
microorganisms

Article

Utilizing Amino Acid Composition and Entropy of Potential
Open Reading Frames to Identify Protein-Coding Genes

Katelyn McNair 1,* , Carol L. Ecale Zhou 2, Brian Souza 3, Stephanie Malfatti 3 and Robert A. Edwards 1,4,*

����������
�������

Citation: McNair, K.; Ecale Zhou,

C.L.; Souza, B.; Malfatti, S.; Edwards,

R.A. Utilizing Amino Acid

Composition and Entropy of

Potential Open Reading Frames to

Identify Protein-Coding Genes.

Microorganisms 2021, 9, 129.

https://doi.org/10.3390/

microorganisms9010129

Received: 30 November 2020

Accepted: 5 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational Sciences Research Center, San Diego State University, 5500 Campanile Drive, San Diego,
CA 92182, USA

2 Lawrence Livermore National Laboratory, Global Security Computing Applications, Livermore, CA 94550,
USA; zhou4@llnl.gov

3 Lawrence Livermore National Laboratory, Biological Sciences Research Division, Livermore, CA 94550, USA;
souza21@llnl.gov (B.S.); malfatti3@llnl.gov (S.M.)

4 College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
* Correspondence: deprekate@gmail.com (K.M.); raedwards@gmail.com (R.A.E.)

Abstract: One of the main steps in gene-finding in prokaryotes is determining which open reading
frames encode for a protein, and which occur by chance alone. There are many different methods
to differentiate the two; the most prevalent approach is using shared homology with a database of
known genes. This method presents many pitfalls, most notably the catch that you only find genes
that you have seen before. The four most popular prokaryotic gene-prediction programs (GeneMark,
Glimmer, Prodigal, Phanotate) all use a protein-coding training model to predict protein-coding
genes, with the latter three allowing for the training model to be created ab initio from the input
genome. Different methods are available for creating the training model, and to increase the accuracy
of such tools, we present here GOODORFS, a method for identifying protein-coding genes within
a set of all possible open reading frames (ORFS). Our workflow begins with taking the amino acid
frequencies of each ORF, calculating an entropy density profile (EDP), using KMeans to cluster the
EDPs, and then selecting the cluster with the lowest variation as the coding ORFs. To test the efficacy
of our method, we ran GOODORFS on 14,179 annotated phage genomes, and compared our results
to the initial training-set creation step of four other similar methods (Glimmer, MED2, PHANOTATE,
Prodigal). We found that GOODORFS was the most accurate (0.94) and had the best F1-score (0.85),
while Glimmer had the highest precision (0.92) and PHANOTATE had the highest recall (0.96).

Keywords: phage; genome; gene; annotation; machine learning; clustering; prediction

1. Introduction

The first genome ever sequenced was that of Bacteriophage MS2 [1]. Twenty years later,
the first bacterial genome, Haemophilus influenza, was sequenced, and with it came the need
to computationally predict where protein-coding genes occur in prokaryotic genomes [2].
This gave rise to the first of the gene annotations tools, GeneMark [3], Glimmer [4], and
CRITICA [5], a decade later Prodigal [6], and most recently PHANOTATE [7] for viral
genomes. One thing each of these tools shares in common is the necessity for a training
set of good genes—genes that are highly likely to encode proteins, and that the software
can use to learn the features that segregate coding open-reading frames (ORFs) from
noncoding ones. GeneMark and GLIMMER, and to an extent Prodigal and PHANOTATE,
all require precomputed gene models to find similar genes within the input genome, and
the better these training models, the better the predictions that each tool makes. Both
GeneMark and CRITICA rely on previously annotated genomes to predict genes in the
input query genome. GeneMark selects one of its precomputed general heuristic models
based on the amino acid translation table and GC content of the input genome. CRITICA
uses the shared homology between the known genes and the input genome, as well as

Microorganisms 2021, 9, 129. https://doi.org/10.3390/microorganisms9010129 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-9036-3259
https://orcid.org/0000-0001-8383-8949
https://doi.org/10.3390/microorganisms9010129
https://doi.org/10.3390/microorganisms9010129
https://doi.org/10.3390/microorganisms9010129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9010129
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/9/1/129?type=check_update&version=2

Microorganisms 2021, 9, 129 2 of 11

non-comparative information such as contextual hexanucleotide frequency. In contrast,
GLIMMER, Prodigal, and PHANOTATE create gene models from only the input query
genome, which removes the dependence on reference data. Each uses a different method to
select ORFs for inclusion in a training-set, on which a gene model is built. GLIMMER builds
its training-set from the longest (and thus most likely to be protein-encoding) ORFs, which
are predicted by its LONGORFS program. Prodigal uses the GC frame plot consensus
of the ORFs, and performs the first of its two dynamic programming steps to build a
training-set. PHANOTATE creates a training-set by taking all the ORFs that begin with the
most common start codon ATG.

An additional method, which has subsequently been added as an option to LON-
GORFS, is the Multivariate Entropy Distance (MED2) algorithm [8], which finds the entropy
density profiles (EDP) of ORFs and compares them to precomputed reference EDP profiles
for coding and noncoding ORFs. The EDP of an ORF is a 20-dimensional vector S = {si} of
the entropy of the 20 amino acid frequencies pi, and is defined by:

si =
−1
H

pilogpi where H = −
20

∑
j=1

pjlog pj (1)

This approach relies on the coding ORFs having a conserved amino acid composition
that is different from the noncoding ORFs. This differential can be seen when comparing
the observed amino acid frequency of known phage protein coding genes to the expected
frequencies (Figure 1A), which are based purely on the percent AT|GC content of the
genome. Since coding ORFs have a bias towards certain amino acids, and noncoding ORFs
have frequencies approximately dependent on the nucleotide composition, each will cluster
separately in a 20-dimensional amino acid space (Figure 1B).

Microorganisms 2021, 9, x FOR PEER REVIEW 2 of 11

GeneMark and CRITICA rely on previously annotated genomes to predict genes in the
input query genome. GeneMark selects one of its precomputed general heuristic models
based on the amino acid translation table and GC content of the input genome. CRITICA
uses the shared homology between the known genes and the input genome, as well as
non-comparative information such as contextual hexanucleotide frequency. In contrast,
GLIMMER, Prodigal, and PHANOTATE create gene models from only the input query
genome, which removes the dependence on reference data. Each uses a different method
to select ORFs for inclusion in a training-set, on which a gene model is built. GLIMMER
builds its training-set from the longest (and thus most likely to be protein-encoding) ORFs,
which are predicted by its LONGORFS program. Prodigal uses the GC frame plot consen-
sus of the ORFs, and performs the first of its two dynamic programming steps to build a
training-set. PHANOTATE creates a training-set by taking all the ORFs that begin with
the most common start codon ATG.

An additional method, which has subsequently been added as an option to LON-
GORFS, is the Multivariate Entropy Distance (MED2) algorithm [8], which finds the en-
tropy density profiles (EDP) of ORFs and compares them to precomputed reference EDP
profiles for coding and noncoding ORFs. The EDP of an ORF is a 20-dimensional vector S
= {si} of the entropy of the 20 amino acid frequencies pi , and is defined by: 	ݏ௜ ൌ െ1ܪ ܪ				where			௜݌݃݋௜݈݌ ൌ െ෍ ௝ଶ଴௝ୀଵ݌	݃݋௝݈݌ (1)

This approach relies on the coding ORFs having a conserved amino acid composition
that is different from the noncoding ORFs. This differential can be seen when comparing
the observed amino acid frequency of known phage protein coding genes to the expected
frequencies (Figure 1A), which are based purely on the percent AT|GC content of the
genome. Since coding ORFs have a bias towards certain amino acids, and noncoding ORFs
have frequencies approximately dependent on the nucleotide composition, each will clus-
ter separately in a 20-dimensional amino acid space (Figure 1B).

(A) (B)

Figure 1. Visualizing the amino acid composition of open reading frames. (A) Comparison of average amino acid occur-
rence across 14,179 phage genomes. Points correspond to the 20 different amino acids and are labeled according to their
International Union of Pure and Applied Chemistry (IUPAC) single letter abbreviations. The observed frequencies come
from the annotated genome consensus gene calls, while the expected come from the overall codon probabilities calculated
from the GC content. Amino acids above the diagonal identity line occur more frequently than expected in coding open
reading frames (ORFs), and those below it occur less frequently than expected, which alludes to a coding bias signal. (B)
The averaged amino acid frequencies of coding ORFs change based on the GC content. The previous consensus calls were
averaged for each genome and then plotted using principle component analysis (PCA), and are colored based on the GC

Figure 1. Visualizing the amino acid composition of open reading frames. (A) Comparison of average amino acid
occurrence across 14,179 phage genomes. Points correspond to the 20 different amino acids and are labeled according to
their International Union of Pure and Applied Chemistry (IUPAC) single letter abbreviations. The observed frequencies
come from the annotated genome consensus gene calls, while the expected come from the overall codon probabilities
calculated from the GC content. Amino acids above the diagonal identity line occur more frequently than expected in
coding open reading frames (ORFs), and those below it occur less frequently than expected, which alludes to a coding bias
signal. (B) The averaged amino acid frequencies of coding ORFs change based on the GC content. The previous consensus
calls were averaged for each genome and then plotted using principle component analysis (PCA), and are colored based on
the GC content of the genome. The (red) lower GC content genomes tend to favor the amino acids (FYNKI) with AT-rich
codons, while the yellow high-GC content genomes tend to favor the amino acids (PRAGW) with GC-rich codons.

Microorganisms 2021, 9, 129 3 of 11

MED2 uses these observed amino acid frequency EDPs from known coding/noncoding
genes, in the form of average “centers”, to classify potential ORFs in other genomes. One
problem that arises is that the observed amino acid frequencies, and the EDPs derived from
them, change based on the AT/GC content of a genome (Figure 1B). This is because the
codon triplets for amino acids do not change even when the probability of those codons
occurring changes due to AT/GC content. The way MED2 overcomes this is by using
two different sets of coding/noncoding references, one for low-GC content genomes and
one for normal and high-GC content genomes. Aside from the complication of forcing a
discrete scale onto continuous data, there is also the issue that the amino acid composition
can change independent of GC content. A good example of this is the Propionibacterium
phages, which are the darker orange points at (4,1) in Figure 1B that cluster with the yellow
high-GC content genomes despite having a normal GC content. Another problem with
reference-based gene prediction, and the pitfall of all supervised learning, is that only
genes similar to those already known are predicted. As such, we sought to implement a
reference-free method for identifying protein-coding genes within a stretch of DNA, herein
titled GOODORFS. Our approach takes the EDP metric, and expands on it by adding the
three stop codons and the ORF length. However, rather than using reference EDP profiles,
we use unsupervised learning (namely KMeans) to cluster the ORFs, and then denote the
cluster with the lowest variation as the coding ORFs.

2. Materials and Methods

The GOODORFS program, along with the data, can be obtained from the GitHub
repository (http://github.com/deprekate/goodorfs). Currently, GOODORFS is available
as Python3 code with the dependencies NUMPY [9] and scikit-learn [10]. PCA transforma-
tions were performed using the decomposition package from scikit-learn, and plots were
created using Matplotlib [11]. Points were plotted in an interlaced pattern based on either
the stop codon location or the genome ID, rather than by categorical legend order. The
alpha transparency was adjusted to suit individual plots.

2.1. Data

A list of 14,254 phage genome IDs was downloaded from the October 2019 snapshot of
the Millard Lab bacteriophage database [12], and subsequently the corresponding FASTA
files were retrieved from GenBank. The genome sizes range from 1417 bp to 497,513
bp, with a mean length of 58,497 bp ± 53,767 bp. From this dataset, we removed 55
genomes that came back empty, and 20 that belong to Mollicutes phages (9 Spiroplasma,
8 Mycoplasma, 3 Acholeplasma) that use an alternative codon translation table, leaving
us with a total of 14,179 phage genomes. Since genome annotations in GenBank are quite
often incomplete or incorrect, we reannotated these genomes using the four available
annotation programs (GeneMarkS, version 4.32; Glimmer3, version 3.02; Prodigal, version
2.6.3; and PHANOTATE, version 1.5.0), and to ensure reliable predictions, we only included
predicted genes that were called by two or more programs. GeneMarkS was run with
default parameters and the –phage option. Glimmer was run using the supplied g3-from-
scratch script, which creates a gene model from the input genome sequences using the
LONGORFS program. For Glimmer, we changed the default minimum gene length from
90 bp to 87 bp, to match the other three programs’ gene length default settings. This is
because Glimmer does not include the three nucleotides of the stop codon in the calculation
of gene length, unlike the three other tools. Prodigal was run with default parameters, with
a change to the source code lowering the MIN_SINGLE_GENOME value from 20,000 to 1,
to allow it to run on genomes smaller than 20 k bases. PHANOTATE was used with all
default settings.

http://github.com/deprekate/goodorfs

Microorganisms 2021, 9, 129 4 of 11

2.2. Algorithm

The GOODORFS algorithm, shown in Figure 2, is comprised of four main steps:
finding the ORFS, calculating the ORF EDPs, clustering, and choosing the cluster that
contains the coding ORFs.

Microorganisms 2021, 9, x FOR PEER REVIEW 4 of 11

2.2. Algorithm
The GOODORFS algorithm, shown in Figure 2, is comprised of four main steps: find-

ing the ORFS, calculating the ORF EDPs, clustering, and choosing the cluster that contains
the coding ORFs.

Figure 2. Flowchart of the GOODORFS workflow. After supplying GOODORFS with a fasta file that contains the genome
in question, the four major steps are finding the ORFs, calculating the EDPs of the ORFs, clustering the EDPs, and choosing
the cluster that contains the good (coding) ORFs.

2.2.1. Finding ORFS
For each genome, all potential ORFs were found in both frames by finding any start

codon (ATG, GTG, TTG) and then following it to a stop codon (TGA, TAA, TAG), and
only taking ORFs with lengths equal to or greater than 90 bp. We also include ORFs that
run off either end without requiring either a start or stop codon, setting the start/stop po-
sition to the first/last available codon. This usage of multiple start codons per single stop
codon leads to essentially having the “same” ORF, just alternate truncated versions, in our
data. This was done because the correct start codon was not known, but the assumption
was made that during clustering, the ORFs with correct start positions will cluster sepa-
rately from those with incorrect start positions. We do, however, limit the number of these
“redundant” ORFs in the data, by only including the first half (going from the outer-
most/furthest start codon in towards the stop codon) of the alternate start position’s ORFs.
This was because some ORFs would have hundreds of alternate start positions, whether
due to extremely long genes (as in the case of tape-measure proteins or RNA polymerase,
which can be thousands of amino acids long), or shorter genes that have a repeated motif
that includes start codons. Additionally, sequencing or assembly errors, where the same
codon is repeated hundreds of times, can create an ORF that is composed entirely of start
codons. Each of these alternate start positions all belong to the same stop codon; therefore,
the term “unique” ORF can be thought of as one specified by a single unique stop codon,
and thus, all alternate start positions are essentially the same ORF.

2.2.2. Calculating the EDPs
Each ORF was translated using the Standard Code (GenBank’s translation Table 1)

[13] into the 20 amino acids (ARNDCEQGHILKMFPSTWYV) and the 3 stop codons am-
ber (+), ochre (#), umber (*). The 23 characters were counted and then divided by the total
to get the frequencies, and the EDP was calculated according to Equation (1). To the EDP
vector we also added a 24th element, the length of the ORF. Before clustering, we normal-
ized the features of our data using the StandardScaler function from scikit-learn.

Figure 2. Flowchart of the GOODORFS workflow. After supplying GOODORFS with a fasta file that contains the genome
in question, the four major steps are finding the ORFs, calculating the EDPs of the ORFs, clustering the EDPs, and choosing
the cluster that contains the good (coding) ORFs.

2.2.1. Finding ORFS

For each genome, all potential ORFs were found in both frames by finding any start
codon (ATG, GTG, TTG) and then following it to a stop codon (TGA, TAA, TAG), and
only taking ORFs with lengths equal to or greater than 90 bp. We also include ORFs that
run off either end without requiring either a start or stop codon, setting the start/stop
position to the first/last available codon. This usage of multiple start codons per single
stop codon leads to essentially having the “same” ORF, just alternate truncated versions,
in our data. This was done because the correct start codon was not known, but the
assumption was made that during clustering, the ORFs with correct start positions will
cluster separately from those with incorrect start positions. We do, however, limit the
number of these “redundant” ORFs in the data, by only including the first half (going
from the outermost/furthest start codon in towards the stop codon) of the alternate start
position’s ORFs. This was because some ORFs would have hundreds of alternate start
positions, whether due to extremely long genes (as in the case of tape-measure proteins or
RNA polymerase, which can be thousands of amino acids long), or shorter genes that have
a repeated motif that includes start codons. Additionally, sequencing or assembly errors,
where the same codon is repeated hundreds of times, can create an ORF that is composed
entirely of start codons. Each of these alternate start positions all belong to the same stop
codon; therefore, the term “unique” ORF can be thought of as one specified by a single
unique stop codon, and thus, all alternate start positions are essentially the same ORF.

2.2.2. Calculating the EDPs

Each ORF was translated using the Standard Code (GenBank’s translation Table 1) [13]
into the 20 amino acids (ARNDCEQGHILKMFPSTWYV) and the 3 stop codons amber (+),
ochre (#), umber (*). The 23 characters were counted and then divided by the total to get
the frequencies, and the EDP was calculated according to Equation (1). To the EDP vector
we also added a 24th element, the length of the ORF. Before clustering, we normalized the
features of our data using the StandardScaler function from scikit-learn.

Microorganisms 2021, 9, 129 5 of 11

Table 1. Comparison of various performance metrics for GOODORFS and four other similar methods.
The listed values are means across all 14,179 genomes, except for the number of genomes failed,
which is the number of genomes that had F1-scores lower than 0.1. All values are rounded up to the
nearest significant digit.

GOODORFS LONGORFS MED2 * Phanotate * Prodigal

precision 0.79 0.92 0.60 0.28 0.65
recall 0.90 0.39 0.56 0.96 0.92

accuracy 0.94 0.89 0.87 0.58 0.65
F1-score 0.83 0.53 0.55 0.43 0.75

genomes failed 32 49 1139 0 0
runtime (sec) 93 1 1 11 1

* For PHANOTATE and Prodigal only the initial training set creation step is run, and not the entire gene-finding
algorithm.

2.2.3. Clustering

Clustering was performed using the KMeans function (default parameters) from scikit-
learn with three clusters for genomes with less than 450 unique ORFs, and four clusters
for those with more. In order to control for the stochasticity of KMeans, which is not a
deterministic algorithm, one thousand models were created, and the model with the lowest
inertia was kept.

2.2.4. Choosing a Cluster

To predict which cluster contained the coding ORFs, we calculated the mean absolute
deviation (MAD) of the points, excluding the ORF length values, summing the remaining
23 elements, and selected the one with the lowest value. The ORF length feature is excluded
because even though it helps to resolve clusters, the coding ORFs tend to have a larger
variance in their lengths, which biases the MAD sums. Even by limiting the number of
alternate start sites per ORF included into the data, quite often clustering would assign all
of these same ORFs to their own cluster. To overcome this, if a cluster was composed of
less than 5% of the total unique ORFs in the dataset, that cluster and the next lowest MAD
cluster were merged and selected as the coding cluster. This value was chosen because
without this cutoff there were 193 genomes that failed (F1 < 0.1), and we noticed that many
of these had an unusually low percent of unique ORFs. The mean percent of unique ORFs
was 4.0%, which we rounded up to 5%. From the ORFs of the predicted coding cluster, we
took the longest alternate truncation for each unique ORF and added it to the output set of
good ORFs.

2.3. Performance Analysis

The MED2 program was run with all the default values except with a change in
the source code of minimum ORF length from 90 bp to 87 bp, because like Glimmer, it
does not include the stop codon triplet in the ORF length calculation. We only ran the
MED2 algorithm, and not the Translation Initiation Sites (TISModel) program, which
uses Ribosomal binding site motifs to further refine the MED2 ORF predictions. The
LONGORFS program was run during the Glimmer consensus annotation step, using the
parameters above. Both Prodigal and PHANOTATE do not have functionality to log the
set of training genes created, so a single line was added to the source code of each repo
to print out the stop codon (which is a unique identifier) of each gene in the training set.
The diff patch files to make this change are available in the GOODORFS repo, and can be
applied via the command git apply.

3. Results and Discussion

We began our work by taking the previously published EDP metric, but expanded it to
also include the three stop codons, amber (+), ochre (#), and umber (*). We also appended
the length of the ORF to the vector. The purpose of this was two-fold: First, the EDP

Microorganisms 2021, 9, 129 6 of 11

metric loses informational content when converting from amino acid counts to frequencies.
Certainly, a short ORF with a given frequency coding bias is less significant than a much
larger ORF with the same frequency bias, since the latter maintains that bias over many
more codons. Second, the ORF length bolsters the clustering step, since coding ORFs are
generally longer than noncoding ones (for our dataset, the mean lengths were 595 bp and
345 bp, respectively).

To demonstrate our approach, we took the representative genome, Caulobacter phage
CcrBL9 [14], chosen since it is the largest genome in our dataset that has a high GC content
(>60%), so it will have significantly more noncoding ORFs than coding, which allows for
visualizing all of the categories in Figure 3. We then found all the potential ORFs in the
genome, calculated their 24-dimensional EDPs, and used PCA analysis to plot them in
2 dimensions (Figure 3A). The coding ORFs (blue) and the noncoding ORFs (red) cluster
separately, and this same pattern is observed across all other genomes.

Microorganisms 2021, 9, x FOR PEER REVIEW 6 of 11

3. Results and Discussion
We began our work by taking the previously published EDP metric, but expanded it

to also include the three stop codons, amber (+), ochre (#), and umber (*). We also ap-
pended the length of the ORF to the vector. The purpose of this was two-fold: First, the
EDP metric loses informational content when converting from amino acid counts to fre-
quencies. Certainly, a short ORF with a given frequency coding bias is less significant than
a much larger ORF with the same frequency bias, since the latter maintains that bias over
many more codons. Second, the ORF length bolsters the clustering step, since coding
ORFs are generally longer than noncoding ones (for our dataset, the mean lengths were
595 bp and 345 bp, respectively).

To demonstrate our approach, we took the representative genome, Caulobacter phage
CcrBL9 [14], chosen since it is the largest genome in our dataset that has a high GC content
(>60%), so it will have significantly more noncoding ORFs than coding, which allows for
visualizing all of the categories in Figure 3. We then found all the potential ORFs in the
genome, calculated their 24-dimensional EDPs, and used PCA analysis to plot them in 2
dimensions (Figure 3A). The coding ORFs (blue) and the noncoding ORFs (red) cluster
separately, and this same pattern is observed across all other genomes.

(A) (B)

Figure 3. (A) The amino acid frequency EDPs of coding and noncoding ORFs for the representative genome Caulobacter
phage cluster separately. All potential ORFs were found, taking only the longest (i.e., the first outermost available start
codon) truncation, finding the amino acid frequencies, coloring them according to whether they are in the consensus an-
notations (coding), and then plotting them in a PCA. (B) The same potential ORFs from the previous figure, except with
the noncoding ORFs colored according to their offset in relation to the coding frame (0-, 1, 2, 1-, 2-), or intergenic (IG) if
they do not overlap with a coding ORF. The projections for the amino-acids are labeled according to the single letter
abbreviations, while the three stop codons amber (+), ochre (#), umber (*) are labeled according to their symbols.

Initially we began using KMeans with two clusters, coding and noncoding. This
worked well for genomes with average and low GC contents, but did not work well on
high-GC content genomes (mean F1-scores were 0.72 and 0.49, respectively). This is be-
cause the probability of encountering a stop codon is lower in those with a high GC con-
tent, and so they have about twice as many noncoding ORFs as coding (Figure S1). This
can be seen in Figure 3A, where the red noncoding ORFs far outnumber the blue coding
ORFs. Because the KMeans algorithm tends to distribute points into equally sized clusters,
this would lead to far more noncoding ORFs being incorrectly clustered with the coding
ORFs. To overcome this, we initially changed to the KMeans of three clusters, so that the
coding ORFs would get their own cluster and the noncoding ORFs would be split between
the two others clusters. Upon inspection of the data, it is apparent that the noncoding

Figure 3. (A) The amino acid frequency EDPs of coding and noncoding ORFs for the representative genome Caulobacter
phage cluster separately. All potential ORFs were found, taking only the longest (i.e., the first outermost available start
codon) truncation, finding the amino acid frequencies, coloring them according to whether they are in the consensus
annotations (coding), and then plotting them in a PCA. (B) The same potential ORFs from the previous figure, except with
the noncoding ORFs colored according to their offset in relation to the coding frame (0−, 1, 2, 1−, 2−), or intergenic (IG)
if they do not overlap with a coding ORF. The projections for the amino-acids are labeled according to the single letter
abbreviations, while the three stop codons amber (+), ochre (#), umber (*) are labeled according to their symbols.

Initially we began using KMeans with two clusters, coding and noncoding. This
worked well for genomes with average and low GC contents, but did not work well on
high-GC content genomes (mean F1-scores were 0.72 and 0.49, respectively). This is because
the probability of encountering a stop codon is lower in those with a high GC content,
and so they have about twice as many noncoding ORFs as coding (Figure S1). This can be
seen in Figure 3A, where the red noncoding ORFs far outnumber the blue coding ORFs.
Because the KMeans algorithm tends to distribute points into equally sized clusters, this
would lead to far more noncoding ORFs being incorrectly clustered with the coding ORFs.
To overcome this, we initially changed to the KMeans of three clusters, so that the coding
ORFs would get their own cluster and the noncoding ORFs would be split between the
two others clusters. Upon inspection of the data, it is apparent that the noncoding ORFs
fall into six different clusters, one for each reading frame offset (Figure 3B), and that not all
ORFs have completely random non-conserved amino acid frequencies. The first cluster of
noncoding ORFs are those in the intergenic (IG) regions, and for the most part, these have
amino acid frequencies that are completely random and follow the expected frequency

Microorganisms 2021, 9, 129 7 of 11

based on GC content alone. The other five clusters are those that overlap with a coding
ORF, and are denoted by an offset, which can be thought of as how many base shifts it
takes to get to the coding frame. In contrast to the IG, the offset clusters overlap with a
coding ORF, and have a slightly conserved amino acid frequency. This is because even
though they themselves do not encode proteins, they are not independent of the coding
ORFs they overlap with; they share the same nucleotides, just offset and in different frames.
These non-intergenic noncoding ORFs fall into five categories (1+, 2+, 0−, 1−, 2−), and are
always in relation to the coding frame, denoted as 0+ (which is synonymous with coding).
The same-strand categories (1+ and 2+) correspond to when the coding ORF is in frame n
and so the two noncoding ORFs are n + 1 and n + 2. Likewise, the three opposite-strand
categories (0−, 1−, and 2−) correspond to a coding ORF at frame n and noncoding ORFs
at n + 0, n + 1, and n + 2, except in the reverse direction. Thus, we would expect there to
be one conserved amino acid cluster for the coding frame, five spurious semi-conserved
clusters, and one cluster for intergenic regions (Figure 3B and Figure S2). Since we are
working with phages, which can range down to only 18 unique ORFs for a genome (Figure
S3), it is not possible to cluster ORFs into these seven clusters, so we settle on clustering into
three for small genomes (less than 450 unique ORFs) and four clusters for larger genomes
(over 450 unique ORFs). This cutoff was chosen because when using four clusters, genomes
with less than 400 unique ORFs started to fail. Likewise, when using only three clusters,
genomes with more than 500 unique ORFs began failing. We could have continued this
pattern of setting multiple staggered cutoffs depending on genome size, until reaching
seven clusters, but did not observe significant improvements when using more clusters,
even for the largest genomes. However, we still need to pick which cluster contains the
coding ORFs, since unsupervised clustering does not assign labels. Since coding ORFs
have a conserved amino acid frequency, they will have a higher “density” cluster when
compared to noncoding ORFs—in 24-dimensional ordination the points will be highly
clustered. This can be observed in Figure 3B, where the blue coding ORFs are a dense
cluster, while the noncoding ORFs are a sparse cloud. We used the mean absolute density
(MAD) of each cluster to quantify the “density” in the 23-dimensional EDP space, since the
MAD better accounts for outliers in the data. The cluster with the lowest sum of MADs
(excluding the ORF length feature) was selected as the coding cluster.

To test the efficacy of our method, we took a set of 14,179 annotated phage genomes,
and for each genome we identified all potential ORFs, calculated the amino acid EDPs,
clustered them, labeled the densest cluster as coding, and then calculated the F1-score
to measure the performance. The average of the F1-scores was 0.85 ± 0.13, with only
32 genomes failing (an F1-score of less than 0.1). Unsurprisingly, all the failed genomes
were very small in size, with ten or less annotated protein-coding genes (and 60 or less
unique ORFs). A breakdown of the genome sizes in our dataset (both number of protein-
coding genes and all potential ORFs) is shown in Supplementary Figure S3. Additionally,
all the genomes that failed belonged to the taxon Microviridae. Whether this is due to
correlation (about 62% of the genomes with less than 60 unique ORFs were Microviridae) or
causation remains undetermined. As shown in the plot of amino acid versus GC content
(Figure 1B), there is a large cloud of points that do not follow the horizontal trend, and
instead cluster at the top of the figure separately along the vectors that represent the
FSQC amino acids, where most of the genomes belong to Microviridae (Figure S4). This
suggests that the Microviridae do not use the Standard Code, but rather one that potentially
substitutes one or more of the over-observed amino acid codons (FSQC) for the codons
that are under-observed (VDE). This hypothesis is supported by the dozen or so phages
from other taxa that group with the Microviridae away from their expected locations in
Supplementary Figure S4. Examples of two non Microviridae phages with unusual amino
acid composition are shown in Figure 4, where no discernable separation of coding from
noncoding is observed. Both of these genomes cluster away from the expected frequency
with the Microviridae (Figure S4), and the larger genome sizes reinforces the possibility
that they are using a different codon translation table.

Microorganisms 2021, 9, 129 8 of 11

Microorganisms 2021, 9, x FOR PEER REVIEW 8 of 11

Figure S4. Examples of two non Microviridae phages with unusual amino acid composi-
tion are shown in Figure 4, where no discernable separation of coding from noncoding is
observed. Both of these genomes cluster away from the expected frequency with the Mi-
croviridae (Figure S4), and the larger genome sizes reinforces the possibility that they are
using a different codon translation table.

(A) (B)

Figure 4. Two examples of phage genomes where the amino acid frequencies of coding and noncoding ORFs do not follow
the general trend of clustering separately. Shown here are unique ORFs for (A) the filamentous phage Ralstonia RSM1 and
(B) Escherichia phage fp01. Other filamentous phages show the same lack of observable coding bias, which could be due
to the small genome size; however, it is clear that the Escherichia phage does not use the Standard genetic code. The pro-
jections for the amino-acids are labeled according to the single letter abbreviations, while the three stop codons amber (+),
ochre (#), umber (*) are labeled according to their symbols.

We compared the F1-scores of our analysis to those from four other similar programs
that create a training set of genes from an input genome: LONGORFS (Glimmer), MED2,
PHANOTATE, and Prodigal (for PHANOTATE and Prodigal, only the initial training set
creation step is run, and not the entire gene-finding algorithm). The LONGORFS program
had 49 genomes had an F1-score less than 0.1, and the overall mean F1-score was 0.53. For
MED2, there were six genomes that caused the program to crash; of the remainder, there
were 1143 genomes with an F1-score less than 0.1, and the mean F1-score was 0.55. No
genomes had an F1-score less than 0.1 with PHANOTATE, since its method sacrifices pre-
cision for recall, and subsequently PHANOTATE had the lowest mean F1-score of 0.43.
Prodigal performs well, with an F1-score of 0.75 and no genomes failing (an F1-score less
than 0.1).

Comparing the mean F1-scores of the four alternative methods to the 0.83 obtained
from GOODORFS shows just how much better our method is at recovering coding ORFs
compared to other methods (Table 1). Of the four alternative methods, Prodigal performs
the best, but at this point in the complex algorithm, Prodigal has already performed one
of its two rounds of dynamic programming to identify coding ORFs. Plotting the individ-
ual genome F1-scores from GOODORFS versus the four other methods shows the distri-
bution (Figure 5), wherein points above the diagonal identity line, of which there are
many, signify that GOODORFS is outperforming the competing method. Many of the
points in Figure 5 that have low F1-scores (<0.5) with GOODORFs also happen to belong
to the class of genomes that have unusual amino acid frequencies. The two representative
genomes discussed above, Ralstonia phage RSM1 and Escherichia phage fp01, had
GOODORFS F1-scores of 0.38 and 0.23, respectively. These two genomes did not fare
much better with the other programs with the highest F1-scores of 0.56 and 0.41 coming

Figure 4. Two examples of phage genomes where the amino acid frequencies of coding and noncoding ORFs do not follow
the general trend of clustering separately. Shown here are unique ORFs for (A) the filamentous phage Ralstonia RSM1 and
(B) Escherichia phage fp01. Other filamentous phages show the same lack of observable coding bias, which could be due to
the small genome size; however, it is clear that the Escherichia phage does not use the Standard genetic code. The projections
for the amino-acids are labeled according to the single letter abbreviations, while the three stop codons amber (+), ochre (#),
umber (*) are labeled according to their symbols.

We compared the F1-scores of our analysis to those from four other similar programs
that create a training set of genes from an input genome: LONGORFS (Glimmer), MED2,
PHANOTATE, and Prodigal (for PHANOTATE and Prodigal, only the initial training set
creation step is run, and not the entire gene-finding algorithm). The LONGORFS program
had 49 genomes had an F1-score less than 0.1, and the overall mean F1-score was 0.53.
For MED2, there were six genomes that caused the program to crash; of the remainder,
there were 1143 genomes with an F1-score less than 0.1, and the mean F1-score was 0.55.
No genomes had an F1-score less than 0.1 with PHANOTATE, since its method sacrifices
precision for recall, and subsequently PHANOTATE had the lowest mean F1-score of 0.43.
Prodigal performs well, with an F1-score of 0.75 and no genomes failing (an F1-score less
than 0.1).

Comparing the mean F1-scores of the four alternative methods to the 0.83 obtained
from GOODORFS shows just how much better our method is at recovering coding ORFs
compared to other methods (Table 1). Of the four alternative methods, Prodigal performs
the best, but at this point in the complex algorithm, Prodigal has already performed one of
its two rounds of dynamic programming to identify coding ORFs. Plotting the individual
genome F1-scores from GOODORFS versus the four other methods shows the distribution
(Figure 5), wherein points above the diagonal identity line, of which there are many, signify
that GOODORFS is outperforming the competing method. Many of the points in Figure 5
that have low F1-scores (<0.5) with GOODORFs also happen to belong to the class of
genomes that have unusual amino acid frequencies. The two representative genomes
discussed above, Ralstonia phage RSM1 and Escherichia phage fp01, had GOODORFS F1-
scores of 0.38 and 0.23, respectively. These two genomes did not fare much better with the
other programs with the highest F1-scores of 0.56 and 0.41 coming from Prodigal, which is
not beholden to codon translation tables, except in the form of start and stop codons.

Microorganisms 2021, 9, 129 9 of 11

Microorganisms 2021, 9, x FOR PEER REVIEW 9 of 11

from Prodigal, which is not beholden to codon translation tables, except in the form of
start and stop codons.

(A) (B)

(C) (D)

Figure 5. Comparison of the F1 scores for all 14,179 genomes between GOODORFS and (A) LONGORFS, (B) MED2 and
(C) PHANOTATE’s training set creation steps. (D) Prodigal’s training set creation step. In each panel the dotted line rep-
resents x = y, and so points above and to the left of the line represent more accurate protein-encoding gene identification
by GOODORFs, while points to the lower/right of the line indicate less accurate protein-encoding gene identification.
Points on the line indicate agreement between the algorithms.

All the previous performance results are based on simple ORF counts. If we were to
instead normalize by ORF length, the F1-scores for methods that favor recall over preci-
sion (GOODORFS, Phanotate, Prodigal) would all increase because, as we have shown,
the true-positives (coding ORFs) are longer than the false-positives (noncoding ORFs).
This is relevant because training on a gene set usually involves iterating over the length
of the genes, and so longer ORFs have more emphasis than shorter ORFs. An example of
this would be in calculating synonymous codon usage bias in a set of genes, where a long
ORF with many codons would contribute more than a short one with few codons. Another
aspect of training on a gene model is that a high F1-scoring method might not be the best
choice for a given gene prediction tool. Sometimes it is better to have a very precise train-
ing set with very few false-positives. For instance, this might be the case with Glimmer,
which uses the very low F1-scoring method LONGORFS to create a training set. Perhaps

Figure 5. Comparison of the F1 scores for all 14,179 genomes between GOODORFS and (A) LONGORFS, (B) MED2 and
(C) PHANOTATE’s training set creation steps. (D) Prodigal’s training set creation step. In each panel the dotted line
represents x = y, and so points above and to the left of the line represent more accurate protein-encoding gene identification
by GOODORFs, while points to the lower/right of the line indicate less accurate protein-encoding gene identification.
Points on the line indicate agreement between the algorithms.

All the previous performance results are based on simple ORF counts. If we were to
instead normalize by ORF length, the F1-scores for methods that favor recall over precision
(GOODORFS, Phanotate, Prodigal) would all increase because, as we have shown, the
true-positives (coding ORFs) are longer than the false-positives (noncoding ORFs). This
is relevant because training on a gene set usually involves iterating over the length of the
genes, and so longer ORFs have more emphasis than shorter ORFs. An example of this
would be in calculating synonymous codon usage bias in a set of genes, where a long ORF
with many codons would contribute more than a short one with few codons. Another
aspect of training on a gene model is that a high F1-scoring method might not be the best
choice for a given gene prediction tool. Sometimes it is better to have a very precise training
set with very few false-positives. For instance, this might be the case with Glimmer, which
uses the very low F1-scoring method LONGORFS to create a training set. Perhaps having
only a few true-positive genes is worth not having any false-positives contaminating the
training gene model. Whether to adopt our GOODORFs method into phage gene-finding
tools or pipelines is left up to the researchers to determine on a case-by-case basis.

Microorganisms 2021, 9, 129 10 of 11

4. Conclusions

We have demonstrated the benefits of our GOODORFS method over similar alterna-
tive methods. The more accurate the set of genes used for training a gene model, the more
accurate the final gene predictions will be, and this will lead to significant improvements
in current gene-finding programs. We plan on incorporating GOODORFS into the PHAN-
OTATE code to replace its current naïve method for creating a training set of all ORFs
that start with the codon ATG. Glimmer, which uses LONGORFS, which had the second
lowest F1-score (after PHANOTATE), could potentially benefit from switching to using
GOODORFS. Since Glimmer is quite modular in its workflow, it is quite easy to change
it to use GOODORFS. To facilitate this change, we even tailored our code to mirror the
command line arguments and output format of LONGORFS, and have included the code
to implement this patch in the GOODORFS github repo. The one lingering shortcoming of
GOODORFS is that the current version is coded in Python, which is a scripting language
and is significantly slower than compiled code, as is evidenced in our runtime calculations.
In order to make GOODORFS more competitive over competing methods, we have begun
work on a faster compiled C version.

An area where our GOODORFS method might excel is gene prediction in metagenomes.
Most of the available methods for gene prediction in metagenomic reads again rely on
reference databases of known genes, which, as previously discussed, has its disadvantages.
In contrast, GOODORFS is reference-free; the only prior information needed is the amino
acid translation table. Depending on the sequencing technology used, generally a read only
contains a fragment of a protein-coding gene, with the beginning or the end (or sometimes
both) of the gene extending beyond the length of the read. Because GOODORFS allows for
ORF fragments (the lack a start or stop codon) at the edges of the input sequence, it has the
ability to work on metagenomic reads. All that is needed is to bin reads according to their
GC content and then run the bins through GOODROFS in batches in order to predict gene
fragments within the reads. We have already begun adapting and testing the GOODORFS
code to work with metagenomes, and instructions are available on the github repo.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-260
7/9/1/129/s1, Figure S1: Showing the relationship between GC content and the ratio of noncoding
ORFs to coding, Figure S2: A t-SNE plot of the EDPs of coding and noncoding ORFs for the
representative genome Caulobacter phage, Figure S3: Histograms showing the distribution of genome
sizes in (A) the number of genes in the consensus genome annotations, and (B) the number of
potential unique ORFs, where a unique ORF is the single ORF represented by all possible start codon
locations, Figure S4: The amino frequency of coding ORFs in phage genomes from the top 10 most
abundant taxa.

Author Contributions: Conceptualization, K.M.; methodology, K.M.; software, K.M.; formal analysis,
K.M.; investigation, K.M.; resources, R.A.E. and C.L.E.Z.; data curation, K.M. and R.A.E.; writing—
original draft preparation, K.M.; writing—review and editing, K.M., C.L.E.Z. and R.A.E.; supervision,
R.A.E.; project administration, R.A.E. and S.M.; funding acquisition, B.S. and S.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by U.S. Department of Defense: Defense Threat Reduction
Agency grant number DTRA13081-32220 and National Institutes of Health grant RC2DK116713.

Data Availability Statement: The data presented in this study are openly available in FigShare at
(10.6084/m9.figshare.13542962.v1), reference number [15].

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2076-2607/9/1/129/s1
https://www.mdpi.com/2076-2607/9/1/129/s1

Microorganisms 2021, 9, 129 11 of 11

References
1. Fiers, W.; Contreras, R.; Duerinck, F.; Haegeman, G.; Iserentant, D.; Merregaert, J.; Jou, W.M.; Molemans, F.; Raeymaekers, A.;

Berghe, A.V.D.; et al. Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase
gene. Nat. Cell Biol. 1976, 260, 500–507. [CrossRef] [PubMed]

2. Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.;
Merrick, J.M.; et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496–512.
[CrossRef] [PubMed]

3. Borodovsky, M.; McIninch, J. GENMARK: Parallel gene recognition for both DNA strands. Comput. Chem. 1993, 17, 123–133.
[CrossRef]

4. Salzberg, S.L.; Delcher, A.L.; Kasif, S.; White, O. Microbial gene identification using interpolated Markov models. Nucl. Acids Res.
1998, 26, 544–548. [CrossRef] [PubMed]

5. Badger, J.H.; Olsen, G.J. CRITICA: Coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 1999, 16,
512–524. [CrossRef]

6. Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation
initiation site identification. BMC Bioinform. 2010, 11, 119. [CrossRef] [PubMed]

7. McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A. PHANOTATE: A novel approach to gene identification in phage
genomes. Bioinformatics 2019, 35, 4537–4542. [CrossRef]

8. Zhu, H.; Hu, G.; Yang, Y.-F.; Wang, J.; She, Z.-S. MED: A new non-supervised gene prediction algorithm for bacterial and archaeal
genomes. BMC Bioinform. 2007, 8, 97. [CrossRef] [PubMed]

9. Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.;
et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]

10. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

11. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
12. Phage Genomes. Available online: http://millardlab.org/bioinformatics/bacteriophage-genomes/ (accessed on 19 October 2019).
13. The Genetic Codes. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi (accessed on 24 October 2019).
14. Wilson, K.; Ely, B. Analyses of four new Caulobacter Phicbkviruses indicate independent lineages. J. Gen. Virol. 2019, 100, 321–331.

[CrossRef] [PubMed]
15. McNair, K. GOODORFS DATA. Figshare 2021. [CrossRef]

http://doi.org/10.1038/260500a0
http://www.ncbi.nlm.nih.gov/pubmed/1264203
http://doi.org/10.1126/science.7542800
http://www.ncbi.nlm.nih.gov/pubmed/7542800
http://doi.org/10.1016/0097-8485(93)85004-V
http://doi.org/10.1093/nar/26.2.544
http://www.ncbi.nlm.nih.gov/pubmed/9421513
http://doi.org/10.1093/oxfordjournals.molbev.a026133
http://doi.org/10.1186/1471-2105-11-119
http://www.ncbi.nlm.nih.gov/pubmed/20211023
http://doi.org/10.1093/bioinformatics/btz265
http://doi.org/10.1186/1471-2105-8-97
http://www.ncbi.nlm.nih.gov/pubmed/17367537
http://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://doi.org/10.1109/MCSE.2007.55
http://millardlab.org/bioinformatics/bacteriophage-genomes/
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://doi.org/10.1099/jgv.0.001218
http://www.ncbi.nlm.nih.gov/pubmed/30657445
http://doi.org/10.6084/m9.figshare.13542962.v1

	Introduction
	Materials and Methods
	Data
	Algorithm
	Finding ORFS
	Calculating the EDPs
	Clustering
	Choosing a Cluster

	Performance Analysis

	Results and Discussion
	Conclusions
	References

