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Objective: miR-381 is implicated in the occurrence and development of various cancers,

yet its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown.

This study sought to research the direct target of miR-381 in HNSCC and investigate their

roles in cancer progression.

Methods: miRNA and mRNA expression files of HNSCC were accessed from TCGA

database and then processed for differential analysis. Bioinformatics databases were

employed to predict the target mRNAs of the potential miRNA. qRT-PCR was conducted

to determine the expression levels of the target miRNA and mRNA. Then, a series of in vitro

experiments like CCK-8, colony formation assay, wound healing assay and transwell assay

were performed to detect cell proliferation, migration and invasion. Dual-luciferase reporter

gene assay was carried out for the further validation of the targeted relationship between the

miRNA and mRNA.

Results: miR-381 was observed to be greatly down-regulated in HNSCC cells, and its

overexpression could inhibit cell proliferation, migration and invasion. Besides, dual-

luciferase reporter gene assay confirmed that STC2 was a direct target of miR-381, and

their expression levels were reversely correlated. Moreover, rescue experiments demon-

strated that overexpressing STC2 could rescue the inhibitory effect of miR-381 overexpres-

sion on cell proliferation, migration and invasion. Also, we verified that miR-381/STC2

exerted its function on HNSCC proliferation by mediating the FAK/PI3K/Akt/mTOR signal-

ing pathway.

Conclusion: miR-381 suppresses cell proliferation, migration and invasion in HNSCC

through targeting STC2, and participates in HNSCC development probably via the FAK/

PI3K/Akt/mTOR signaling pathway.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer

globally which occurs in oral, oropharynx, larynx or hypopharynx.1 Characterized by

a high rate of incidence and mortality, HNSCC accounts for nearly 3% of the total

malignancies, with a poor outcome in locally advanced stages and a 5-year overall

survival rate approximately as 50%.2–4 Although great effort has been made to exploit

the underlying molecular mechanisms in HNSCC occurrence and development, most

studies focus their attention on protein-coding genes, and the dysregulation of miRNAs

as well as their role in HNSCC remains elusive.5

MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expres-

sion at a post-transcriptional level.6 A recent study has suggested that miRNAs are
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key players involved in tumor occurrence, and clarifying

the expression pattern of miRNAs as well as investigating

their roles in cancer might be crucial for early diagnosis

improvement, prognosis prediction and specific therapeu-

tic methods mining.7 miR-381 is located on chromosome

14q32.31,8 and has been reported to be altered in various

cancers. For example, miR-381 is found to be down-

regulated in gastric cancer,9 lung cancer,10 cervical

cancer,11 epithelial ovarian cancer12 and colorectal

cancer.13 While in glioma and pituitary adenoma,14 miR-

381 is up-regulated and implicated in cell proliferation and

invasion. All these reports suggest the important role of

miR-381 in cancer occurrence and development. However,

the role of miR-381 in HNSCC has not been studied.

In the present study, we described the expression pat-

tern of miR-381 in HNSCC, and clarified its function on

cell biological behaviors as well as the underlying

mechanism. We found that miR-381 was remarkably

decreased in HNSCC, and was capable of inhibiting cell

proliferation, migration and invasion via targeting STC2.

Our study makes it possible that miR-381 can be used as

a potential therapeutic target in HNSCC treatment.

Materials and Methods
Bioinformatics Analysis
Data of miRNA-seq (cancer: n=518, adjacent normal: n=44)

and mRNA-seq (cancer: n=495, adjacent normal: n=44) in

HNSCC were accessed from the TCGA database (https://

portal.gdc.cancer.gov/). Differential analysis was carried out

using the “edgeR” package, with the threshold set as |logFC|

>2 and padj<0.05. miRDB (http://mirdb.org/miRDB/index.

html) and miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/

php/index.php) two databases were applied for target pre-

diction for the differentially expressed miRNA (DEmiRNA)

we interested in, and the potential mRNA was screened by

applying a Venn diagram. Survival analysis was performed

on the miRNA in the TCGA-HNSCC dataset combined with

the corresponding clinical information.

Cell Culture
Human normal oral epithelial cell line HOEC

(BNCC340217), HNSCC cell lines SAS (ATCC64403),

FaDu (ATCCTCP-1012), TCA8113 (BNCC100733), SCC-4

(BNCC340434) and embryonic kidney cell line HEK-293T

(ATCCCRL-1573) were all purchased from BeNa Culture

Collection (BNCC; Beijing, China). All cells were cultured

in Dulbecco’s Modified Eagle Medium (DMEM; Gibco,

Grand Island, NY, USA) supplemented with 10% fetal bovine

serum (FBS; Gibco, Grand Island, NY, USA), and maintained

under a humidified environment in 5% CO2 at 37 °C.

Vector Construction and Cell

Transfection
miR-381 mimic, oe-STC2 and their negative controls (NC-

mimic and oe-NC) were all obtained from GenePharma

(Shanghai, China). Pre-miR-381 sequence was amplified

with the forward primer designed as 5ꞌ-CGTGAA

TGATAGTGAGGAAC-3ꞌ and the reverse primer as 5ꞌ-

GTGAACGATTTGCCACACACA-3ꞌ, and then inserted

into the PLKO.3G vector. STC2-flag vector was con-

structed using the pCMV-3tag-3a plasmid for access of

STC2 overexpression. Then, pCMV-STC2 (oe-STC2)

and pCMV-3tag-3a (oe-NC) were transfected into cells

using the Lipofectamine® 2000 reagent (Invitrogen,

Carlsbad, USA), respectively. The RNA concentration

was set as 50 nM, and the total RNA and proteins were

extracted after 48 h of transfection.

qRT-PCR
Total RNA of FaDu cells was isolated using the GenElute

mRNA Miniprep kit (Sigma-Aldrich, St Louis, MO). Then

the RNA samples were reversely transcribed into miR-381

cDNA by applying a One Step miRNA cDNA Synthesis

Kit (HaiGene, Harbin, China) and into STC2 cDNA

through a DNA Reverse Transcription Kit (Applied

Biosystems). Thereafter, real-time quantitative PCR (qRT-

PCR) was conducted using the miSYBR-Green PCR Kit

(TransGen Biotech, China), following the manufacturer’s

instructions. U6 and GAPDH were taken as the endogen-

ous miRNA and mRNA regulators. Primer sequences were

listed in Table 1, and 2−ΔΔCt was employed for the normal-

ization of miR-381 and STC2 expression levels.

Western Blot
Transfected cells were washed with cold phosphate-

buffered saline (PBS) for preparation. RIPA lysis buffer

(Thermo Fisher Scientific, MA, USA) was applied for

extraction of total proteins, and bicinchoninic acid

(BCA) protein assay kit (Thermo Fisher Scientific,

Rockford, IL, USA) was used for protein quantification.

Subsequently, the proteins were treated by sodium dode-

cyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) for separation, and then transferred onto the

nitrocellulose membranes (ZY-160FP; Zeye Bio Co.,
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Ltd., Shanghai, China). After being blocked in 5% BSA/

TBST for 2 h, the membranes were incubated with

primary rabbit polyclonal antibodies overnight at 4 °C,

followed by horseradish peroxidase (HRP) -labeled sec-

ondary antibody (ab205718; 1:1000) for hybridization at

room temperature for 2 h. The primary antibodies com-

prised STC2 (ab255610; 1:1000), p (phosphorylated)-

PI3K (ab182651; 1:1000), PI3K (ab32089; 1:1000),

p-AKT (ab38449; 1:500), AKT (ab8805; 1:500),

p-mTOR (ab109268; 1:2000) and mTOR (ab2732;

1:2000). Electrochemiluminescence (ECL; ECL808-25,

Biomiga Inc, San Diego, USA) was applied for protein

bands visualization, and the band density was then mea-

sured using the Image J software (ver.1.44; http://

rsbweb.nih.gov/ij/index.html).

CCK-8
96-well plates were used for cell seeding at a density of

6×103 cells/well. After transfection for 1, 2 and 3 days, 10

μL of reagent supplied by the cell counting kit-8 (CCK-8;

Dojindo Molecular Technologies, Inc., Kumamoto, Japan)

was added per well for 2 h of incubation at 37 °C, respec-

tively. The absorbance value at 450 nm was read by an

enzyme-labeled instrument (Multiskan MK3; Thermo

Fisher Scientific, MA, USA) for the determination of cell

viability.

Colony Formation Assay
Transfected cells were cultured in 6-well plates (2×102

cells/well) and the mediums were replaced every 3 days.

Colonies visible were firstly washed with PBS, then pro-

cessed for 10 min of fixation in methanol and for staining

by 0.1% crystal violet (Sigma-Aldrich). Thereafter, the

colonies were observed under a microscope and

calculated.

Wound Healing Assay
When cells confluency reached around 80%, the tip of

a 200 ul pipette was used to make a scratch across the

monolayer of the well center. Then the cells were washed

with PBS three times, and continuously cultured for

24 h with fresh mediums. Images were captured under an

inverted microscope and the wound closure rate was

calculated.

Transwell Assay
Cells were initially digested, centrifuged and resuspended in

serum-free mediums for starvation treatment (105 cells/mL).

Approximately 2×104 cells were seeded into the Matrigel

matrix-coated (Corning, Corning, NY) upper chambers, and

the DMEM containing 10% FBS was added into the lower

chambers. After 24 h of incubation at 37 °C, non-invaded

cells were wiped off by applying a cotton swab, whereas cells

invaded into the lower chambers were stained using 0.1%

crystal violet. Five fields were chosen at random for statis-

tical analysis.

Dual-Luciferase Reporter Gene Assay
Wild-type STC2 (STC2-wt) and mutant STC2 (STC2-mt)

constructs were generated through cloning the STC2 3ꞌ-

UTR-wt and STC2 3ꞌ-UTR-mt into the pGL3 luciferase

vector, and then co-transfected with miR-381 mimic or NC

mimic into HEK-293T cells. Dual-Glo Firefly Luciferase

Assay Kit (Promega) was employed to treat cells and

Lumino Skan Ascentluminometer (Thermo Fisher

Scientific, Waltham, MA, USA) was applied to determine

the luciferase activity. The luciferase activity was pre-

sented as a ratio of Firefly luciferase intensity to Renilla

luciferase intensity.

Statistical Analysis
SPSS 22.0 software (IBM Corp. Armonk, NY, USA)

was used for data processing, and the GraphPad Prism

6 (La Jolla, CA) was applied for graphic demonstration.

Measurement data were expressed as mean ± standard

deviation (SD). Student’s t-test and one-way ANOVA

were conducted for comparative analysis between two

groups and among multiple groups, respectively.

All results were representative of at least three

Table 1 Primer Sequences for qRT-PCR

Gene Forward Reverse

miR-381 5ꞌ-TACTTAAAGCGAGGTTGCCCTT −3ꞌ 5ꞌ-GGCAAGCTCTCTGTGAGTA-3ꞌ

STC2 5ꞌ-TGAAATGTAAGGCCCACGCT-3ꞌ 5ꞌ-CGAGGTGCAGAAGCTCAAGA-3ꞌ

U6 5ꞌ-CTCGCTTCGGCAGCACA-3ꞌ 5ꞌ-AACGCTTCACGAATTTGCGT-3ꞌ

GAPDH 5ꞌ-ACAACTTTGGTATCGTGGAAGG-3ꞌ 5ꞌ-GCCATCACGCCACAGTTTC-3ꞌ
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independent experiments. P<0.05 was considered statis-

tically significant.

Results
miR-381 Is Down-Regulated in HNSCC

Tissues and Cells
In all, 79 DEmiRNAs were identified via differential ana-

lysis using the “edgeR” package, consisting of 47 up-

regulated miRNAs and 32 down-regulated miRNAs

(Figure 1A). As indicated by bioinformatics analysis

shown in Figure 1B, miR-381 was significantly down-

regulated in HNSCC tissues. It has been reported that

miR-381 participates in the malignant progression of var-

ious cancers, such as breast cancer and ovarian cancer.11,15

Thus, miR-381 was used as the target miRNA for follow-

up analysis. Thereafter, miR-381 was detected at a cellular

level by qRT-PCR, finding that miR-381 was greatly

decreased in HNSCC cell lines SAS, FaDu, TCA8113

and SCC-4 relative to that in the human normal oral

epithelial cell line HOEC (Figure 1C).

miR-381 Overexpression Inhibits Cell

Proliferation, Migration and Invasion in

HNSCC
To clarify the role of miR-381 in HNSCC cell biological

behaviors, miR-381 mimic and NC mimic were transfected

into FaDu cells, respectively. CCK-8 and colony formation

assay suggested that cells transfected with miR-381 mimic

had significantly reduced viability and colony number rela-

tive to the cells with NC mimic (Figure 2A and B). Besides,

wound healing and transwell assays were performed and

revealed the relative poorer migration and invasion abilities

in the cells with miR-381 mimic by comparison with the

negative control (Figure 2C and D). Taken together, miR-

381 overexpression was responsible for the inhibition of cell

proliferation, migration and invasion in HNSCC.

Figure 1 miR-381 is down-regulated in HNSCC tissues and cells. (A) Differential analysis was performed on the miRNAs as shown in a volcano plot. Red refers to the up-

regulated miRNAs and green refers to the down-regulated miRNAs. (B) The expression level of miR-381 in the TCGA-HNSCC dataset was analyzed and shown in

a boxplot. Then (C) miR-381 was detected in human normal oral epithelial cell HOEC and HNSCC cell lines (*p<0.05; **p<0.01).
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STC2 Is a Direct Target of miR-381
starBase database was employed to predict the target genes

of miR-381, discovering that miR-381 potentially bound

with the 3ꞌ-UTR within STC2 (Figure 3A). In the meantime,

STC2 was observed to be highly-expressed in HNSCC tis-

sues via bioinformatics analysis, and negatively associated

with miR-381 expression (Figure 3B). For survival analysis,

patients were divided into high expression and low expres-

sion groups based on the median level of STC2, and it was

found that patients with high STC2 had a poorer prognosis

relative to patients with low expression (Figure 3C). To

further verify the targeted relationship between miR-381

and STC2, dual-luciferase reporter gene assay was conducted

and indicated that the luciferase activity in the cells trans-

fected with STC2-wt+miR-381 mimic was significantly

decreased relative to the cells with STC2-wt+NC mimic,

while there was no remarkable difference in the cells with

STC2-mt (Figure 3D). Furthermore, miR-381 mimic was

transiently transfected into FaDu cells for miR-381 overex-

pression construction. As indicated by qRT-PCR andWestern

blot, STC2 was greatly reduced in both mRNA and protein

levels in cells with miR-381 overexpression relative to that in

cells with the negative control (Figure 3E–G). Collectively,

STC2 was a direct target of miR-381 in HNSCC.

miR-381 Suppresses Cell Proliferation,

Migration and Invasion in HNSCC via

Targeting STC2
As abovementioned, STC2 was a target of miR-381. To

explore the underlying mechanism of miR-381/STC2 in

HNSCC, miR-381 mimic+oe-NC, miR-381 mimic+oe-

STC2 and NC mimic+oe-NC were transfected into FaDu

cells. qRT-PCR and Western blot were performed to assay

the transfection efficiency, showing that STC2 was signifi-

cantly decreased after miR-381 was overexpressed, but

gradually increased back when it was concurrently over-

expressed (Figure 4A and B). Moreover, CCK-8 and colony

formation assay revealed that miR-381 overexpression

could play an inhibitory role in cell proliferation and colony

forming ability through down-regulating STC2, as indicated

by the higher OD value and more colonies in the miR-381

mimic+oe-STC2 group relative to the miR-381 mimic+oe-

NC group (Figure 4C and D). Similarly, cell migration and

invasion could also be suppressed by miR-381

Figure 2 miR-381 overexpression inhibits cell proliferation, migration and invasion in HNSCC. miR-381 mimic and NC mimic were used to transfect FaDu cells. After

transfection, the cells were harvested for the determination of (A) cell viability, (B) colony forming ability, (C) cell migration and (D) invasion via a series of in vitro

experiments (*p<0.05; **p<0.01).
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overexpression, but such inhibitory effect could be attenu-

ated while STC2 was simultaneously overexpressed, as

detected by wound healing and transwell assays

(Figure 4E and F). Overall, the above findings elucidated

that miR-381 targeted reduced STC2, thereby inhibiting cell

proliferation, migration and invasion in HNSCC.

miR-381/STC2 Mediates HNSCC Cell

Proliferation via the FAK/PI3K/Akt/mTOR

Signaling Pathway
GSEA enrichment analysis was performed to further illu-

minate the regulatory role of miR381/STC2 in HNSCC

cell proliferation, showing that STC2-mediated genes were

mainly activated in the focal adhesion kinase (FAK) sig-

naling pathway (Figure 5A). PI3K (phosphatidylinositol

3-kinase)/Akt (protein kinase B)/mTOR (mammalian tar-

get of rapamycin) is the most common downstream path-

way of FAK. Thus, protein levels of FAK, PI3K, Akt,

mTOR and their phosphorylated forms (p-) were detected

using Western blot. As shown in Figure 5B, p-FAK,

p-PI3K, p-Akt and p-mTOR were all reduced in the cells

transfected with miR-381 mimic relative to the negative

control. This result demonstrated that miR-381/STC2

might function on HNSCC cell proliferation via the

FAK/PI3K/Akt/mTOR signaling pathway.

Discussion
Despite the great progress in cancer treatment, the overall

survival of HNSCC remains very poor, which urges us to

explore novel therapeutic methods for efficacy

improvement.16 Increasing evidence has suggested that

miRNAs are vital regulators involved in tumorigenesis

and development17,18 and they can be used as biomarkers

for cancer diagnosis and prognosis.19 At present, several

miRNAs that are associated with HNSCC diagnosis and

prognosis have been identified, such as miR-21,20 miR-

451,21 miR-37522 and miR-93.23 However, these miRNAs

have not been widely recognized.

In the present study, miR-381 was identified and

found to be significantly down-regulated in HNSCC

cells relative to the normal oral epithelial cells, which is

in agreement with the reports on breast cancer,24 cervical

cancer,11 colorectal cancer13 and other cancers. This

Figure 3 STC2 is a direct target of miR-381 in HNSCC. (A) miR-381 was predicted to bind with the 3ꞌ-UTR within STC2 using the starBase database. (B) Bioinformatics

analysis showed that STC2 was highly expressed in HNSCC tissues, and (C) Kaplan–Meier survival analysis suggested that high STC2 expression was closely correlated with

poor prognosis. STC2-wt and STC2-mt were co-transfected with miR-381 mimic or NC mimic into FaDu cells, respectively, and (D) dual-luciferase reporter gene assay was

conducted to further verify the targeted relationship between miR-381 and STC2. Thereafter, FaDu cells were transfected with miR-381 mimic or NC mimic alone, then

collected for detection of (E) miR-381 and (F, G) STC2 by qRT-PCR and Western blot (*p<0.05; **p<0.01).
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revealed that miR-381 might have the potential serving as

a tumor suppressor in HNSCC. Xia et al12 discovered that

miR-381 plays an inhibitory role in cell proliferation,

migration and invasion in epithelial ovarian cancer

through inhibiting YY1. While in oral squamous cell

carcinoma, miR-381-3p can result in the inhibition of

cell proliferation, cell cycle arrest and the promotion of

cell apoptosis via directly targeting FGFR2.25 All these

findings elucidate that miR-381 targets diverse genes in

different cancer types.

Figure 4 miR-381 inhibits cell proliferation, migration and invasion in HNSCC via targeting STC2. miR-381 mimic+oe-NC, miR-381 mimic+oe-STC2 and NC mimic+oe-NC

were transfected into FaDu cells, and (A) qRT-PCR and (B) Western blot were carried out to test STC2 in mRNA and protein levels. Then the cells were collected for cell

(C) viability and (D) colony forming ability determination via CCK-8 and colony formation assay, as well as for (E) cell migration and (F) invasion examination by wound

healing and transwell assays (*p<0.05; **p<0.01).

Figure 5 miR-381/STC2 mediates HNSCC cell proliferation via the FAK/PI3K/Akt/mTOR signaling pathway. (A) GSEA enrichment analysis was conducted and found that

STC2-mediated genes were mainly enriched in FAK signaling pathway. (B) Western blot was performed to detect FAK/PI3K/Akt/mTOR signaling pathway-related proteins.
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This study found that miR-381 exerted its inhibitory

role cell proliferation, colony forming, migration and inva-

sion in HNSCC by acting as a tumor suppressor. Besides,

miR-381 was investigated to target the 3ꞌ-UTR within

STC2 and exhibit a reverse correlation with STC2 expres-

sion. Prior studies have revealed that STC2 is able to

potentiate cell proliferation and metastasis in colorectal

cancer26 and hepatocellular carcinoma.27 Besides, it has

been identified as a target of miR-184 in glioblastoma

multiforme, and miR-184 can inhibit tumor cell prolifera-

tion, migration and invasion via suppressing STC2 expres-

sion. Hence, we hypothesized that miR-381 might

modulate STC2 expression to realize its regulatory role

in HNSCC. Meanwhile, we conducted rescue experiments

and found that STC2 overexpression could attenuate the

miR-381-induced inhibition of cell proliferation, migration

and invasion, suggesting that STC2 was a positive regu-

lator in HNSCC, which was consistent with the previous

study.28

FAK is implicated in the fundamental processes of

normal and cancer cells via its kinase activity and scaf-

folding function.29 Activated FAK can lead to the phos-

phorylation of downstream PI3K, thereby activating Akt.30

Akt, a downstream effector of PI3K, can participate in

various basic cellular responses and has been proved to

play a pivotal role in cancer occurrence.31 mTOR is the

downstream target of Akt and is capable of mediating

diverse cell functions by means of integrating multiple

pathways-derived signals.32 A previous study believes

that FAK/PI3K/Akt/mTOR signaling pathway is crucial

in cell proliferation, differentiation, survival and tumor

cell metastasis.33 In our study, we assayed the levels of

FAK/PI3K/Akt/mTOR signaling pathway-associated pro-

teins, and discovered that miR-381/STC2 exerted its nega-

tive role in HNSCC cell proliferation via the FAK/PI3K/

Akt/mTOR signaling pathway.

In conclusion, our study explored the expression of

miR-381 in HNSCC cells, and confirmed that miR-381

had the ability to suppress cell proliferation, migration

and invasion in HNSCC via targeting STC2. These results

shed light on the involvement of miR-381 in HNSCC

development, which provides a novel candidate target in

the future HNSCC treatment.

Highlights
1. miR-381 is down-regulated in HNSCC;

2. miR-381 inhibits cell proliferation, migration and

invasion in HNSCC;

3. STC2 is a direct target of miR-381 in HNSCC;

4. miR-381/STC2 participates in HNSCC development

via the FAK/PI3K/Akt/mTOR axis.
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