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Efficient conservation management is particularly important because current spending is estimated to be insufficient
to conserve the world’s biodiversity. However, efficient management is confounded by uncertainty that pervades
conservation management decisions. Uncertainties exist in objectives, dynamics of systems, the set of management
options available, the influence of these management options, and the constraints on these options. Probabilistic and
nonprobabilistic quantitative methods can help contend with these uncertainties. The vast majority of these account
for known epistemic uncertainties, with methods optimizing the expected performance or finding solutions that
achieve minimum performance requirements. Ignorance and indeterminacy continue to confound environmental
management problems. While quantitative methods to account for uncertainty must aid decisions if the underlying
models are sufficient approximations of reality, whether such models are sufficiently accurate has not yet been
examined.
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Introduction

Faced with large contemporary extinction of species,
degradation of ecosystems, fragmentation of re-
maining indigenous vegetation, and uncertain fates
for many species, resources that are available to con-
serve biodiversity must be spent efficiently. Efficient
management is particularly important because cur-
rent spending is estimated to be insufficient to con-
serve the world’s biodiversity; indeed, a 10-fold in-
crease in funding might be necessary.1

The logic of decision making in conservation
management to achieve efficient outcomes is con-
ceptually straight-forward. Effective conservation
management relies on managers specifying:2,3

(1) Goals—what they want to achieve, and how
these objectives will be measured;
(2) Threats and opportunities—the factors that
influence objectives, including those that the
manager can control; and
(3) Alternatives—the set of management actions
available, how they influence the objectives, and
any constraints on those actions.

Finally, from the set of management alternatives,
managers should find those that best achieve the
goals. While conceptually simple when described
as these series of steps, uncertainty pervades many
aspects of this approach, which can cloud efficient
management.

This review examines these uncertainties, and
highlights ways of characterizing and contending
with uncertainty in conservation decisions. I dis-
cuss a range of probabilistic and nonprobabilistic
methods, and the difficulty of accounting for igno-
rance in management decisions.

Conservation decisions are required for many
different circumstances, such as decisions about
whether species should be listed as threatened,
choosing from a set of management strategies for
those species, allocating land or seascapes to con-
servation management regimes of various forms or
permitting development, determining search effort
for invasive or threatened species, or deciding what
monitoring should be conducted. I will illustrate
and compare the range of approaches to dealing with
uncertainty by drawing on a single example where a

doi: 10.1111/nyas.12507

77Ann. N.Y. Acad. Sci. 1322 (2014) 77–91 C© 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals
Inc. on behalf of The New York Academy of Sciences.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Uncertainty in conservation decisions McCarthy

manager must decide on the search effort for an in-
vasive species at a site. To maintain consistency, this
will be a common (but relatively tractable) example
throughout the review. In this case, the question is
simply to determine how much effort should be ex-
pended in searching for a species at a site that might
further harm biodiversity if it remains undetected.
The same basic methods and ideas can be extended
to other conservation decisions.

Before discussing where uncertainties arise in
conservation decisions and illustrating a range of
methods for contending with these uncertainties,
I will summarize the taxonomy of uncertainty of-
fered by Regan et al.4 Other classifications of un-
certainty exist. For example, a recent review5 of
classifications of uncertainty in environmental risk
assessment recognizes different natures of uncer-
tainty (whether the uncertainty is epistemic or
a function of imprecise knowledge), the location
(whether the uncertainty lies in, for example, the
system, the data, the model, or human flaws), and
the level of uncertainty (ranging from deterministic
understanding to blind ignorance). This treatment
and others are valuable, although here I use the
taxonomy of Regan et al.

Taxonomy of uncertainty

Regan et al.4 identify two major forms of uncer-
tainty relevant to conservation management. Epis-
temic uncertainty relates to uncertainty in facts
of matters, and is the most commonly consid-
ered form of uncertainty in conservation.6–8 It
includes uncertainty in estimates or relationships
among species (including imprecision and bias),
natural variation such as in population dynamics
arising from environments and their often unpre-
dictable effects (e.g., effects of weather on popula-
tion dynamics), and model uncertainty (e.g., un-
certainty in the most appropriate way of describing
relationships).

Regan et al.4 also noted that linguistic uncer-
tainty is common in conservation problems, al-
though less commonly acknowledged. Linguistic
uncertainty arises because language is imprecise.
Words can be ambiguous; for example, the term
endangered has multiple different meanings. Even
if a particular definition is used, such definitions
rarely if ever, cater to borderline cases, leading to
poor treatment of vagueness. Would we be prepared
to accept that a species with 249 mature individu-

als is clearly endangered (according to the IUCN9),
while a species with 250 mature individuals is not?
Mature is another example of a word with ambigu-
ity, and any definition based on age or reproductive
ability might obscure vagueness that is inherent in
defining maturity. Terms can also depend on con-
text. The small population paradigm10 defines how
small populations are more prone to extinction due
to natural variation, yet the term small, as well as
being vague, depends on context. A small popula-
tion of bacteria might have many more individu-
als than even a large population of elephants. Some
terms can be underspecified. For example, managers
might wish to increase the future population size of
a species, yet precise specification would define a
particular rate of increase over a particular period
of time. Finally, Regan et al.4 note that while some
forms of linguistic uncertainty might not be appar-
ent now, they can arise in the future; this is termed
indeterminacy. Taxonomy provides many examples;
current use of a particular taxonomic term (e.g.,
a species name) cannot reasonably envision the
range of taxonomic revisions that might occur in
the future. Similar incertitude arises in conservation
decisions.

Some aspects of linguistic uncertainty also relate
to aspects of epistemic uncertainty. For example,
while variance in the population growth rate of a
species might be estimated from the currently avail-
able data, indeterminacy means that these data from
the past might not reliably estimate the variance in
the future. Consider, for example, estimates of vi-
tal rates in the face of changing climates. Further,
most estimates are context dependent; an estimate
for survival of a species from one site might not
apply to a second site.

Below I use these different forms of uncertainty
to discuss how they can be addressed in different
stages of conservation decision making.

Specifying and measuring objectives

Effective management relies on clearly articulated
objectives. These define what management is try-
ing to achieve and how success will be measured.
Often, objectives of management are ambiguous
and vague.3 One objective, for example, might be to
protect biodiversity. More specifically, an objective
might be to reduce the rate of biodiversity loss, such
as in the Convention on Biological Diversity.11 How-
ever, objectives can remain underspecified—how
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is biodiversity loss measured (e.g., for genetic di-
versity, species, and ecosystems) and what degree of
reduction is sought?

Objectives can be organized hierarchically. Fun-
damental objectives12 are typically vague and un-
derspecified in policy;13 despite this linguistic
uncertainty, they are important because they often
reflect the regulatory environment in which deci-
sions occur. Fundamental objectives often conflict
with each other, which challenges decision making.
For example, environmental decisions about man-
aging a finite resource, such as forest timber or fish
stocks, cannot indefinitely increase both short-term
extractive benefits and conservation. Even relatively
clear aims to increase persistence of species will of-
ten require trade-offs between increasing local ver-
sus global persistence. Clarifying the fundamental
objectives helps separate important objectives from
irrelevant ones; it is merely the first step in decision
making but critical because effective decisions must
account for all relevant objectives. Decisions made
without considering important objectives are likely
to be suboptimal.

Once the fundamental objectives are defined,
means objectives make them measurable.14 Means
objectives must be fully specified and as free from
linguistic uncertainty as possible. They are sought
not for their own sake but to achieve the funda-
mental objectives.12 Where objectives conflict, they
can be either weighted depending on relative pref-
erences of the decision maker or analyzed separately
to reveal trade-offs between them.15

For example, consider a manager searching for an
invasive plant species at a site with the aim of erad-
icating the species by removing individuals if they
are found.16 Assume the probability that the species
is present before searching is 0.1. As searching con-
tinues, the probability that the species is present and
remains undetected declines with the search time.
The manager will aim to reduce this probability as
much as possible; this is one objective. However, the
manager will also wish to minimize the time spent
searching; it is impossible to decrease one without
increasing the other (Fig. 1). Other objectives might
also impinge on the decision about allocating sur-
vey effort, such as understanding factors that influ-
ence the distribution of the species. Regardless of
the number of objectives, the management decision
boils down to considering the trade-offs between
them.

Figure 1. The trade-off between two quantities that a man-
ager might wish to minimize when searching for an invasive
species: the probability that the species is present and remains
undetected, and the time spent searching.

Trade-offs between objectives are most easily as-
sessed when they are measured in the same units.
For example, the cost of a species being present but
remaining undetected might be called the escape cost
and expressed as the time required to manage the
species in the future rather than now. When ex-
pressed in the same units such as this, we can simply
trade one objective (survey costs) against the other
(expected management costs), for example, by find-
ing the search effort where the total expected cost
(time spent surveying and managing) is minimized.
However, if escape of the species at the site also
entails costs that are difficult to measure in com-
mon units (e.g., the local extinction of a threatened
species), trade-offs might become more uncertain.
Further, escape costs might be unknown, depend-
ing on when the undetected species is eventually de-
tected in the future. In this case, the manager needs
to trade certain costs (the search time) against un-
certain costs that might (or might not) be incurred
at an uncertain time in the future. Such trade-offs
are not necessarily trivial. I consider strategies for
dealing with such uncertainties below (see the sec-
tion “Choosing good management options”).

Objectives change over time, as seen in en-
vironmental regulations for most, if not all, of
the world’s countries. While managers might set
objectives that reflect current regulatory environ-
ments, they might also seek to maintain options
for future management.17 Managing to maintain
options might suggest an incentive to err on the
side of conservation over development;18 but the
exact trade-off is clouded by the indeterminate
future objectives. Indeterminacy in objectives is
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particularly pronounced when managing dynamic
systems that might change (and possibly degrade)
even when conserved.

Factors that influence the outcomes

Factors that influence the outcome of conservation
management include the current state of the system
being managed and how those states change both in
the presence and absence of management. The first
components are often referred to as system states.
The second are defined by the dynamics of the sys-
tem. System states typically include factors relevant
to the means objectives. Examples include the nutri-
ent levels when managing eutrophication of lakes,19

tree density when managing revegetation,20 and the
abundance of a species at a site at a particular point
in time.21 Abundance might be the actual num-
ber of individuals or simplified to only presence or
absence.22

The dynamics of the system define how the states
vary (e.g., over space and time). These dynam-
ics are typically described by models. The mod-
els can include secondary state variables that in-
fluence the primary state variables (e.g., rainfall,
which can influence population growth rates of
species23), particular functions that define relation-
ships among variables, and the parameters of those
functions.

Management variables define the factors that
managers can change to influence conservation out-
comes. Examples include the amount of survey ef-
fort to spend in an area,22 the number of animals
to release from a captive breeding program,24 which
areas to set aside for conservation or other land
uses,25 the resources invested in conserving different
species,26,27 and the population parameters to target
for the most efficient conservation outcome.28

Many environmental decisions are framed with
the assumption that the state of the system will
be known. For example, optimal harvest problems
are sometimes framed by setting harvest levels that
depend on the abundance of the harvested stock.
However, state variables, management variables,
and system dynamics are typically subject to various
forms of uncertainty. The most obvious is that state
variables and model parameters will be measured
with error (with imprecision and possible bias).

Uncertainty in the state of the system can be rep-
resented by adding belief states29 that describe the
state of knowledge. Belief states for parameter esti-

Figure 2. Three possible trade-offs between the probability
that the species is present and remains undetected and the time
spent searching. The trade-off depends on P, the probability that
the species is present before the survey (P = 0.2, 0.1, 0.05).

mates might be defined by a probability distribution
with a particular mean and variance. For example,
McCarthy and Possingham20 used beta probability
distributions to define estimates of the probability of
revegetation success for two different management
actions. In other cases, belief states might describe
the probability that a species is present.22,30

Returning to the example of invasive species erad-
ication in Figure 1, the trade-off between search time
and the probability of the species being present but
remaining undetected would be clouded by uncer-
tainty in the presence of the species before searching
(Fig. 2). The search effort that appropriately bal-
ances the trade-off in the objectives will typically be
sensitive to the uncertain probability.

In addition to parameter uncertainty, model un-
certainty also exists. Managers will rarely know the
best model to describe the dynamics of the system
they are managing. Generally, a set of different mod-
els will be available, and each will fit the available
data to different degrees. The fit of one model rela-
tive to others can be expressed in terms of weights
that sum to one across all models in the set. These
weights will typically reflect a trade-off between fit
and parsimony.31 Decisions about the most appro-
priate action can depend on predictions that aver-
age over models. Alternatively, problems in which
model weights can change over time, particularly as
data accumulate, can be analyzed.32

Managers can attempt to resolve uncertainty
about the state of the system by targeted learning,
which might then improve future decisions. How-
ever, this will usually come at the cost of immediate
management actions. For example, the probability
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that a species is present at a site can be estimated by
visiting multiple sites with high search effort (e.g., to
eliminate false absences), which might then be used
to optimize search effort at a new site (i.e., the esti-
mate might help resolve the uncertainty depicted in
Fig. 2). However, the effort spent on learning about
the probability of presence could instead be allo-
cated specifically to finding the species rather than
to learning about its presence.

The optimal trade-off between learning and man-
agement is formally considered by using adaptive
management. Adaptive management evaluates the
benefits of obtaining information and the actions
that result.33–35 Passive adaptive management sets
management objectives based on short-term goals,
but collects information that will improve manage-
ment in the future. Active adaptive management
adjusts short term management to assist manage-
ment with improved information, but only to the
extent that long-term gains compensate for possible
extra short-term costs.

Adaptive management recognizes that learning
entails costs. Indeed, when deciding between two
revegetation strategies with uncertain outcomes,
McCarthy and Possingham20 found that trialling
both strategies simultaneously was rarely the best
option even when monitoring was free. Using both
options simultaneously entails a cost because in-
evitably an inferior strategy is used. When monitor-
ing is not free, the two options are used even less
frequently.36 Delayed actions also entail costs, for
example, due to ongoing degradation.37

Adaptive management problems are typi-
cally solved with various forms of dynamic
programming.34 When accounting for uncertainty,
the models usually suffer from the curse of
dimensionality—in many cases, only relatively sim-
ple models have been solved. New algorithms for
solving larger and more realistic problems are
promising, and have been applied to conservation.38

Nevertheless, computational skills are required that
often mean managers must work collaboratively
with computational scientists to find optimal so-
lutions. This only works for real conservation prob-
lems when a suitable team can form with adequate
time to conduct analyses.

Two avenues of research aim to address the prob-
lem of the large computational burden when seeking
to optimize the reduction in epistemic uncertainty.
The first aims to find general (often approximate)

solutions to optimization problems. These might
be called rules of thumb. For example, when declar-
ing eradication of a species, the full optimization of
even a relatively simple model requires a dynamic
optimization that accounts for multiple possible re-
discoveries of a species after each period of failed
detection.22 However, a rule of thumb for survey
effort based on assuming the invasive plant will not
be seen in a future survey (so further costs of survey
and possible escape are ignored) provides a good so-
lution, even if it is not optimal. By being expressed
as a simple formula rather than requiring optimiza-
tion, a rule of thumb has the advantage of being
more easily implemented by managers.22

A second approach to considering the trade-off
between gaining information versus actually man-
aging is to calculate the value of information.39 The
value of information calculates the expected im-
provement in the decision that would be achieved
by eliminating epistemic uncertainty. Uncertainties
with greater value of information will be more crit-
ical to resolve. While adaptive management aims
to optimize investment in gaining knowledge, the
value-of-information approach can compare the
benefit of resolving uncertainty with the cost of do-
ing this. Value of information provides a heuristic
framework for assessing trade-offs between gaining
information and managing based on current knowl-
edge.

The approaches discussed so far to contend with
uncertainty in system states and relationships have
focused on epistemic uncertainties. Linguistic un-
certainties tend to be rare in these cases because
uncertainties can be defined mathematically, which
imparts precision in the language. However, a con-
sequence of this precision is that the form of uncer-
tainty is often constrained. For example, uncertainty
in the choice of models is usually limited to a finite
set of models, but rarely would any of these models
be perfect. Similarly, epistemic uncertainty in pa-
rameters is typically represented by using particular
probability distributions. Essentially, the probabil-
ity distribution is used as a model of uncertainty,
but the chosen distribution constrains patterns of
uncertainty that can be considered.

Thus, most efforts to contend with uncertainty
in system states and relationships have ignored
indeterminacy—the chance, indeed the near cer-
tainty, that our current models do not repre-
sent reality perfectly, and so improved models will
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eventuate. While methods such as adaptive man-
agement accommodate the possibility that evi-
dence to support different parameter estimates20

and models32 will change as data accumulate, adap-
tive management methods are constrained by the
range of models considered, which depends on con-
temporary knowledge. Efforts to accommodate fu-
ture surprises40 rely on foreshadowing unforeseen
events—clearly this is a challenge. Nonprobabilis-
tic methods (see section below) can assist decision
making in circumstances where probabilities are
unavailable, but ignorance of factors that are not
considered (unknown unknowns40) will hamper
decisions.

Management actions and constraints

Uncertainty in the effectiveness of management is
one of the greatest constraints on decisions. In the
problem of searching for an invasive species, the ef-
fectiveness of management is defined by how search
effort decreases the probability that species remains
undetected if present. In Figs. 1 and 2, this rela-
tionship is defined by an exponential function of
the form q = exp(−�x), where q is the probabil-
ity that the species is not detected when present
given search effort x. This relationship is based on a
model of random encounters of individuals,41 and
depends on the detection rate �. Typically, �, which
represents search effectiveness in this case, will be
uncertain. Further, the model for how the proba-
bility of detection failure declines with effort will
also be uncertain. The model of random encoun-
ters is almost certainly imperfect because individu-
als will not necessarily be encountered randomly as
assumed by this model.

Methods for contending with epistemic uncer-
tainty in management effectiveness (due to parame-
ter or model uncertainty) are largely similar to those
used to account for uncertainty in model states, re-
lationships, and parameters. However, methods to
account for indeterminacy in management actions
and constraints can also be important. Managers can
only guess at management options that might be-
come available in the future. For example, current
efforts to develop gene banks for threatened and
even extinct species are predicated on the possibil-
ity that species can be regenerated from preserved
material and then successfully sustained in suitable
habitat in the future.42 While management options

such as this remain uncertain, at least some people
are willing to invest resources in the possibility.

Indeterminacy in management options can also
impinge on management objectives. This can be
seen in responses to conservation triage. Conserva-
tion triage aims to find the suite of management
actions that maximize conservation of species;6,27 it
is simply rational decision making.40,44 While crit-
ics of the approach45,46 seem to erroneously con-
flate efficient allocation of available resources with
denying the need for more conservation resources,44

they legitimately raise the issue of indeterminacy. Ja-
chowski and Kesler45 write “We must always retain
hope for breakthroughs that could lead to recovery,
even if only minimal resources are dedicated to the
direst situations.” Essentially, the uncertain prospect
of breakthroughs encourages an objective to in-
crease the short-term persistence of all species by
spreading current resources as widely (and thinly)
as possible. Similarly, Parr et al.46 argue for the goal
of increasing short-term persistence with a view to
possible future increases in the available conserva-
tion budget through “new funding possibilities.”

The critiques of conservation triage45,46 highlight
the difficulty of formally including indeterminate
management actions and constraints in decision-
making protocols. Essentially, they are arguing that
the relationship between conservation effort and
management effectiveness is uncertain. This uncer-
tainty, combined with optimism, leads to the in-
tuition that spreading resources thinly is the most
rational decision. In the following section, we ex-
amine quantitative approaches to these and other
scenarios of dealing with uncertainty.

Choosing good management options

The remainder of this review considers a range of
methods to help choose management options that
achieve the objectives. Using a combination of these
can help contend with uncertainties that exist in
conservation decisions.47

Probabilistic methods
Probability is a powerful concept for representing
uncertainty. Probability helps impart rigor and log-
ical consistency on decisions.48 Bayesian methods
provide a means to update probabilities coherently
and consistently, as data accumulate.49 When out-
comes are described by probability distributions,
one way to summarize the outcomes is to calculate
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the expected value, or the simple arithmetic mean,
of the objective.

Expected value of decisions. The expected value
weights the different outcomes by their probability
of occurrence. If we consider the case of search-
ing for an invasive species, the cost (i.e., the man-
agement effort) when the species is absent equals
the search effort x. When the species is present, the
cost will equal the survey cost (x) plus a manage-
ment cost that depends on whether the species re-
mains undetected (ce) or is found (cc). The expected
management cost when the species is present is a
weighted average of these two, with the weights be-
ing the probabilities that the species remains un-
detected (exp[−�x]) or is found (1−exp[−�x]).
Thus, the expected cost when the species is present
is exp[−�x]ce + (1−exp[−�x])cc + x.

Finally, the overall expected cost depends on the
probability that the species is present, P. This is then

L = P [exp[−�x]ce + (1 − exp[−�x])cc ] + x,

which rearranged gives

L = P exp[−�x](ce − cc ) + P cc + x.

The survey effort that minimizes the expected
cost (x*) can be obtained by taking the derivative,
and solving d L

dx = 0 for x.

d L

dx
= −�P exp[−�x](ce − cc ) + 1,

and

x∗ = ln [�P (ce − cc )] /�.

Note that the optimal survey effort depends on
the difference in the management costs when the
species is present (ce − cc), the probability of pres-
ence, and the detection rate. Expressing the expected
difference in the management cost as R = P(ce − cc),
which can be thought of as the expected value of de-
tection, we have

x∗ = ln[�R]/�

Thus, the search effort that minimizes the ex-
pected costs increases logarithmically with the ex-
pected value of detection, and nonmonotonically
with the detection rate (Fig. 3). Most effort should
be spent on those sites with large expected bene-
fits of detection and intermediate detection rates.
When the detection rate is too low, searching is not

Figure 3. The search effort that minimizes the expected cost
as a function of the detection rate (�) for three different values
for the expected benefit of detection (R).

worthwhile. When detection rates are high, some
search effort is optimal but large search efforts are
unnecessary.

Probability of acceptable outcome. The above
analysis calculates the expected cost, but the actual
cost will be typically different from that. In fact, the
actual cost can be substantially different. Managers
might be sensitive to the expected cost when aver-
aging over many decisions. However, if a manager
has only one site to consider, s/he might be more
sensitive to the actual cost than the expected cost. In
this case, the manager might be sensitive not just to
the expected cost, but also uncertainty in that cost.

In this example, the manager will incur one of
three actual costs that represent the instances when
(1) the species is absent, (2) it is present and de-
tected, and (3) it is present and undetected (Table
1). A manager who is sensitive to uncertainty in the
actual cost might aim to minimize the probability
that the cost exceeds an acceptable threshold rather
than aiming to minimize the expected cost.

Table 1. The three possible costs incurred when search-
ing for an invasive species, and the probabilities of incur-
ring each

Outcome Cost Probability

Species is absent x 1 − p

Species is

present and

detected

x + cc p(1−exp[−�x])

Species is

present and

undetected

x + ce pexp[−�x]
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Figure 4. The probability of the costs exceeding an acceptable
threshold (results shown for both T = 4 and 6 hours) when
searching for an invasive species. The assumed parameters are
a probability of presence (P = 0.4), a rate of detection (� = 2
detections per hour), and costs of control when detecting the
species (cc = 3) and costs of escape when the species is present
but remains undetected (ce = 10).

When the acceptable cost is less than the cost of
management (T < cc), any search effort up to the ac-
ceptable cost will minimize the probability that the
total cost exceeds the threshold. Beyond this effort,
the outcome would be deemed unacceptable; and
further searching would not be undertaken. This
seems an unrealistic scenario because presumably
the managers would be willing to at least pay the
cost of controlling the invasive species if it were
found given they are prepared to search. Similarly,
the scenario when T exceeds the escape cost of es-
cape (ce) also seems unrealistic because a manager
would be prepared to accept the maximum possible
cost of not detecting the species (ce) and managing
it when the species had escaped; in this case none
or minimal search effort (up to T − ce) would be
optimal.

The nontrivial results occur when T lies in the
interval [cc, ce]. In this interval, the probability that
the cost exceeds T is minimized by setting x to T –
cc (Fig. 4). At this point the amount spent on survey
(x) leaves an amount of cc (from a conceptual budget
of T) that is available to control the species if it is
found; if survey effort x were greater than T – cc,
then survey and management costs would exceed
the acceptable total cost T if the species were found.
In words, the manager should search for the species
to such an extent that sufficient resources remain
available to manage the species if it is found.

This particular solution has an interesting fea-
ture; the survey effort that minimizes the probabil-
ity that the costs exceed a threshold is independent

of the probability of occurrence or the detection
rate. Thus, uncertainty in these parameters will not
impinge on the decision. The insensitivity to the
probability of presence and detection rate is useful
because managers simply need to know the costs (cc

and ce) and the maximum acceptable cost (T) to
determine the most robust search effort. This for-
mulation even circumvents uncertainty about how
detection probability changes with effort. Assumed
to be exp[−�x] in this example, any declining func-
tion would lead to the same solution.

Stochastic dominance analysis. However, avoid-
ing parameter and model uncertainty with this for-
mulation comes at the cost of uncertainty about
setting T. Managers will prefer lower costs, but a
threshold below which a manager is happy with
(but otherwise indifferent to) the costs, and above
which she/he is unhappy (but is otherwise indiffer-
ent to costs) seems unlikely. Rather than examining
a particular threshold, an alternative approach com-
pares the cumulative distribution of the outcomes
for each of the management options. Stochastic
dominance analysis is a valuable framework for this
comparison.50 I provide an example of stochastic
dominance analysis below (read Yemshanov et al.51

for a more detailed analysis relating to ecological
management).

Outcomes when using stochastic dominance are
typically expressed as benefits rather than cost C,
so results here will be expressed as the benefit –C
in which numbers that are more negative represent
higher costs. Consider a choice between two dif-
ferent options—searching for 5 or 10 hours. The
cumulative distribution of the benefit for each op-
tion is the probability that the actual benefit is less
than the threshold (Fig. 5). Of these two options,
searching for 5 hours is never worse than searching
for 10 hours, and in some cases it is superior (for
threshold costs of between 5 and 13 hours; Fig. 5A).
Thus, searching for 5 hours is clearly superior to
searching for 10 hours.

In the parlance of stochastic dominance analysis,
searching for 5 hours is first-order stochastic domi-
nant over searching for 10 hours; preferring a first-
order dominant strategy only requires the assump-
tion that larger benefits are preferred to smaller
benefits. Stochastic dominance can be expressed
more formally in terms of cumulative distribution
functions. Let Fi(z) be the cumulative distribution
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Figure 5. The cumulative distribution function of benefits
(negative costs) when searching for 1, 5, or 10 hours for an
invasive species (assuming � = 2, cc = 3, ce = 10, and P = 0.4).
Searching for 1 and 5 hours stochastically dominates searching
for 10 hours at the first order. However, searching for 1 and 5
hours cannot be separated from each other at the first order
because the functions cross.

function of strategy i. Strategy A dominates strategy
B if FA(z) � FB(z) for all z, with a strict inequality
for at least one value of z.

When the cumulative distributions of two strate-
gies cross (Fig. 5), one strategy does not dominate
the other at the first order. In this case, 1 hour of
searching is preferable to 5 hours for benefits greater
than −8 hours (costs <8 hours), but 1 hour is in-
ferior (riskier) for larger cost outcomes. Separat-
ing these two options requires orders of stochastic
dominance above the first. Each increase in order
requires further assumptions about the preferences
of the decision maker. If these preferences cannot be
assumed, then the higher orders of stochastic dom-
inance cannot be used to separate the options that
are not separable with lower orders.

Determining second-order stochastic dominance
requires the assumption that the manager prefers
higher benefits (as for first-order stochastic domi-
nance) and that his/her utility function is concave
(the second derivative is everywhere negative). In
this scenario, a concave utility function means a
given increase in cost concerns the manager more
when costs are already large than when costs are
small. Essentially, this is a form of risk aversion, and
is a reasonable assumption for many if not most
managers.50

If the assumption of a concave utility function
is reasonable, then two options might be separated
using second-order stochastic dominance by con-
sidering the integral of the cumulative distribution
function. Option A dominates option B at the sec-

ond order if
∫ z
−∞ FA(t)dt ≤ ∫ z

−∞ FB(t)dt for all z
with at least one strict inequality.

Extending the comparison of 1 and 5 hours of
searching (Fig. 5) to second-order dominance re-
veals that the integrals of the cumulative distribution
functions cross (Fig. 6), showing that the options of
searching for 1 hour and 5 hours cannot be separated
using second-order stochastic dominance. The inte-
grals of the cumulative distribution functions cross
because searching for 1 hour is preferred for most
outcomes, but is worse for the largest costs.

Separating management options with third-order
stochastic dominance52 requires the assumption
that the third derivative of the utility function of
the manager is always positive. This assumption and
those for higher-order dominance are less likely to
be true for managers than the concavity assump-
tion for second-order dominance, and understand-
ing their practical significance is more difficult. Op-
tion A is third-order dominant over option B if∫ z
−∞

∫ u
−∞ FA(t)dtdu ≤ ∫ z

−∞
∫ u
−∞ FB(t)dtdu for all

z with at least one strict inequality. Note that the op-
tions of searching for 1 hour or 5 hours cannot be
separated using third-order stochastic dominance.

Eliciting probabilities. When data are scarce or
absent, probability distributions can be elicited from
experts.53 Clearly, such probabilities are prone to
error. However, these errors are essentially analo-
gous to the kinds of errors that might arise from
probabilities estimated from data (for example, bias,
imprecision, and context dependence). The relative
magnitude of errors arising from data compared to

Figure 6. The integral of the cumulative distribution function
of benefits (negative costs) when searching for 1 or 5 hours
for an invasive species (assuming � = 2, cc = 3, ce = 10, and
P = 0.4). Because the functions overlap, searching for 1 and 5
hours cannot be separated from each other at the second-order
of stochastic dominance.
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errors arising from expert elicitation will depend on
their relative reliability. However, at least some cases
exist where expert judgments are more precise than
estimates derived from limited data.54

Procedures to account for the frailties of sub-
jective judgement55 are required when using ex-
perts to derive probabilities. These frailties in-
clude overconfidence (experts frequently underes-
timate uncertainty56), anchoring (experts are often
overly wedded to previous opinions), context de-
pendence (linguistic uncertainty in questions must
be minimized), motivational biases, and varying ac-
cess to information.55 Elicitation methods, however,
can take advantage of factors that tend to reduce
bias in the response of experts (e.g., feedback57),
resulting in structured processes for eliciting
probabilities.58

Portfolios. The previously described case where
the optimal solution is not sensitive to the estimated
probability (Fig. 4) is far from universal. Although
equivalent cases exist (e.g., a reserve design prob-
lem where the decision is insensitive to uncertainty
about extinction risk59), assumed probabilities pro-
foundly influence the choice among options in most
cases. When elements of objectives are additive (e.g.,
minimizing the number of extinct species, which
is the sum of species extinctions), epistemic un-
certainty in the management objective is relatively
tractable, and methods to deal with uncertainty in
financial investment portfolios60 can be adapted for
conservation decision making.61

Further, when the management objective encom-
passes a sufficiently large number of additive com-
ponents, one can rely on the central limit theorem
such that the probability distribution of the ob-
jective will be approximately normal regardless of
the distributions of individual components. How-
ever, problems with fewer components can be sen-
sitive to the choice of distribution. For instance,
Salomon et al.,62 when deciding about investing in
managing survival and/or fecundity of a species,
show that the choice of distribution for the man-
agement performance influences the best mix of the
two management options. Difficulties arise when lit-
tle or no information exists to inform the choice of
distribution. Nonprobabilistic methods to decision
making have developed largely due to such incerti-
tude in, and sensitivity to, the choice of probability
distributions.

Nonprobabilistic methods
Probabilistic descriptions of uncertainty help avoid
linguistic uncertainty, because mathematical state-
ments avoid ambiguity and vagueness and the con-
text is also usually explicit. However, they can imply
a degree of certitude that is unrealistic. Knight63

distinguishes between measurable risk and unmea-
surable uncertainty; probabilistic methods can be
unsuitable for describing the latter, particularly for
nonepistemic uncertainty.64 Thus, various methods
have been proposed to account for uncertainty that
cannot be defined probabilistically.

Maximin. Wald’s maximin model65 considers the
different possible states of nature and evaluates the
performance of the different management options
under all those states. One then searches across the
possible states of nature, and finds the worst possible
outcome for each action. For each action, one thus
calculates the worst return that could be achieved.
According to Wald’s model, the most robust decision
is to choose the action with the best “worst return.”

Wald’s maximin model can be illustrated by the
example of searching for an invasive species when
the probability of presence of the species cannot
be estimated. The two possible states of nature are
that the species is absent or present, but we assume
there is no basis for predicting the probability of
presence. If the species is absent, the cost of man-
agement is simply equal to the cost of searching, x.
If the species is present, then the manager will in-
cur the control cost cc plus the search cost x if the
species is found; if the species remains undetected,
the escape costs ce and the search cost x will be in-
curred. With exp(−�x) being the probability that
the species remains undetected, the expected cost
when the species is present is exp(−�x)ce + (1 −
exp(−�x))cc + x.

For all possible actions (all possible values of
x), the worst outcome occurs when the species is
present. Thus, the worst return is exp(−�x)ce + (1
− exp(−�x))cc + x. The value of x that achieves
the best possible worst return is found by minimiz-
ing this function. Solving this gives Wald’s maximin
robust solution xw = ln[(ce−cc) �]/�, which is the
optimal search effort under the assumption that the
species is present (i.e., assuming P = 1 in the prob-
abilistic version).

Minimum regret. Wald’s maximin solution tends
to be very risk averse—it tends to extreme pessimism

86 Ann. N.Y. Acad. Sci. 1322 (2014) 77–91 C© 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals
Inc. on behalf of The New York Academy of Sciences.



McCarthy Uncertainty in conservation decisions

Figure 7. The regret when the species is absent (dashed line)
and when the species is present (solid line). Regret measures
the difference between expected cost for different search ef-
forts and the expected cost that would be achieved if the pres-
ence or absence of the species were known. The search effort
that minimizes the maximum regret is marked by the arrow,
which is less than the search effort than minimizes the worst
possible outcome (Wald’s maximin solution is marked by the
circle).

by design because it focuses on the worst possible
outcome. An alternative is to frame the problem
as one of minimizing the maximum regret in the
decision.66 In this case, the outcome for each action
and each state of nature is compared to the best pos-
sible outcome for the corresponding state of nature.
The difference in performance between the manage-
ment decision and what would have been chosen if
the true state of nature were known measures regret.
One then determines the maximum possible regret
(across different states of nature) for each action,
and chooses the action with the smallest maximum
regret.

In the search example, the best possible result,
when the species is absent, would be to not search
or manage, so the cost would be zero. Therefore,
the regret when the species is absent is simply the
search effort that has been expended unnecessarily, x
(Fig. 7). When the species is present, the expected
cost would be minimized by setting search effort
to xw = ln[(ce−cc) �]/� (as above for the maximin
solution). Substituting this search effort into the ex-
pression for the expected cost gives the minimum
possible expected cost when the species is present,
which equals (1 + �cc + ln[� (ce − cc)])/ � and pro-
vides the baseline against which regret is measured.
Subtracting this minimum expected cost from the
expected cost for a different search effort provides
the regret when the species is present; following

some algebraic manipulation, this can be shown to
equal exp(−�x)r − (1 −�x + ln[�r])/ �, where r =
ce − cc is the extra cost of management following
failed detection when the species is present. This re-
gret (when the species is present) is positive when x
= 0, declines to zero as x increases towards xw, and
then increases again with increasing x (Fig. 7).

So now we have two measures of regret, depend-
ing on whether the species is present or absent; both
are a function of the search effort x. Of course, we do
not know which case holds—is the species present
or absent? The principle of minimizing regret finds
the search effort such that the larger of these two
is minimized. In this case, the maximum regret is
minimized when search effort equals ln (�r/[1+ln
(�r)])/�, for ln (�r) > −1; for smaller values of �r,
the search effort that minimizes regret is x = 0. This
search effort is less than Wald’s (pessimistic) max-
imin solution that assumes the species is present
(the worst possible outcome).

Scenarios. Considering the consequences of de-
cisions under diverse alternative future scenarios67

is similar to maximin. Diversity in the chosen sce-
narios can be increased by consulting a wide range
of people with different perspectives. One can iden-
tify decisions that perform adequately over a wide
range of scenarios. There are clear analogies with
formal maximin and related methods, which could
help assess performance of alternative management
strategies under the different scenarios. Scenarios
can share understanding among participants with
different perspectives, and help understand major
uncertainties and avoid surprises. Peterson et al.67

document cases where scenarios have aided decision
making in the face of uncertainty.

Info-gap decision theory. Ben-Haim68,69 pro-
posed info-gap decision theory as another way of
dealing with cases where probabilities cannot be de-
fined reliably. It has been used frequently to ex-
plore uncertainty in environmental management
problems. Hayes et al.70 counted more than 20
info-gap studies in ecology. While use of info-gap
decision theory has increased, so have criticisms.
I have published papers using info-gap decision
theory,71–74 but now I agree with critics that it over-
states the level of uncertainty that it accommodates.
Sniedovich75–78 is a vocal critic, although some
turns of phrase (e.g., referring to “voodoo decision
making”) and his mathematical treatment might
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obscure the case in the eyes of many ecologists.
Simultaneously, Sniedovich78 argues that defend-
ers of info-gap do not address his major criticisms,
which essentially dispute the form of uncertainty
analyzed by info-gap decision theory.70

Info-gap can accommodate model uncertainty,
but for the sake of simplicity I will restrict this dis-
cussion to parameter uncertainty. Info-gap decision
theory requires initial values for uncertain parame-
ters in the decision model. Then the analyst chooses
a model of uncertainty by building an uncertainty
interval around these initial values. For example,
when considering the detection rate � in the inva-
sive search problem, an info-gap model sets an initial
value �̂. Then uncertainty around that parameter is
defined by an interval, the width of which increases
with a nonnegative parameter �. Thus, the interval
could be [�̂ /(1+ �), �̂ (1+ �)], the range of which
increases with �. I call this interval a multiplica-
tive uncertainty model. The lower bound is defined
to ensure that the detection rate is always positive.
However, alternative models could be chosen; one
with a different upper bound is [�̂ /(1+ �), �̂ + �],
which I call an additive model. The choice is largely
arbitrary, but as we will see, the choice influences
the results.

Uncertainty in other parameters can also depend
on �. For the extra cost of management following
failed detection (r = ce − cc), we could use an addi-
tive uncertainty model for the upper limit [r̂ /(1+w
�), r̂ + w �], or multiplicative model [r̂ /(1+w �),
r̂ (1+w �)]. Here w defines how quickly the in-
terval for r expands with � relative to the interval
for �. Alternative models could be used, includ-
ing those with different models for the lower limit,
but this set of models is sufficient for illustrative
purposes.

Once the uncertainty model is defined, info-gap
robustness is maximized by finding the strategy that
allows � to be as large as possible while still achiev-
ing a required level of performance regardless of
the values of the uncertain parameters within the
uncertainty intervals. This is a reasonable goal—it
finds the option that allows the parameter estimates
to deviate as far as possible from the initial esti-
mates, while still achieving an acceptable level of
performance. This has analogies to the goal of max-
imizing the probability of achieving an acceptable
level of performance. Info-gap results often depend
on the choice of the initial estimate, the uncertainty

Figure 8. Search effort that maximizes info-gap robustness
versus the required maximum cost for two different uncertainty
models (additive and multiplicative) and four different combi-
nations of the parameters r̂ (initial value for the extra cost of
management following failed detection), �̂ (initial value for the
detection rate), and w (the relative uncertainty in r and �). The
four sets of parameters are: r̂ = 7, �̂ = 2, w = 1 (thick line);
r̂ = 7, �̂ = 1, w = 1 (thin line); r̂ = 7, �̂ = 2, w = 2 (dashed
line); and r̂ = 3, �̂ = 2, w = 1 (dotted line). In all cases cc = 1.

model (which implicitly defines what far actually
means) and the acceptable level of performance.

Using the info-gap model defined above for in-
vasive species detection, we see that the most ro-
bust strategy depends on the choice of uncertainty
model, and the values of r̂ , �̂, and w (Fig. 8), illustrat-
ing a common result that the outcomes of info-gap
analyses can be very sensitive to these choices. In the
case of ignorance about the most appropriate choice,
a manager would have no basis for this choice, so
info-gap can only apply when we have a reason-
able best guess. Without a reasonable best guess, a
manager would have no basis to decide which uncer-
tainty model and which best estimate (and hence,
which curve in Fig. 8) would be most applicable, so
info-gap decision theory could not help choose the
most robust search effort. Sniedovich76 notes that
info-gap modeling is a form of local uncertainty
analysis because it analyzes variation around par-
ticular parameter values; it is known as a stability
radius model, a method that has existed since circa
1960,78 decades before info-gap.
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The common dependence of info-gap results on
the chosen features of the info-gap model (e.g., see
Fig. 8) mirrors a similar dependence that typically
arises when using probabilistic models. Decisions
based on probabilistic models often depend on the
chosen distribution.62 Burgman and Regan79 (p.
227) note that often probability distributions “can-
not be guessed at reliably. Instead, it may be more ex-
peditious to apply a horizon of uncertainty around
a model, and ask to what extent is the rank of deci-
sions stable under uncertainty.” However, info-gap
analyses do not relieve analysts of equivalent guesses
because analysts must choose from an infinite range
of possible info-gap uncertainty models. Indeed,
the basic features required to define a probability
distribution can be thought of as an initial value
(e.g., a median), and a model of uncertainty around
that value (the probability distribution), which are
broadly equivalent to the features of an info-gap
model. Therefore, info-gap decision theory does not
avoid the need to define the same types of attributes
as required for probabilistic models.

This analogy with probabilistic models further
emphasizes that info-gap models do not account
for the type of uncertainty considered by Knight,63

where we have no basis to choose a probability dis-
tribution. This is contrary to Ben-Haim’s claim that
info-gap models are suitable when probabilities can-
not be defined reliably.68,69 Instead, info-gap models
help determine management actions that are ro-
bust to variation around an initial estimate. This
form of analysis has proved useful in conservation
decisions;79 whether it deals with severe uncertainty
(Sniedovich76 says it does not) might be a matter
of semantics.79 However, the difficulties of using
probabilistic methods in the face of substantial un-
certainty are not avoided by substituting an uncer-
tainty model where the choice of the substitute is
similarly difficult and influential. Info-gap does not
appear to solve the problem that it purports to, and
this is the central criticism; not that it is unhelpful
for local uncertainty analysis.

Conclusion

Methods to contend with uncertainty in conserva-
tion management decisions are increasingly used.
The vast majority of methods account for epis-
temic uncertainty. Accounting for linguistic uncer-
tainty is rarer, although methods also exist to ac-
count for this source of uncertainty.55 Ignorance

and indeterminacy continue to confound environ-
mental management problems. These uncertainties
arise in all aspects of decision making, including
in objectives, knowledge about the system being
managed, the efficacy of actions, and constraints.
Analyzing scenarios67,80 provides one mechanism
to help address concerns about ignorance. While
quantitative methods to account for uncertainty
must aid decisions if the underlying models are
sufficient approximations of reality, whether such
models are sufficiently accurate has not yet been
examined. Empirical evidence would be extremely
valuable on how well quantitative methods ac-
count for uncertainty in conservation management
decisions.
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