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Abstract 

Background:  Non-communicable diseases such as cardiovascular diseases, respiratory diseases and diabetes con-
tribute to the majority of deaths in India. Public health programmes on non-communicable diseases (NCD) preven-
tion primarily target the behavioural risk factors of the population. Hereditary is known as a risk factor for most NCDs, 
specifically, type 2 diabetes mellitus (T2DM), and hence, understanding of the genetic markers of T2DM may facilitate 
prevention, early case detection and management.

Main body:  We reviewed the studies that explored marker–trait association with type 2 diabetes mellitus globally, 
with emphasis on India. Globally, single nucleotide polymorphisms (SNPs) rs7903146 of Transcription Factor 7-like 2 
(TCF7L2) gene was common, though there were alleles that were unique to specific populations. Within India, the 
state-wise data were also taken to foresee the distribution of risk/susceptible alleles. The findings from India show-
cased the common and unique alleles for each region.

Conclusion:  Exploring the known and unknown genetic determinants might assist in risk prediction before the 
onset of behavioural risk factors and deploy prevention measures. Most studies were conducted in non-represent-
ative groups with inherent limitations such as smaller sample size or looking into only specific marker–trait associa-
tions. Genome-wide association studies using data from extensive prospective studies are required in highly preva-
lent regions worldwide. Further research is required to understand the singular effect and the interaction of genes in 
predicting diabetes mellitus and other comorbidities.
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Background
According to the International Diabetes Federation 
(IDF), “Diabetes Mellitus is one of the fastest growing 
global health emergencies of the twenty-first century” 
[1]. The global prevalence of type 2 diabetes mellitus 
(T2DM) was 536.6 million in 2021 and is projected to 
increase to 642.7 million by 2030 and 783.2 million by 
2045, which is almost 46% increase in the prevalence [1]. 
It is estimated that the highest percentage increase will 

be in middle-income countries compared to high- and 
low-income countries [1]. The highest prevalence of dia-
betes in people aged 20–79 years is reported in the Mid-
dle East and North African region (MENA) (18.1%). In 
contrast, the African region has the lowest prevalence 
(5.2%) which was attributed to comparatively low levels 
of urbanization and low levels of obesity [1]. China (140.9 
million), India (74.2 million) and Pakistan (33 million) 
have the most significant number of adults with T2DM 
and are expected to remain the same in 2045. Almost one 
in two adults with diabetes is undiagnosed, and 87.5% of 
the undiagnosed are in middle- and low-income coun-
tries. In 2021, excluding the mortality associated with 
the COVID-19 pandemic, almost 6.7 million between the 
age of 20–79 years died due to diabetes-related compli-
cations which is almost 12.2% of the global deaths from 
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all causes [1]. Among this, almost 32.6% of the deaths 
occurred in working-age people [1]. Diabetes-related 
costs have increased by 316% over the past 15 years. This 
highlights the urgent need to improve the ability to pre-
vent the development of T2DM at an early stage.

The increasing burden of T2DM is not completely 
understood as the aetiology of diabetes is multifactorial, 
including genetic factors coupled with environmental 
factors such as rapid urbanization, urban migration, and 
lifestyle changes [2]. Decades of rapid urbanization and 
associated socio-economic transformation have resulted 
in healthier lifestyles and dietary preferences shifting to 
unhealthy practises [3]. Environmental factors play a sig-
nificant role in the development of diabetes, but they do 
not impact everyone in the same way. Even with the same 
environmental exposures, some are more susceptible to 
developing diabetes than others, and this increased risk is 
considered to be inherited [4].

Currently, there are non-clinical and clinical meas-
ures for diabetes prevention and management such as 
lifestyle modifications (dietary modifications, physi-
cal activity, behavioural modifications), medical nutri-
tion therapy (MNT), bariatric surgeries, treatment using 
medicinal plants [5, 6] and clinical measures such as oral 
anti-diabetic drugs and insulin [7]. Although the ben-
efits of lifestyle modification in diabetes prevention and 
the effectiveness of pharmacological treatments are well 
approved, there continues the increase in the prevalence 
of T2DM. Research suggests that the T2DM has a critical 
genetic predisposition. Evidence indicates that Indians 
are more susceptible to insulin resistance than Europe-
ans of similar age and body mass index, suggesting the 
significant possibility of population-specific genetic risk 
factors [4, 8, 9]. Furthermore, studies have identified 
that South Asians have a greater tendency for visceral fat 
deposition, higher total body fat percentage and insulin 
resistance compared to other ethnic groups at similar 
levels of body mass index [4]. Epidemiological studies 
have reported that migrant Asian Indians living in differ-
ent parts of the world show a much higher prevalence of 
diabetes than the residents of countries [4].

Genetic factors play an important role in the patho-
genesis of diabetes and thus are an essential element in 
understanding the cause of the disease and possible pre-
vention methods. Advances in genotyping and sequenc-
ing have led to the identification of SNP as genetic 
variants associated with type 2 diabetes or related gly-
caemic traits [9]. Combined genetic risk scores com-
posed of the weighted sum of the risk alleles at these loci 
have been tested for their ability to predict diabetes in 
individuals beyond the information provided by clinical 
risk factors [10]. Genome-wide association mapping is a 
concept well utilized for identifying new risk alleles/loci. 

Developed countries like the USA and Nordic countries 
have initiated the Precision Medicine Initiative (PMI) for 
some major non-communicable diseases such as cancer 
and T2DM [11]. The emerging field of precision medicine 
requires understanding the risk alleles of each popula-
tion. This review aims to analyse the known genetic fac-
tors of T2DM in the global population, including India, 
and identify the significant risk alleles.

Materials and methods
In this review, we included original research and meta-
analysis studies that assessed the genetic determinants 
of T2DM among people in the Indian subcontinent and 
globally, published to date (the year 2021). We included 
studies that explored marker–trait associations from 
observational studies (n = 59) and genome-wide associa-
tion studies (GWAS) (n = 6). Those studies that reported 
the criteria of diagnosis for type 2 diabetes mellitus using 
World Health Organization (WHO) [12] or Ameri-
can Diabetes Association (ADA) criteria [13] only were 
included in the review. Genome-wide association study 
reports are from peer-reviewed published works where 
the samples were taken based on the standard procedure 
and traits.

Search strategy and study selection
Data sources such as PubMed, Google and Google 
Scholar were used to identify the studies. The keywords 
used were “Genetics of T2DM”, “SNPs”, “India” and 
“Global”. The flowchart of data extraction and review is 
given in Fig.  1. We classified the SNPs associated with 
T2DM according to regions such as South East Asian 
region (India, Sri Lanka), Western Pacific region (Japan, 
Australia), Eastern Mediterranean (Jordan), African 
region (Western Africa, Ghana, Nigeria and Kenya) and 
European countries and American regions (Mexico, Latin 
America, the USA).

Genetics of T2DM
Type 2 diabetes mellitus is polygenic, and over 100 genes 
have already been reported [4]. Three primary meth-
ods are adopted to identify the genetic predisposition of 
T2DM, which primarily focuses on linkage peaks from 
family studies, candidate genes on a biological basis and 
genome-wide association analysis.

Family and twin studies have indicated 20–80% of 
inheritability of diabetes [14]. First-degree relatives of 
individuals with T2DM were three times more likely to 
develop the disease than individuals without a positive 
family history [14]. Studies have reported that individu-
als born to affected parents were more likely to develop 
T2DM [odds ratio (OR) = 6.1, 95% CI = 2.9–13] com-
pared to people with unaffected parents (OR = 3.4–3.5). 
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Although maternal and paternal diabetes conferred risk 
for developing diabetes, the Framingham offspring study 
reported that offspring with maternal diabetes had a 
slightly more chance for abnormal glucose tolerance than 
those with paternal diabetes (OR = 1.6, CI = 1.1–2.4) [1]. 
Multiple twin concordance studies in T2DM reported 
a higher concordance rate in monozygotic twins (OR: 
0.29–1.00) than in dizygotic twins (OR: 0.10–0.43), indi-
cating a significant genetic component of the disease [14].

A candidate gene is a gene whose chromosomal loca-
tion is associated with a trait of interest. Because of its 
location, the gene is suspected of causing the disease or 
other related phenotype [15]. Candidate gene association 
studies focussed on the association of pre-specified genes 
of interest and the disease. The genes that were found to 
be associated with T2DM include peroxisome prolifera-
tor-activated receptor gamma (PPARG​), insulin receptor 
substrate 1 (IRS1) and  IRS-2, potassium inwardly recti-
fying channel, subfamily J, member 11 (KCNJ11), Wolf-
ram syndrome 1 (wolframin) (WFS1), hepatocyte nuclear 
factor-1 alpha (HNF1A), HNF1 homeobox B (HNF1B) 
and  HNF4A [14]. The genes, including  Rap guanine 
nucleotide exchange factor 1 (RAPGEF1)  and  tumour 
protein 53 (TP53)  were identified using an algorithm 
that prioritized candidate genes for complex human 
traits based on trait-relevant functional annotation but 
had not been consistently replicated in later studies [4]. 
Other candidate genes are tyrosine-protein kinase (LYN), 
DENN domain-containing protein 1B (DENND1B), 
mitochondrial ribosomal protein (MRPL30)  3-hydroxy-
isobutyrate dehydrogenase (HIBADH) [16]. PPARG​ and 
KCNJ [11] were the most validated diabetes-associated 
genes identified through functional candidate analysis 
[17]. With the rapid improvements in the genotyping 

technology of SNPs and the Hap Map project, the meth-
ods for identifying susceptibility genes have changed dra-
matically [18]. GWAS identified more than 70 genetic 
variants associated with T2DM [4]. These gene variants 
were related to different metabolic pathways of the dis-
ease. Studies conducted among European communities 
have identified 41 SNPs associated with T2DM and found 
that genes associated with glucose homeostasis, insu-
lin pathway and pancreatic development pathways were 
the candidate genes associated with T2DM [19]. SNPs 
at high mobility group box 1 pseudogene 1 (HMG1L1)/
CCCTC-binding-like factor (CTCFL),  paired box  4 A4 
(PLXNA4),  cleavage-activating protein (SCAP), chr5p11 
and a novel locus at 13q12 at sarcoglycan gamma (SGCG) 
were associated with T2DM [20]. Table 1 provides a com-
prehensive list of marker–trait association of T2DM, 
and includes significant findings related to the genes of 
T2DM in the global population, including India. Table 2 
describes the functional classification of major genes 
related to T2DM and their related morbidity.

Genetic studies in the Indian population
South Asians have higher rates of T2DM compared 
to other ethnic populations. Migrant studies have also 
reported the same [17]. The most investigated func-
tional candidate genes in South Asians include PPARG​
, TCF7L2, insulin-like growth factor 2 MRNA-binding 
protein 2 (IG2BP2), adiponectin, C1Q and collagen 
domain containing (ADIPOQ) and alpha-ketoglutarate-
dependent dioxygenase (FTO) [4]. A study in Sri Lanka 
replicated the 36 SNPs associated with Europeans. Out 
of the 36 SNPs, 31 were significantly associated with 
T2DM. The strongest effects were seen at TCF7L2 and 
solute carrier family 30, member 8 (SLC30A8) [18]. The 

Search engines:  PubMed, Science Direct, Google and Google scholar. &The Key words: Genetics 
T2DM, SNPs, India, Global

Hit: 120 studies 

94 studies were possible

Abstracts were reviewed and selec�on 
based on inclusion and exclusion criteria

34 full ar�cles were found relevant and included in the review

Retrieval of full text ar�cles

Fig. 1  Flowchart of data extraction
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Ala gene of PPARG was found to lower the 2-h plasma 
glucose among the Caucasians, while no effect was 
seen among the populations in Chennai. Sanghera et al. 
identified this gene’s protective effect among the Sikh 
community of India [4]. A study conducted in seven geo-
graphically distinct areas of India explored 91 SNPs of 55 
candidate genes and identified five genes associated with 
T2DM such as TCF7L2 (rs7903146, rs12255372), insulin-
degrading enzyme (IDE) (rs1887922), haematopoieti-
cally expressed homeobox protein (HHEX) (rs1111875, 
rs5015480), ectonucleotide pyrophosphatase/phospho-
diesterase 1 ENPP1 (rs1044498) and FTO (rs9939609, 
rs3751812) [12]. These genes play a major role in the met-
abolic pathways of diabetes pathobiology. The study also 
identified an increased risk (OR = 2.44, 95% CI = 1.67–
3.59) when TCF7L2, HHEX, ENPP1 and FTO were com-
bined [14]. KCNJ11 rs5210 and potassium voltage-gated 
channel subfamily Q member 1 (KCNQ1) rs2237895 var-
iants were found to be significantly associated with risk 
of T2DM in the Indian population but were found insig-
nificant in the South Indian population [21, 22].

A protective-odds (OR = 0.28, 95% CI = 0.19–0.43) 
was identified with a genotypic combination of IDE, 
HHEX, ENPP1 and FTO among controls. A study con-
ducted among the Indo-European individuals in Delhi 
and Pune identified strong association at rs7903146 
of  TCF7L2  with OR 1.67 [16]. A study by Radha et  al. 
identified the association of rs4810424 and rs736823 of 
HNF1A gene with T2DM. Genome-wide studies have 
mapped a susceptibility locus for T2DM to 3q27, where 
ADIPOQ gene is situated. SNPs of this gene have been 
studied, and two SNPs, a silent T to G substitution in 
exon 2 and a G to T substitution in intron 2, were found 
to be associated in the Japanese population [20]. A study 
identified that + 10211T/G polymorphism in the adi-
ponectin gene was associated with T2DM in the Asian 
Indian population [23]. In Hyderabad, South India, a 
study mapped 3 SNPs associated with T2DM rs7903146, 
rs12255372 and rs11196205. Among them, rs7903146 
was more at risk for T2DM [24]. Initial European studies 
on the FTO gene identified rs9939609 as associated with 
high body mass index (BMI). In contrast, among South 
Indians, rs9939609 was associated with T2DM inde-
pendent of body mass index (BMI). TCF7L2 is the most 
widely studied gene, which has been positively associ-
ated with T2DM in Europeans [25]. The Chennai Urban 
Rural study showed similar results where rs12255372 and 
rs7903146 were associated with T2DM. The “T” allele of 
these SNPs showed association with non-obese partici-
pants. The variants rs9939609 T/A and rs7193144 C/T of 
FTO were associated with obesity in Asian Indians [26]. 
Recently, six variants—rs9940128, rs7193144, rs8050136 
(intron 1), rs918031, rs1588413 (intron 8) and rs11076023 

(3´UTR (unique transaction reference number)), across 
three regulatory regions of the FTO gene with obesity 
and T2D in a South Indian population showed that the 
rs9940128 A/G, rs1588413 C/T and rs11076023 A/T var-
iants were associated with T2D but not with obesity [26]. 
The C/A variant of rs8050136 was associated with T2DM 
mediated through obesity. The haplotype “ACC​TCT​” of 
this SNP conferred a lower risk of T2DM in the South 
Indian population [26].

A study in Kerala assessed SNPs of Retinoic acid-induc-
ible gene (STRA6) (rs974456, rs351224, rs736118 and 
rs4886578), retinol-binding protein 4 (RBP4) (rs3758538, 
rs36014035 and rs34571439) and glucose transporter 
type 4 (GLUT4) (rs5412, rs5418 and rs5435). The SNPs of 
STRA6 were associated with T2DM, while no association 
was found in RBP4 and GLUT4 17]. Figure 2 shows the 
SNPs identified across the states of India.

Genetic distribution of T2DM across regions of the world
Genetic studies in diverse populations are essential for 
several reasons. Identifying a population-specific vari-
ant associated with T2DM can help identify subjects at 
high risk in that population who could be selected for 
lifestyle or therapeutic, preventive intervention. Further, 
discovering causal genes in these populations can expand 
our understanding of T2DM or lead to a potential thera-
peutic target that could be valuable even in populations 
where the genetic variant that prompted the discovery is 
not present [14].

European region
The initial studies on the genes associated with T2DM 
were conducted among Europeans [27]. A study by Bar-
roso et  al. analysed 71 candidate genes based on their 
known or putative role in glucose metabolism. The 
selected genes were subdivided into three broad groups 
based on their function such as (1) genes primarily 
involved in pancreatic β-cell function; (2) genes primar-
ily influencing insulin action and glucose metabolism 
in the main target tissues, muscle, liver and fat; and (3) 
other genes [28]. Twenty SNPs in 11 different genes 
showed statistically significant association with disease 
status (p < 0.05). The strongest statistical evidence for dis-
ease association was for genes such as son of sevenless 
homologue 1 (SOS1), phosphoinositide-3-kinase regula-
tory subunit 1 (PIK3R1), ATP-binding cassette subfam-
ily C member 8 (ABCC8), insulin receptor (INSR) and 
KCNJ11 [28]. GWAS among the Europeans have iden-
tified T2DM susceptibility loci at PPARG​ (rs1801282) 
[29], KCNJ11 (rs5219) [30], WFS1 (rs10010131) [31], 
IGF2BP2 (rs4402960) [32], SLC30A8 (rs13266634) 
[33], CDKN2A/B (rs10811661) [33, 34], HHEX/IDE 
(rs1111875) [32], FTO (rs8050136) [35], neurogenic locus 
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notch homolog protein 2 (NOTCH2) (rs10923931) [36], 
thyroid adenoma-associated (THADA) (rs7578597) [36], 
KCNQ1 (rs231362) [36], prospero homeobox protein 1 
(PROX1) (rs340874) [36], B cell lymphoma/leukaemia 
11A (BCL11A) (rs243021) [30], glucokinase regulator 
(GCKR) (rs780094) [37], TCF7L2 (rs7903146) [38]. The 
Pro12Ala variant of PPARG showed protective effects in 
Finnish, Czech and Scottish ancestries [39].

African regions
Pirie et  al. concluded that the risk polymorphisms 
identified in Caucasian populations were not associ-
ated with type 2 diabetes in South African subjects of 
Zulu descent, except for rs7903146 (TCF7L2) [40]. The 
study analysed rs1801282 (PPARG​), rs5215 (KCNJ11), 
rs12255372 (TCF7L2), rs7903146 (TCF7L2) rs9939609 
(FTO) and rs1111875 (HHEX) which were found to be 
significant among the European ancestry. At the locus 
TCF7L2, homozygosity for the C allele (CC) was less 

frequent in the subjects with type 2 diabetes. Heterozy-
gosity (CT) at rs7903146 (TCF7L2) occurred more 
frequently in the subjects with type 2 diabetes. No dif-
ference was found between subjects with type 2 diabe-
tes and controls for the TT genotype at rs7903146 [40]. 
This variant of TCF7L2 was also associated with T2DM 
in the Western African population [40, 41].

Furthermore, Pirie et al. identified that the Africans 
have only a homozygous variant of KCJN11, unlike 
American and European ancestry with heterozygous 
and homozygous variants. The K variant found signifi-
cant in European ancestry was rare or non-existent and 
absent in the Africans [30, 40]. A genome-wide associ-
ation study of 5000 Africans from Ghana, Nigeria and 
Kenya identified a novel locus zinc finger RANBP2-
type-containing 3 (ZRANB3) gene for T2DM [42]. 
ZRANB3 is a protein-coding gene with nucleic acid 
binding and endonuclease activity. The ZRANB3 tran-
script targets nonsense-mediated decay (NMD) and is 

Fig. 2  Mapping of SNPs associated with T2DM in India
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expressed in tissues relevant to T2D, including adipose 
tissue, skeletal muscle, pancreas, and liver [42].

Studies among African Americans showed consid-
erable differences in genetic and non-genetic risk fac-
tors (including lifestyle and behavioural factors) with 
the native African population. African Americans had 
approximately 20% European admixture [41]. Studies 
among African Americans showed 30% to 40% higher 
risk for T2DM among those with the highest tertile of 
African ancestry [43].

American continent
A study by Mercader & Florez, 2017 among the Latino 
population, solute carrier family 16 Member 11 
(SLC16A11) (rs77086571), HNF1A (rs483353044) and 
insulin-like growth factor (rs149483638) was found to 
be significantly associated with T2DM [44]. This vari-
ant of insulin-like growth factor was present at approxi-
mately 17% in the Mexican population but was rare in 
European and other populations [44]. The rs483353044 
of HNF1A gene was associated with T2DM and was 
found in 0.36% of individuals without T2D but in 
2.1% of participants with the disease [24]. Among the 
Mexican Americans, ATP-binding cassette trans-
porter (ABCA1), adrenoceptor beta 3 (ADRB3), cal-
pain 10 (CAPN10), CDKAL1, CDKN2A/2B, C-reactive 
protein (CRP), engulfment and cell motility protein 1 
(ELMO1), FTO, HHEX, IGF2BP2, insulin receptor sub-
strate 1 (IRS1), zinc finger protein 1 (JAZF1), KCNQ1, 
LOC387761 (a hypothetical gene), lymphotoxin alpha 
(LTA), neurexophilin 1 (NXPH1), sirtuin 1 (SIRT1), 
SLC30A8, TCF7L2  and tumour necrosis factor-alpha 
(TNF-α) genes were found to be associated with T2DM 
[44]. A multi-ethnic study (European Americans, Afri-
can Americans, Latinos, Hawaiians, Japanese Ameri-
cans) in America identified rs7578597 of THADA as 
positively associated with European Americans and 
Native Hawaiians (OR = 1.65, 95% CI = 1.01–2.70) 
[45]. The rs1801282 of the PPARG​ gene was associated 
with African Americans. The rs4402960 of IGF2BP2 
was associated with African Americans and Japanese 
Americans. rs10010131 of wolframin ER transmem-
brane glycoprotein (WFS1) was associated with Latin 
Americans and Hawaiians. The most commonly stud-
ied TCF7L2 (rs7903146) was associated with all ethnic 
groups except the Hawaiians [45].

Eastern Mediterranean
A study conducted in Jordan’s Circassian and Chechen 
communities identified two novel SNPs at Jagged 
canonical Notch ligand 1 (JAGI) (rs6134031) and 
MLX-interacting protein-like (MLXIP) (rs4758690) 

[46]. These two were tested among the Europeans. The 
SNP, rs6134031  in the Jordan analysis, demonstrated a 
nominally significant association with T2DM among 
the Europeans (P = 0.012) and the same direction of 
effect. Serum adiponectin and SNPs in ADIPOQ gene 
were found to be associated with T2DM in Jordanian 
population in which the serum adiponectin lowered the 
risk for prediabetes. At the same time, the GT geno-
type of rs1501299 increased the risk of prediabetes as 
well as the TT genotype [47]. A recent study among 
the Arab population, where consanguineous marriages 
are more, has identified ribosomal protein S6 kinase 
B1 (RPS6KA1)  gene, rs487321 (recessive, intronic, 
calcium-dependent secretion activator (CADPS)), 
rs707927 (additive, intronic in  valyl-tRNA synthetase 
(VARS)) and rs12600570 (additive, intronic,  DExH-
Box Helicase 58 (DHX58)). Of these three suggestive 
markers, the  CADPS  and VARS  are associated with 
increased fasting plasma glucose [48]. A systematic 
review of the Iranian population identified KCNJ11 and 
TCF7L2 which are strongly associated with T2DM [49].

Western Pacific region
A study analysed 14 SNPs at HHEX, CDKAL1, cyclin-
dependent kinase inhibitor 2B CDKN2B, SLC30A8, 
KCNJ11, IGF2BP2, PPARG, TCF7L2, FTO, KCNQ1, insu-
lin receptor substrate 1 (IRS1), GCKR, ubiquitin-conju-
gating enzyme E2 D2 (UBE2E2), C2 calcium-dependent 
domain-containing 4A (C2CD4A/B) in the Japanese pop-
ulation [50]. Among the 14 SNPs from 14 loci, 4 SNPs 
(rs7756992 in  CDKAL1, rs10811661 near  CDKN2B, 
rs13266634 in  SLC30A8 and rs2237892 in  KCNQ1) 
were found to be significantly associated with T2DM. 
The association of rs2237892 in KCNQ1 was the strong-
est in the Japanese sample, and rs4402960 in  IGF2BP2, 
rs2943641 near  IRS1, rs780094 in  GCKR, rs7172432 
in  C2CD4A/B and rs5219 in  KCNJ11  showed a posi-
tive association with T2DM. In contrast, no association 
was seen in rs7903146  (TCF7L2), rs1111875 (HHEX), 
rs1801282 (PPARG), rs8050136  (FTO) and rs7612463 
(UBE2E2) [51], while a genome-wide study among 
the Australian aboriginals identified association with 
TCF7L2, potassium inwardly rectifying channel, subfam-
ily J, member 6 (KCNJ6) and melanocortin 4 receptor 
(MC4R) [52].

Conclusions
Much of our efforts on diabetes prevention are focused 
on modifiable behavioural risk factors such as physi-
cal inactivity, unhealthy diet and tobacco use. In epide-
miological studies, the high-risk population is identified 
at the community level through risk scores consisting 
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of behavioural risk factors and anthropometric meas-
ures such as high body mass index and increased waist 
circumference. More often, the pathophysiological pro-
cess would have begun once these risk factors set it. The 
primarily advocated lifestyle modification for T2DM 
prevention requires positive reinforcement and a condu-
cive environment for implementation. Although lifestyle 
modification strategies have been shown to have mod-
erate long-term effects on diabetes prevention, it often 
requires a favourable non-obesogenic environment for 
adherence. In this context, understanding the genetic 
determinants can identify the risk groups prior to the 
onset of these risk factors.

In this review, we found commonalities in marker–trait 
associations of specific genes to diabetes (e.g. PPARG, 
TCFL2) in specific geographical regions. However, it can-
not be generalized to all populations as these were found 
to be population specific.

The SNP  rs7903146 of the TCF7L2 gene is the most 
significant genetic marker associated with type 2 diabe-
tes risk in all the ethnicities. This gene is a transcription 
factor that influences the transcription of several genes, 
thereby exerting a large variety of functions within the 
cell. This might be why the gene is significant in almost 
all the ethnic groups. PPARG is yet another gene found 
to be significant in all ethnic groups which regulates 
fatty acid storage and glucose metabolism. Studies 
have shown that free fatty acids mediate insulin resist-
ance and impaired glucose tolerance associated with 
central obesity. PPARG has shown both protective and 
risk associations with T2DM in several regions. Animal 
studies have shown that PPARG protects from high-fat 
diet-induced insulin resistance. A Pro12Ala polymor-
phism has been detected in humans. This polymor-
phism might cause a reduction in the transcriptional 
activity of PPARgamma, leading to decreased insulin 
resistance and decreased risk of type 2 diabetes. This 
substantiates that the expression of genes is population 
specific. FTO gene is associated with obesity, and it has 
been identified as a risk for the development of T2DM 
in Indians, Europeans, Africans, Western Pacific and 
American regions. ABCC8 gene is risky in European as 
well as Indian populations. Genome-wide association 
studies have reported that IGF2BP2 disrupts insulin 
secretion. IGF2BP2 was a risk for T2DM in the West-
ern Pacific, Americas and European ethnicities with no 
significant role in the Indian population. KCJN11 was 
associated with T2DM among Western Pacific, Africa 
and European region but not in Indian population.

India has the second-largest number of people living 
with diabetes, contributing to high mortality and disabil-
ity adjusted life years. In our review, we could find evi-
dence of marker–trait associations with type 2 diabetes 

mellitus from only nine states out of 29 states and seven 
Union Territories in India. The Indian State of Kerala, 
despite having the highest prevalence of diabetes in the 
country, has reported only one study on genetic traits 
of type 2 diabetes research [15]. This warrants future 
research on genetic markers of diabetes in India and 
other regions for developing and identifying biomarkers 
for screening, prevention and precision medicine.

One of the major limitations we found was that the 
studies were conducted in non-representative groups 
within geographical regions, with inherent limitations 
such as smaller sample sizes or looking into only spe-
cific marker–trait associations. Genome-wide associa-
tion studies using data from large prospective studies are 
required worldwide to establish the genetic determinants 
of type 2 diabetes mellitus. This urgently needs to be 
done in regions with the highest burden of mortality and 
morbidity related to T2DM. We also need future research 
to understand genes’ special effect and interaction in pre-
dicting diabetes mellitus and other comorbidities leading 
to the highest burden of diseases.
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