/10.1371/journal.pcbi.1008955.g003
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(p(HC>MDD) = 0.838). Activity in pACC was associated with increased drift rate towards

approach in MDD but not for controls, with a trending effect for more positive influence of

pACC on drift rate in MDD (p(HC>MDD) = 0.085).

Starting point bias

Changes in motivational state could influence changes in starting point, where a priori biases

to approach or avoid offers (i.e., before seeing offered reward and aversiveness) would be rep-

resented, respectively, by a relative starting point toward the approach or avoid decision

boundaries (Fig 1B). Individuals with MDD were not found to display a bias in either direc-

tion, as the starting point was estimated to be centered between approach and avoid decision

boundaries (Fig 3 and Table 1). In contrast, healthy controls displayed a bias to approach, and

this bias differed credibly from that in the MDD group (p(HC>MDD) = 0.972). We further

measured the impact of response congruency on starting point, hypothesizing that a Pavlovian

approach bias could be present when the mapping (which varied from trial to trial) was such

that responses to approach were made by pushing the joystick to the response stimulus.

Indeed, healthy controls were somewhat biased to approach when an approach-decision

required a push of the joystick (βPavlovian(HC) = 0.018, HDI = - 0.003, 0.042). In contrast, this

mapping moved the starting point in MDD further towards avoid (βPavlovian(MDD) = -0.014,

HDI = -0.04, 0.01), and the effect between groups differed (p(HC>MDD) = 0.971).

Prior literature links nucleus accumbens activity to approach and avoidance of rewarding

and punishing stimuli [21–23]. We thus also estimated the impact of variability in nucleus accum-

bens activity on starting point and its interaction with Pavlovian bias. Although the posterior dis-

tribution for both the MDD and control groups overlapped with zero, there was a reliable

difference between the two groups (p(HC>MDD) = 0.971): increases in accumbens activity

were related to a starting point bias towards approach in controls (βnucleus accumbens(HC) = 0.009,

Table 1. Posterior distributions of group parameters. Lower and upper represent the lower and upper bound of the 95% highest density interval of the posterior

distribution

HC MDD

parameter coefficient mean lower upper mean lower upper p(HC>MDD)

threshold (a) intercept 2.244 2.083 2.430 2.259 1.991 2.550 0.467

STN 0.055 -0.031 0.134 0.058 -0.025 0.138 0.484

conflict 0.182 0.112 0.248 0.145 0.077 0.215 0.772

conflict:STN 0.042 -0.021 0.101 0.008 -0.057 0.072 0.772

non-decision time (ndt) intercept 0.737 0.656 0.818 0.661 0.561 0.760 0.882

drift rate (v) intercept 0.665 0.409 0.942 0.783 0.399 1.160 0.305

reward 0.701 0.634 0.772 0.577 0.502 0.654 0.990

aversiveness -0.564 -0.616 -0.510 -0.571 -0.626 -0.511 0.575

caudate 0.012 -0.050 0.073 -0.035 -0.102 0.036 0.838

pACC 0.035 -0.027 0.096 0.100 0.028 0.168 0.085

reward:caudate -0.027 -0.083 0.027 0.014 -0.040 0.068 0.159

aversiveness:pACC -0.006 -0.060 0.046 -0.017 -0.078 0.041 0.605

Dreward -1.105 -1.299 -0.918 -0.974 -1.191 -0.776 0.180

starting point bias (z) intercept 0.536 0.513 0.559 0.497 0.464 0.528 0.972

Pavlovian bias 0.018 -0.003 0.042 -0.014 -0.040 0.010 0.971

accumbens 0.009 -0.008 0.025 -0.014 -0.033 0.003 0.971

accumbens:Pavlovian bias -0.001 -0.025 0.022 0.011 -0.013 0.034 0.242

STN, subthalamic nucleus; pACC, pregenual anterior cingulate cortex

https://doi.org/10.1371/journal.pcbi.1008955.t001
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HDI = -0.008, 0.025) and towards avoidance in MDD (βnucleus accumbens(MDD) = -0.014, HDI =

-0.033, 0.003). These group effects are complemented by individual classification and clinical pre-

diction below.

Decision threshold

The distance between decision thresholds controls the amount of evidence needed to commit

to a choice, and hence balances the tradeoff between speed and accuracy (or here, choice con-

sistency, since accuracy is subjective). We expected that similar values of reward and aversion

could elicit conflict and induce the need to accumulate more evidence (higher decision thresh-

old) before committing to a choice. Speed-accuracy tradeoffs, measured by the width of deci-

sion thresholds, did not differ between groups (p(HC>MDD) = 0.467), nor did the impact of

conflict onto this tradeoff (p(HC>MDD) = 0.772). Based on previous findings that the mid-

cingulate can signal to STN the need to accumulate more evidence via an elevation in decision

threshold [13,26,45,46], we estimated the impact of STN on decision threshold and its interac-

tion with decision conflict, i.e., when values of offered reward and aversiveness were of similar

value. Although activity in STN was associated with somewhat increased decision threshold,

the association of STN and threshold did not differ between MDD and controls (p(HC>MDD) =

0.484). Further, there were no effects of the interaction between STN and conflict onto decision

threshold within (βSTN:conflict(HC) = 0.042, HDI = -0.021, 0.101), (βSTN:conflict(MDD) = -0.008,

HDI = -0.057, 0.072) or between groups (p(HC>MDD) = 0.772).

Classification of clinical status based on computational biomarkers

As noted above, DDM parameters reliably differed between HC and MDD groups, despite few

observable differences in the average behavioral psychophysical functions. Ultimately, how-

ever, we are interested in the utility of computational markers for making inferences about

individuals, rather than groups as a whole. We thus fit a single hierarchical DDM model across

both populations (so that we did not bias individual estimates to be similar for each group; see

Methods) and extracted individual subject posterior distributions. We then built a classifier

using regularized logistic regression and cross-validation to predict clinical status based on

individual parameter estimates, testing the classifier on held-out data. We repeated this same

data-driven procedure but using only behavioral variables and brain correlates thereof, with-

out model parameters. As shown in Fig 4, this procedure was moderately successful in improv-

ing sensitivity and specificity of MDD predictions, but only when model parameters were used

(AUC = 0.68). Indeed, classification without computational biomarkers did not exceed chance

(AUC = 0.47). Moreover, a classifier using computational DDM parameters but omitting the

biomarkers (neural regressors) performed at an intermediate level (AUC = 0.58). (The AUC

statistic can be interpreted to measure the probability of correctly classifying two randomly

drawn samples from each the two classes, or alternatively, it is the true positive rate averaged

across all possible values of false positives.) Altogether, this finding demonstrates the potential

utility of computational biomarkers for classification.

We next assessed which parameters were most diagnostic. Interestingly, the impact of

nucleus accumbens onto starting point was estimated to be the most distinguishing feature for

predicting disorder status (Fig 4). Recall that at the group level, nucleus accumbens activity

was oppositely predictive of starting point biases toward approach vs avoidance in HC vs

MDD. The finding that this feature is the most diagnostic for distinguishing patients from con-

trols at the individual level suggests that it is reliable and not dependent on outlier participants.

Similarly, the influence of pACC on drift rate was also a distinguishing feature. Other impor-

tant parameters include the overall starting point bias, the Pavlovian effect, and the impact of
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reward on drift rate, all consistent with findings at the group level, and thereby showing the

utility of both brain and behavioral computational biomarkers of dynamic decision processes

for clinical prediction.

Clinical measures

We next evaluated how robustly these computational biomarkers relate to symptoms and pro-

spectively predict disease course. We ran a multivariate multiple regression linking clinical

measures collected at time of testing and 6-month follow-up (see Table C in S1 Text for full

model definitions), within the MDD group. This analysis demonstrated that reward sensitivity

(v-reward) was negatively associated with perceived stress (b = -14.74 (CI = -28.57 –-0.90), t(7)

= -3.04, p = .039), and the individual impact of the nucleus accumbens on starting point was

associated with 6-month follow-up scores on the Hamilton Depression Rating Scale (b = -1495

(CI = -2986.47 –-4.04), t(8) = -2.4, p = .04). These findings further reify the utility of the

computational biomarkers for predicting symptom progression.

Follow-up data

Six months after the original study, 10 participants with MDD and 17 healthy controls

returned to the laboratory for a follow-up session. Three of the participants in the MDD group

no longer fulfilled criteria for MDD, measured as symptom scores of 7 or lower on the Hamil-

ton Depression Rating Scale [47], resulting in a significant overall reduction in symptom

scores from the first to second session (t(9) = 2.458, p = 0.036). Without these three partici-

pants the difference between session was no longer significantly different (t(6) = 1.2914,

p = 0.2441). However, due to the low sample size we chose to not exclude these participants.

We applied the same computational model (without neural regressors) to this follow-up

session.
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Fig 4. Classification of MDD status and feature importance for the computational biomarker classifier. Left, the

receiver operating characteristic (ROC) curve and the ROC area under curve (AUC) statistic for a classifier using

individual parameter values from the computational model (purple) and a classifier using mean observed behavioral

measures of response time and approach rate and mean activity in ROIs (caudate nucleus, nucleus accumbens (NAcc),

pregenual anterior cingulate cortex (pACC), and subthalamic nucleus (STN)). Right, mean estimated beta-coefficients

from classifier with 95% confidence intervals for the classifier using computational biomarkers (purple). Coefficients

are sorted by weight from left to right as the absolute distance from 0, the magnitude of which indicates the importance

of each feature for the classification. Int = Intercept, PavBias = Pavlovian bias, v = drift rate, z = starting-point bias.

https://doi.org/10.1371/journal.pcbi.1008955.g004
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Test-retest reliability of model parameters and replication of reward sensitivity effect.

We first assessed the reliability of individual parameter estimates by calculating two-way intra-

class correlation coefficients of mean parameter estimates across the two tests. The intercept

drift rate, sensitivities to reward and aversiveness onto drift rate and non-decision time param-

eters were significantly correlated across the two data collection phases (p< 0.05), while the

remaining parameters were not (p> 0.05) (see S1 Text for statistics for each parameter). We

found that the parameter estimates for starting point bias and decision threshold depended on

the inclusion of neural predictors, thus providing a potential answer as to why these parame-

ters did not correlate between time-points.

As can be seen in Fig 5 and Table B in S1 Text, replicating the primary model result, partici-

pants with MDD were also found to be less sensitive to reward in the follow-up data (p

(HC>MDD) = 0.99). However, in contrast to the indistinguishable sensitivity to aversiveness

in the original data, at follow-up, participants with MDD were found to be less sensitive to

aversiveness (p(HC>MDD) = 0). The other parameters generally showed the same qualitative

patterns, with the exception that the MDD group at follow-up were found to be biased towards

approach (see Fig 5 for comparison of all parameters in the two datasets).

Classification. To evaluate the generalization of the classifier distinguishing MDD from

HC based on model parameters alone, we tested how well this same classifier (but without the

neural regressors) could distinguish MDD from HC based on model parameters at follow-up.

Because we had found at baseline that the neural regressors (biomarkers) were helpful for clas-

sifying patient status, we expected only moderate success in classifying the follow-up unseen

data without such regressors. Nevertheless, we found that the classifier at follow-up predicted

diagnosis with an accuracy of 62% (AUC = 0.55). Moreover, considering that three MDD sub-

jects were considered in remission (and one was borderline), this classifier success improved

to 69/73% (AUC = 0.59/0.61) if these subjects are considered to be healthy (HC) at follow-up.

This latter result suggests that the classifier was not simply overfitting to individuals given that

the same participants had different clinical status. Nevertheless, to further test whether the per-

formance of this classifier was driven by including the same participant in the trained and

tested sample, we also conducted as a purely out-of-sample test in which we iteratively pre-

dicted an individual at follow-up that was excluded during the training of the classifier. This

approach led to reduced performance (59% accuracy), but was still found to improve when the

three (and one borderline) remitters were considered to be healthy controls at follow-up, with

an accuracy of 64% (69%).

Discussion

We applied a computational model to data from an approach-avoidance conflict task in order

to investigate the mechanisms of how individuals with MDD solve the problem of approaching

or avoiding offers of combined reward and aversiveness. We found that individuals with

MDD were less sensitive to changes in offered reward but did not differ from healthy controls

on sensitivity to aversiveness. Controls were found to have an a priori starting point bias

towards approaching offers, whereas the MDD group did not display such a bias. We also

found that activity in the nucleus accumbens was associated with (trending) opposite influence

on bias across groups, such that it led to greater approach bias in controls but greater avoid

bias in MDD. Further, we found that Pavlovian congruency of the response mapping influ-

enced starting point differently in the two groups, where pushing the joystick to approach

offers lead to increased approach-bias in controls and increased avoidance-bias in MDD.

Moreover, we showed that computational modeling improved classification of disorder com-

pared to a classifier using raw behavioral and neural measures. Further, and highlighting
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incremental predictive validity, individual model coefficients were related to clinical symptoms

of MDD at time of testing and predicted symptoms at 6-month follow-up. Finally, by analyz-

ing data collected at 6-month follow-up we showed that individual parameters were stable

across time and that the effects of reduced reward sensitivity in MDD was robust.

Cognitive process models, such as the DDM, offer an insight into the cognitive mechanisms

underlying behavior, and can also be used to link hypotheses to neural mechanisms [26,48–

50]. Understanding how these mechanisms are altered during approach-avoidance conflict in

MDD thus has the potential of identifying computational biomarkers, which further can help

bridge understanding of the implication of MDD on approach-avoidance conflict on behav-

ioral and neural levels, provide a common framework for data from rodents [18], non-human

primates [16,17,51] and humans [33], and potentially aid in individually tailoring treatment to

patients. Future studies could also estimate the utility of computational modeling of approach-

avoidance conflict in other psychiatric disorders, as abnormal approach-avoidance decision

making have been implicated in, among others, anxiety disorders [52,53], eating disorders,

substance use disorders, and personality disorder (see [54] for a recent review).

In contrast to our hypothesis, and self-report measures of approach and avoidance [2–4],

there was not an overall reduction in the rate of approached offers in MDD [33]. However,

individuals with MDD were less sensitive to changes in offered reward on drift rate (which is

manifest in terms of both choice and RT) in both the original and follow-up datasets. This

reduced reward sensitivity resulted in individuals with MDD accruing somewhat less reward

points during the experiment (p(HC>MDD) = 0.873). A reduction in accrued points shows

how insensitivity to reward can result in less positive outcomes. Reduction in reward sensitiv-

ity in MDD has been found in other tasks, including instrumental learning [27], and directly

maps onto anhedonia, an important endophenotype of depression [55]. However, in the cur-

rent study the measure of reward sensitivity was not significantly related to Snaith Hamilton

Pleasure Scale [56], a self-report measure of anhedonia.

We also reported differences in a priori biases towards approaching offers, before any evi-

dence of an individual trial’s offer can be weighted. Whereas individuals with MDD did not

display a bias to either approach or avoid (captured as a starting point equidistant between the

two decision thresholds (Fig 1B)), the controls exhibited a starting point bias to approach. This

effect resembles a lack of optimism bias observed in MDD [57]. However, the results from the

follow-up study did not replicate the differences in starting point bias. A larger sample size

could reveal whether these differences are the effect of having previously performed the task or

reflect that MDD indeed are not associated with an altered a priori bias.

Intriguingly, we also found that variability in activity in the nucleus accumbens was associ-

ated with opposing effects on starting point biases in MDD and controls. One possible inter-

pretation of this effect is that the nucleus accumbens is often characterized as reflecting the net

subjective valuation of an individual–what the person “cares about” in sum–after accounting

for various cognitive and affective influences [58,59]. MDD patients may have an altered

nucleus accumbens subjective valuation that is biased toward avoidance and aversiveness, and

hence activity in this region is more likely to induce a bias to avoid. Indeed, this effect was the

Fig 5. Posterior distributions across MDD and HC at the original data collection and for the same task applied to a subset of participants at 6-month follow-up.

For each coefficient the left plot shows the group posterior distribution for healthy controls (HC) and individuals with major depressive disorder (MDD). The right plot

shows the posterior distribution of difference as a measure of the effect of group on each coefficient, and the probability given data that the coefficient is higher in HC

than MDD. a, Intercept drift rate (v), b, weight of reward onto drift rate (v), c, weight of aversiveness onto drift rate (v), d, dummy coding of reward onto drift rate (v)

(1 = reward offer of 0, 0 = non-zero reward offer), e, Intercept value decision threshold (a), f, influence of conflict on decision threshold (a) g, estimated relative starting

point (z) between decision thresholds, h, impact of Pavlovian effect onto starting point (z) and i, non-decision time (t), For statistics from posterior distributions in

follow-up data see Table B in S1 Text. HC = healthy controls, MDD = Major Depressive Disorder.

https://doi.org/10.1371/journal.pcbi.1008955.g005
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most predictive of disorder status at the individual level and predicted depression scores at

6-month follow-up. The opposite impacts of nucleus accumbens on approach and avoid ten-

dencies in MDD vs HC may also relate to findings showing opposite effects of Pavlovian to

Instrumental transfer in MDD [31] (but see [30]). In contrast, a recent study found that MDD

did not differ from controls in tendencies to approach rewards and avoid losses in a go/no-go

instrumental learning task [60]. Future studies could investigate the influence of Pavlovian

biases and the interaction of learning vs. preference-based choices in MDD.

The classifier predicted diagnosis only when computational biomarkers were included.

When applied to follow-up data without neural regressors, there was only a hint for classifica-

tion in the right direction (62% accuracy, AUC = 0.55), partly reaffirming the need for neural

regressors for more reliable classification. More optimistically, this classifier performance was

more favorable (69% accuracy, AUC = 0.59) if we considered the remitters to be HC at follow-

up, which would fit if the DDM parameters reflect a state rather than a trait. However, much

larger sample sizes are needed to test this notion.

Limitations

We found that individually estimated model parameters were related to clinical measures in

individuals with MDD and predicted future status. However, larger samples are needed to

confirm these promising results of identifying computational biomarkers of approach-avoid-

ance conflict decision making in MDD. In addition, despite showing that the classifier with

computational model parameters outperformed the classifier using behavioral variables and

neural correlates, future studies should increase sample size to more reliably estimate the utility

of using model parameters to classify MDD status. A larger sample size could also allow testing

linear classifiers, using dimensional measures of mood, in contrast to the categorical outcome

of healthy vs. MDD used here. Such an approach could describe to which degree whether the

group effects observed here reflect effects of state or trait. The results of improved classification

at follow up when categorizing remitters as healthy controls hints that it is capturing state. An

increased sample size would also more conclusively reveal whether clinical measures of mood

not found to be significantly associated with decision parameters in the current study indeed

aren’t associated, or whether these results reflect low power to detect such effects. Further, the

dataset used here consisted of female participants, thus precluding us from evaluating the gen-

eralizability of the findings. We also note that the retention rate and, within MDD, rate of

remitters, were somewhat low. This could reflect an issue of self-selection, where remitted par-

ticipants were more likely to not come in for a second testing. Finally, alternative models and

neural circuits beyond those we tested could be shown to provide a better fit to data. Given the

sample size we focused only on theoretically motivated ROIs in the computational model.

Conclusions

Computational modeling revealed that participants with MDD solved approach-avoidance

conflict differently than healthy controls. In particular, MDD was associated with reduced

reward sensitivity. Individual parameters were linked to clinical measures of MDD and were

useful for classifying diagnosis. Collectively, these findings establish the promise of computa-

tional psychiatry approaches to dissecting approach-avoidance decision dynamics relevant for

affective disorders.

Supporting information

S1 Text. Fig A. Selected results from the computational mixed-effect model. For each coeffi-

cient the left plot shows the group posterior distribution for healthy controls (HC) and
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individuals with major depressive disorder (MDD). The right plot shows the posterior distri-

bution of difference as a measure of the effect of group on each coefficient, and the probability

given data that the coefficient is higher in HC than MDD. A, weight of aversiveness onto drift

rate (v), B, weight of reward onto drift rate (v), C, estimated relative starting point (z) between

decision thresholds, D, impact of Pavlovian effect onto starting point (z), E, impact of activity

in nucleus accumbens (NAcc) onto starting point (z), F, impact of activity in the pACC onto

drift rate (v). The results from the mixed-effect model here overlap with the results from the

model in Fig 3, in which the two groups were estimated separately. Table A. Description and

fit of tested models. Model comparison was performed by comparing a baseline model to a

model in which one ‘component’ was modified. The model we report from includes all the

‘components’ that improved fit compared to the baseline model. The function of the impact of

reward and aversiveness onto drift rate was assumed to be linear or logarithmic, and were

assessed on whether model fit was improved when including a dummy coded variable that

indicated whether the offered value of reward (Dreward) or aversiveness (Daverse) was 0

(D = 1) or not (D = 0). Conflict was measured as the absolute difference in reward and aver-

siveness and was estimated to influence the decision threshold parameter. PavlovianBias

included information on whether approaching (avoiding) offers involved pushing (pulling)

the joystick to respond (PavlovianBias = 1) or vice-versa (PavlovianBias = 0). Lower values of

DIC indicate better fit to data. DIC = deviance information criterion. Fig B. Observed (black)

and predicted (red) response time distributions across subjects. Avoid-decisions are set to be

negative to separate RT distributions for decisions to approach and avoid. Table B. Posterior

distributions for group parameters at follow-up. Lower and upper represent the lower and

upper bound of the 95% highest density interval of the posterior distribution. For comparison

to results from the original dataset, the rightmost column represents probabilities of group dif-

ference from original dataset. Table C. Multivariate regression for association between clinical

measures collected at time of testing and at 6-month follow-up to decision parameters.

Table D. Intraclass correlation coefficient for individual parameters across sessions.
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