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Abstract

Rationale

It has been speculated that shared mechanisms underlie respiratory and cardiovascular dis-

eases (CVD) including systemic inflammation or mutual risk factors. In this context, we

sought to examine the associations of CVD-related plasma proteins with lung function as

measured by spirometry in a large community-based cohort of adults.

Methods

The study included 5777 Framingham Heart Study participants who had spirometry and

measurement of 71 CVD-related plasma proteins. The association of plasma proteins with

lung function was assessed cross-sectionally and longitudinally using models accounting

for familial correlations. Linear mixed models were used for the following measurements:

FEV1%predicted, FVC%predicted, and FEV1/FVC ratio with secondary analyses examining

obstructive and restrictive physiology at baseline and their new onset during follow up.

Measurements and main results

Among the 71 CVD-related plasma proteins, 13 proteins were associated in cross-sectional

analyses with FEV1%predicted, 17 proteins were associated with FVC%predicted, and 1 protein

was associated with FEV1/FVC. The proteins with the greatest inverse relations to

FEV1%predicted and FVC%predicted included leptin, adrenomedullin, and plasminogen activator

inhibitor-1; in contrast there were three proteins with positive relations to FEV1%predicted and

FVC%predicted including insulin growth factor binding protein 2, tetranectin, and soluble

receptor for advanced glycation end products. In longitudinal analyses, three proteins were

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0266523 April 7, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: McNeill JN, Lee DH, Hwang S-J,

Courchesne P, Yao C, Huan T, et al. (2022)

Association of 71 cardiovascular disease-related

plasma proteins with pulmonary function in the

community. PLoS ONE 17(4): e0266523. https://

doi.org/10.1371/journal.pone.0266523

Editor: Andreas Zirlik, Medizinische Universitat

Graz, AUSTRIA

Received: July 6, 2021

Accepted: March 22, 2022

Published: April 7, 2022

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Data cannot be

shared publicly because of confidentiality of

participants within Framingham Heart Study. Data

are available from the Framingham Heart Study for

researchers who meet the criteria for access to

confidential data. Point of contact: Karen Mutalik

Data Manager kmutalik@bu.edu.

Funding: This work was supported by grants from

the NIH to JEH [R01-HL134893; R01-HL140224;

K24-HL153669]. The Framingham Heart Study

(FHS) acknowledges the support of Contracts

https://orcid.org/0000-0001-7032-4228
https://orcid.org/0000-0001-5691-6913
https://orcid.org/0000-0001-5549-9054
https://doi.org/10.1371/journal.pone.0266523
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266523&domain=pdf&date_stamp=2022-04-07
https://doi.org/10.1371/journal.pone.0266523
https://doi.org/10.1371/journal.pone.0266523
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
mailto:kmutalik@bu.edu


associated with longitudinal change in FEV1 (ΔFEV1) and four with ΔFVC; no proteins were

associated with ΔFEV1/FVC.

Conclusion

Our findings highlight CVD-related plasma proteins that are associated with lung function

including markers of inflammation, adiposity, and fibrosis, representing proteins that may

contribute both to respiratory and CVD risk.

Introduction

Heart disease and respiratory disease are the first and fourth leading causes of mortality in the

United States [1, 2]. A complex interplay between the pulmonary and cardiac systems with

respect to clinical outcomes has long been recognized [3]. For example, a decline in pulmonary

function has been associated with greater risk for cardiovascular disease (CVD) after account-

ing for CVD risk factors [3, 4]. The presence of chronic obstructive pulmonary disease

(COPD) has been reported to be associated with increased odds of developing CVD by nearly

three-fold, while idiopathic pulmonary fibrosis (IPF) has been linked to fourfold increased

odds of multi-vessel coronary artery disease (CAD) [5, 6]. Conversely, heart failure has been

reported to be associated with lower FEV1 and FVC after accounting for smoking and body

size [7, 8]. The close link between pulmonary and cardiac diseases and the interaction between

them that culminates in adverse outcomes remains incompletely understood. It is also appar-

ent that there are shared risk factors (e.g. cigarette smoking) and biological pathways (e.g. sys-

temic inflammation leading to oxidative stress and endothelial and alveolar damage)

underlying both diseases [9, 10].

We hypothesized that CVD-related proteins are also associated with pulmonary function

and lung disease [11]. To this end, we sought to examine the associations of 71 CVD-related

plasma proteins with lung function measured by spirometry both cross-sectionally and longi-

tudinally in a large community-based cohort of adults. Our goal was to identify protein bio-

markers associated with pulmonary function that would provide insights into the association

of lung disease and CVD.

Methods

Study sample

The baseline sample for cross-sectional analyses consisted of Framingham Heart Study (FHS)

participants who attended Offspring cohort examination 7 (year 1995–1999, n = 3539) and

Third Generation (Gen 3) cohort examination 1 (year 2002–2005, n = 4095) [12, 13]. Partici-

pants had to have a biosample for measurement of plasma proteins and spirometry measure-

ment of pulmonary function (Offspring n = 2282, Gen 3 n = 3613). We excluded individuals

with prevalent heart failure (Offspring cohort n = 16, Gen 3 n = 2), chronic kidney disease

defined as an estimated glomerular filtration rate (eGFR) <30 ml/min/1.73m2 (Offspring

n = 5), asthma (identified through medication usage and self-reported diagnosis n = 256),

those with alpha-1 antitrypsin deficiency genotype (n = 9), and individuals missing key covari-

ates (n = 136), leaving 5777 participants for analysis. All participants gave written informed

consent. The study was approved by the Boston Medical Center Institutional Review Board.

For longitudinal analyses, participants who did not attend the follow-up clinical examination
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and provide spirometry data (N = 267), those with obstructive (Category 1 N = 489, Category

2 N = 343) or restrictive physiology (N = 201) at baseline were excluded.

Clinical assessment and covariates

At the baseline examination, a medical history, physical examination, and laboratory testing

were collected. Information on cigarette smoking was based on self-report. Other covariates

included BMI (kg/m2) and diabetes mellitus, which was defined as a fasting glucose�126 mg/

dL or the use of hypoglycemic medications for treating hyperglycemia [11]. A history of CVD

including myocardial infarction, angina pectoris, coronary insufficiency, cerebrovascular acci-

dent, atherothrombotic infarction of brain, transient ischemic attack, cerebral embolism,

intracerebral hemorrhage, subarachnoid hemorrhage, intermittent claudication, or congestive

heart failure was abstracted from relevant medical records, hospital records, electrocardio-

grams, and/or cardiac enzymes. Each diagnosis was verified by a three-physician review panel.

Measurements of plasma proteins

The Systems Approach to Biomarker Research (SABRe) in CVD initiative was created by the

NHLBI to identify biomarkers related to CVD and associated risk factors [11]. A platform of

85 plasma proteins were selected based on comprehensive literature review, gene expression

profiling and genome-wide association studies of myocardial infarction or coronary heart dis-

ease within the FHS cohort and others [11]. The proteins were measured by Sigma Aldrich,

Inc (St. Louis, MO) using the Luminex xMAP platform (Luminex, Inc., Austin, TX). 71 of the

85 biomarkers were included in this analysis given detectable levels for >95% of the partici-

pants. Among the 71 biomarkers utilized <2% missing values [11]. The mean coefficient of

variation across the 71 proteins was 2.2% with a range of 0 to 17.1% as previously described by

Ho et al., 2018 [11].

Measurements of pulmonary function

All 5777 participants underwent spirometry testing at the baseline examination using the Col-

lins survey II Water-Seal spirometer (Warren Collins, Inc., Braintree, MA, USA) and acquisi-

tion and quality control software (S&M Instruments, Doylestown, PA, USA) at the 7th

examination of the Offspring cohort (1998–2001), and first examination of the Third Genera-

tion cohort (2002–2005). A total of 4477 participants (1636 Offspring at Exam 8 (2005–2008)

and 2841 Third Generation at Exam 2 (2008–2011) underwent repeat assessments of spirome-

try at a subsequent examination using the Collins Comprehensive Pulmonary Laboratory sys-

tem (nSpire Health Inc., Longmont, CO, USA) [14]. Continuous measures of pulmonary

function (FEV1%predicted, FVC%predicted, FEV1/FVC) were calculated using the published refer-

ence values and equations derived from the NHANES III study [15].

Restrictive lung physiology (RLP) was defined as FVC <80% predicted and FEV1/FVC>0.7

[16]. Obstructive lung physiology was defined based on the Global Initiative for Chronic

Obstructive Lung Disease (GOLD) COPD definitions [17]. Individuals with FEV1/FVC <0.7

and 80%�FEV1%predicted�100% predicted were categorized as having Category 1 COPD, and

those with FEV1/FVC <0.7 and FEV1%predicted <80% were categorized as Category 2 COPD.

Based upon the GOLD criteria we had 21 participants who met criteria for GOLD 3,

(FEV1% predicted 30–49%) and no participants who met criteria for GOLD 4 (FEV1% pre-

dicted less than <30%). Those who met criteria for GOLD 3 and GOLD 4 were included in

category 2 COPD given the small numbers.

PLOS ONE Association of 71 cardiovascular disease-related plasma proteins with pulmonary function

PLOS ONE | https://doi.org/10.1371/journal.pone.0266523 April 7, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0266523


Statistical analysis

Protein concentrations were rank-normalized for analysis due to right-skewed distributions.

We examined the association of individual plasma proteins with lung function measures using

generalized linear mixed models (GLMM) to adjust for familial correlations. Linear mixed

models were used for the following measurements: FEV1%predicted, FVC%predicted, FEV1/FVC

(all primary outcomes), with secondary analyses examining longitudinal changes in spirome-

try traits (ΔFEV1%predicted/year, ΔFVC%predicted/year, ΔFEV1/FVC/year) among individuals

with serial spirometry assessments. Models were adjusted for age, sex, body mass index (BMI),

smoking status (yes = current or former, no = never), pack-years of cigarette smoking, and

diabetes mellitus (yes/no). For longitudinal change analyses, we adjusted for the pulmonary

function trait at baseline. We used logistic regression models using generalized estimating

equations to assess the association of biomarkers with dichotomous outcomes of obstructive

physiology and restrictive physiology. We defined a significant p-value cut-point of 7.04E-04

(0.05/71; 71 proteins included in analysis). In addition, to evaluate model discrimination as

assessed by the c-statistic, biomarker that were identified as having a cross sectional association

with restrictive or obstructive physiology, as defined by p<0.05, were added to the model con-

taining clinical covariates [18].

For the FEV1%predicted or FVC%predicted associated protein biomarkers, we analyzed linear

regression tests separately for smokers and non-smokers. For the secondary analyses, we

applied quintile rank value referring to individual protein measurement to generate least

square means and 95% confidences intervals for the lung function measurements,

FEV1%predicted, FVC%predicted. Results of the least square mean calculations were applied to

provide graphic representation of the linear associations.

In exploratory analyses, we repeated the linear mixed models for dependent traits of

FEV1%predicted or FVC%predicted, by adding an interaction term of smoking and the normalized

protein values. We assessed the statistical significance of smoking vs. biomarker interaction

with a p-value threshold of 0.05. All analyses were conducted using SAS version 9.4.

Results

A total of 5777 participants were included in the cross-sectional protein-trait analysis (mean

48 ± 13 years, 53% women, 14% current smokers and 37% former smokers; Table 1). The aver-

age BMI was 27.4±5.4 kg/m2, 6% had diabetes mellitus, and 4% had CVD at baseline. The

majority of participants had normal lung function with mean FEV1%predicted of 97 ±14,

FVC%predicted of 101±12 and FEV1/FVC of 96 ±8. At baseline, 14% of participants met criteria

for obstructive lung physiology (8% category 1 and 6% category 2) and 3% met criteria for

restrictive lung physiology.

Cross-sectional analysis of proteins associated with pulmonary function

measures

Among the 71 CVD-related plasma proteins, 13 proteins were associated (all inversely) with

FEV1%predicted, including proteins representing adipokine and inflammatory markers (Fig 1,

Table 2, S2 Table). The strongest associations were with leptin (P = 5.85E-10), adrenomedullin

(ADM; (P = 1.98E-09), and plasminogen activator inhibitor-1 (PAI1; P = 1.25E-8).

Seventeen proteins were associated with FVC%predicted (Fig 1, Table 2); the top proteins

were C-reactive protein (CRP; P = 9.25E-12), PAI-1 (P = 5.03E-11), and leptin (P = 5.99E-10).

Of these 17 proteins, 12 were also associated with FEV1%predicted, and one (sRAGE) with

FEV1/FVC. Proteins that were associated with both FEV1%predicted and FVC%predicted included
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Table 1. Clinical characteristics of 5777 FHS participants at baseline.

ALL (N = 5777) Normal

(N = 4744)

Restrictive

(N = 201)

Obstructive Category 1

(N = 489)

Obstructive Category 2

(N = 343)

Age, years, mean (SD)years� 48 (13) 46 (13) 55 (12) 54 (13) 59 (12)

Women N (%) 3089 (54%) 2577 (54%) 106 (53%) 236 (48%) 170 (50%)

Current smoker, N (%) 808 (14%) 590 (12%) 33 (16%) 82 (17%) 103 (30%)

Former smoker, N (%) 2125 (37%) 1654 (35%) 86 (43%) 278 (57%) 160 (47%)

Pack-years smoking, mean (SD) 10 (16) 7 (13) 16 (21) 16 (22) 29 (26)

Body-mass-index (kg/m2, mean (SD) 27.4 (5.4) 27.2 (5.3) 31.1 (7.1) 26.4 (4.3) 28.4 (5.6)

Diabetes Mellitus, N, (%) 326 (6%) 213 (4%) 38 (19%) 32 (7%) 43 (13%)

FEV1% predicted (%,median (Q1,Q3)) 97 (89,106)) 100 (93,108) 76 (72,80) 89 (84,94) 72 (64,76)

FVC%predicted (%,median (Q1,Q3)) 101 (93,109) 102 (95,110) 76 (73,79) 105 (99,111) 86 (79,92)

FEV1/FVC % predicted (%,median (Q1,

Q3))

77(73,81) (8) 78 (75,81) 67 (65,69) 67 (65,69) 63 (58,67)

Restrictive was defined as FVC < 80% predicted and FEV1/FVC>0.7.

Obstructive Category 1 was defined as FEV1/FVC <0.7 and 80%�FEV1�100% predicted.

Obstructive Category 2 was defined as FEV1/FVC <0.7 and FEV1 <80% predicted.

�Anova test for differences in age across the four groups revealed p<1.0E-22.

https://doi.org/10.1371/journal.pone.0266523.t001

Fig 1. Cross-sectional association of cardiovascular disease related plasma proteins with lung function. There were

18 proteins with associations with baseline FEV1%predicted, FVC%predicted, or FEV1/FVC ratio. Of these proteins, 15 were

associated with lower FEV1%predicted and FVC%predicted, with little effect of FEV1/FVC ratio.

https://doi.org/10.1371/journal.pone.0266523.g001
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adipokines (leptin, adipsin), inflammatory proteins (ADM, CRP, PAI-1), and the cardiovascu-

lar-related proteins (growth differentiation factor-15 (GDF-15), B-type natriuretic protein

(BNP)). Of note, among the plasma proteins associated with spirometry traits, the majority

demonstrated a negative association (i.e., higher protein level was associated with lower spi-

rometry value). There were three proteins showing a positive association with FVC%predicted:

IGFBP2 (β = 0.90, s.e. = 0.17, P = 5.63E-08), tetranectin (β = 0.54, s.e. = 0.15, P = 2.91E-04)

and sRAGE (β = 0.70, s.e. = 0.16, P = 8.86E-06) (Table 2). The only protein associated with

FEV1/FVC cross sectionally was sRAGE (β = -0.35, s.e. = 0.08, P = 2.41E-05) (Table 2).

When examining the cross-sectional association of proteins with dichotomous lung func-

tion traits including restrictive and obstructive physiology, we found no significant associa-

tions at the Bonferroni-corrected p-value threshold (results for nominal P<0.05) and minor

changes in c-statistic with the addition of individual proteins on top of the clinical model

(Table 3).

Significant linear associations between proteins and lung function for

smokers and never-smokers

In exploratory analyses, we examined the effect of smoking status on the association of proteins

with spirometry traits. Fig 2 displays adjusted least square means of spirometry traits across

quintiles of the four protein biomarkers with the greatest inverse effect on FEV1predicted% and

two protein biomarkers with positive association on FEV1%predicted and FVC%predicted, separated

by smoking status. The stratified results reveal that spirometry values were consistently lower

Table 2. Cross-sectional associations of proteins at baseline with FEV1%predicted, FVC%predicted, and FEV1/FVC.

FEV1%predicted FVC%predicted % FEV1/FVC

Beta SE p-value Beta SE p-value Beta SE p-value

LEPTIN -1.36 0.22 5.85E-10 -1.22 0.20 5.99E-10 -0.19 0.10 6.55E-02

ADM -1.20 0.20 1.98E-09 -1.05 0.18 3.58E-09 -0.14 0.09 1.33E-01

PAI1 -1.06 0.19 1.25E-08 -1.09 0.17 5.03E-11 -0.01 0.09 8.74E-01

BNP -1.01 0.18 2.57E-08 -0.74 0.16 4.32E-06 -0.21 0.08 1.29E-02

CYSTATIN C -0.97 0.19 2.56E-07 -0.75 0.17 7.90E-06 -0.22 0.09 1.26E-02

ADIPSIN -0.92 0.19 1.26E-06 -0.73 0.17 1.70E-05 -0.22 0.09 1.17E-02

CRP -0.84 0.17 1.68E-06 -1.06 0.16 9.25E-12 0.18 0.08 2.50E-02

AGP1 -0.66 0.18 1.78E-04 -0.62 0.16 7.81E-05 -0.06 0.08 4.70E-01

SICAM1 -0.64 0.17 2.19E-04 -0.47 0.15 2.08E-03 -0.14 0.08 8.12E-02

TIMP1 -0.71 0.19 2.35E-04 -0.63 0.17 2.72E-04 -0.11 0.09 2.23E-01

GDF15 -0.75 0.20 2.53E-04 -0.77 0.18 2.57E-05 0.01 0.10 9.02E-01

GMP140 -0.60 0.17 5.67E-04 -0.60 0.16 1.27E-04 -0.04 0.08 6.28E-01

ANGPTL3 -0.62 0.18 6.72E-04 -0.66 0.16 5.13E-05 0.01 0.09 9.16E-01

UCMGP -0.60 0.19 1.71E-03 -0.62 0.17 2.38E-04 -0.01 0.09 8.68E-01

SAA1 -0.55 0.17 1.24E-03 -0.75 0.15 5.78E-07 0.17 0.08 3.51E-02

IGFBP2 0.50 0.19 7.01E-03 0.90 0.17 5.63E-08 -0.29 0.09 8.50E-04

TERTANECTIN 0.28 0.17 9.12E-02 0.54 0.15 2.91E-04 -0.22 0.08 5.01E-03

sRAGE 0.24 0.18 1.67E-01 0.70 0.16 8.86E-06 -0.35 0.08 2.41E-05

Beta coefficient represents linear correlation between lung function measurement and rank normalized protein. MV model adjusted for age, sex, body mass index

(BMI), smoking status (yes = current/former, no = never), pack-years of cigarette smoking, and diabetes mellitus (yes/no).

�Bolded numbers represent statistically significant values meeting Bonferroni corrected p-value threshold: 0.05/71 = 7.04E-04.

https://doi.org/10.1371/journal.pone.0266523.t002
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in smokers that non-smokers, and that most trends for associations of biomarkers with lung

function were similar in current or former smokers versus never smokers.

We evaluated potential multiplicative interaction between smoking exposure and protein

concentrations (S3 Table). There was a statistically significant interaction of smoking with

Table 3. Cross-sectional association of cardiovascular disease related plasma proteins with restrictive and

obstructive physiology.

Restrictive Physiology N = 201

Protein OR (95% CI) p-value C-statistic

Baseline clinic model 0.762

ADM 1.24 (1.08–1.42) 1.74E-03 0.771

SAA1 1.16 (1.05–1.29) 4.29E-03 0.768

AGP1 1.21 (1.06–1.39) 5.13E-03 0.767

CRP 1.14 (1.03–1.26) 8.62E-03 0.776

LEPTIN 1.17 (1.03–1.32) 1.52E-02 0.767

FBN 1.13 (1.02–1.24) 1.71E-02 0.767

CYSTATIN-C 1.18 (1.02–1.36) 2.44E-02 0.765

ANGPTL3 1.16 (1.02–1.32) 2.75E-02 0.768

GDF-15 1.13 (1.00–1.28) 4.39E-02 0.762

Obstructive Physiology N = 832

Baseline clinic model 0.753

sRAGE 1.13 (1.04–1.22) 2.80E-03 0.754

ADIPSIN 1.12 (1.03–1.23) 1.07E-02 0.753

BNP 1.09 (1.02–1.17) 1.25E-02 0.755

CYSTATIN-C 1.11 (1.02–1.21) 1.55E-02 0.757

LEPTIN 1.12 (1.02–1.23) 2.36E-02 0.755

DDP4 0.91 (0.84,0.99) 2.94E-02 0.754

Odds ratio represents difference of protein distribution for cases of obstructive/restrictive physiology in contrast to

that for participants with normal PFT. Plasma proteins with nominal p-value<0.05 were displayed in the table.

https://doi.org/10.1371/journal.pone.0266523.t003

Fig 2. Association of selected proteins (quintiles) with lung function stratified by smoking status. Adjusted least

square means of spirometry traits across quintiles of the four protein biomarkers with the greatest inverse effect on

FEV1predicted% and two protein biomarkers with positive association on FEV1%predicted and FVC%predicted (A. Leptin; B.

ADM; C. PAI-1; D. BNP; E. IGFBP2; F. sRAGE).

https://doi.org/10.1371/journal.pone.0266523.g002
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ADM level for FEV1%predicted, FVC%predicted, and FEV1/FVC (P�0.05 for all). Specifically,

ADM appeared to be associated with greater reduction in FEV1%predicted, FVC%predicted and

FEV1/FVC among smokers in comparison to never-smokers.

Longitudinal analyses of proteins associated with change in pulmonary

function

After excluding individuals with obstructive or restrictive physiology at baseline, a total of

4477 FHS participants with spirometry at the subsequent examination cycle were included in

the longitudinal analysis. Three proteins (sRAGE, kallikrein B1 (KLKB1) and APOA1) were

associated with longitudinal change in FEV1%predicted (Table 4). Four proteins (sRAGE,

KLKB1, APOA-1, and fibrinogen (FBN)) were associated with longitudinal change in

FVC%predicted (Table 4). No proteins were associated with change in FEV1/FVC.

In secondary analyses, we examined proteins associated with new-onset restrictive and

obstructive physiology. Over a mean follow-up of 6 years, 56 individuals developed new-onset

restrictive physiology and 206 developed new-onset obstructive physiology. Five proteins were

associated with new-onset restrictive physiology: IGFBP1, CRP, GDF-15, epithelial growth fac-

tor containing fibulin extracellular matrix protein 1 (EFEMP1), and ceruloplasmin (Fig 3).

There were no proteins associated with new-onset obstructive physiology.

Discussion

We examined 71 circulating CVD-related proteins for their associations with lung function in

nearly 6000 FHS participants. Our main findings are three-fold: first, we identified 18 proteins

associated with baseline FEV1%predicted and/or FVC%predicted (Leptin, ADM, PAI1,BNP, Cysta-

tin-C, Adipisin, CRP, AGP1, SICAM1, TIMP1, GDF15, GMP140, ANGPTL3, UCMGP,

SAA1, IGFPB2, Tertanectin, SRAGE) (Fig 4). These included adipokines (leptin), markers of

inflammation (ADM, PAI-1, CRP, sRAGE), and markers of fibrosis (IGFBP2). Second, we

identified four proteins associated with longitudinal changes in FEV1%predicted and/ or

FVC%predicted (sRAGE, KLKB1, APOA1, and FBN). Third, five proteins were associated new-

onset restrictive physiology (IGFBP1, CRP, GDF-15, EFEMP1, and ceruloplasmin). Taken

together, these findings suggest that adipokine-related signaling, inflammation, and fibrosis

that are processes known to be associated with CVD also may underlie pulmonary

dysfunction.

Lung disease and CVD are inextricably linked and interplay between the pulmonary and

cardiac systems affect clinical outcomes [8, 19]. The biological mechanisms that link cardiac

and pulmonary disease are not completely understood, but may relate to shared systemic

Table 4. Proteins associated with annual change in FEV1%predicted, FVC%predicted, and/or FEV1/FVC.

ΔFEV1/year ΔFVC/year Δ FEV1/FVC/year

Beta� SE p-value Beta SE p-value Beta SE p-value

sRAGE 0.09 0.02 2.28E-06 0.10 0.02 9.09E-10 -0.01 0.01 0.49

KLKB1 -0.07 0.02 4.70E-05 -0.08 0.02 6.28E-07 0.01 0.01 0.44

APOA1 -0.07 0.02 1.75E-04 -0.07 0.02 2.46E-05 0.00 0.01 0.96

FBN -0.05 0.02 2.63E-03 -0.06 0.02 5.10E-04 0.00 0.01 0.95

�Beta coefficient represents change in Δlung function measurement/year per 1-SD change in rank normalized protein. MV model adjusted for age, sex, body mass index

(BMI), smoking status (yes = current or former, no = never), pack-years of cigarette smoking, and diabetes mellitus (yes/no).

�Bolded numbers represent statistically significant values meeting Bonferroni corrected p-value threshold: 0.05/71 = 7.04E-04.

https://doi.org/10.1371/journal.pone.0266523.t004
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inflammation leading to endothelial dysfunction, tissue dysregulation, and impaired vascular

response [20]. While associations between CVD and pulmonary diseases have been well estab-

lished, there is growing evidence that subtle changes in spirometry indices of lung function,

even within the normal range, are predictive of risk for future cardiac disease [21]. In particu-

lar, reductions in FEV1 and FVC with a preserved FEV1/FVC (consistent with restrictive lung

changes) in a young ostensibly healthy cohort was reported to be associated with adverse car-

diac remodeling, increased left ventricular wall thickness, left ventricular mass, and increased

odds of diastolic dysfunction [21, 22]. The association of FVC with increased CVD risk has

Fig 3. Proteins associated with higher odds of new onset restrictive lung physiology. Ceruloplasmin, EFEMP1,

GDF-15, CRP and IGFBP1 had a higher odd of developing restriction as defined by an FVC<80% and FEV1/FVC>0.7

when pulmonary function tests were analyzed longitudinally within the cohort.

https://doi.org/10.1371/journal.pone.0266523.g003

Fig 4.

https://doi.org/10.1371/journal.pone.0266523.g004
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been demonstrated in the FHS, with early studies reporting a lower FVC to be associated with

risk of heart failure and CVD mortality [8]. In addition, in the Jackson Heart Study (JHS)

cohort, a restrictive spirometry pattern was associated with increased risk of HF hospitaliza-

tion and higher pulmonary artery systolic pressure (PASP) [23].

In this context, it is notable that our study findings demonstrate associations of specific

CVD-related proteins including leptin, ADM, CRP, cystatin-C, GDF-15, and adipsin with a

lower FEV1 and FVC, but without a lower FEV1/FVC ratio, consistent with restrictive physiol-

ogy. These proteins in turn have previously been linked by our group to new onset of athero-

sclerotic CVD, heart failure, CVD-related death, and all-cause mortality (Table 5) [11]. Higher

ADM levels are associated with adverse cardiac outcomes and with chronic lung conditions

such as asthma or COPD [24]. Higher ADM levels in the setting of cardiopulmonary disease

could reflect protective measures to limit the production of pro-inflammatory cytokines as

well as help repair endothelial cells [25]. These findings highlight potential shared proteins

that may contribute both to CVD and the development of pulmonary disease.

Given the shared role of cigarette smoking as a risk factor for CVD and pulmonary disease,

we examined the interaction of smoking with CVD proteins. ADM demonstrated a significant

smoking interaction across the lung function parameters; smokers with the highest level of

ADM demonstrated reduced lung function. ADM has been shown to be elevated in COPD

patients in comparison to healthy controls and it was reported to independently predict inten-

sive care unit (ICU) admission during COPD exacerbation [26]. In addition, pro-ADM has

been shown to be an independent predictor of all-cause mortality in stable COPD patients and

has been shown to improve the accuracy of 1-year and 2-year mortality prediction when

added to the BODE (body mass index, airflow obstruction, dyspnea and exercise capacity)

index [27]. Cigarette smoke and aryl hydrocarbon receptor (AHR) activating ligands have

been shown to upregulate ADM expression in vitro and in vivo [28]. Our results further con-

firm the inverse association of ADM with lung function when considered in the context of cig-

arette smoke exposure.

The majority of protein biomarkers were associated with reduced lung function; however,

sRAGE, tetranectin, and IGFBP2 were associated with preserved lung function as reflected by

higher baseline FVC%predicted. Higher sRAGE levels have previously been associated with

Table 5. Proteins associated with baseline lung function and cardiovascular disease outcomes.

FEV1 FVC FEV1/FVC Atherosclerotic CVD Heart Failure CVD mortality All- Cause Mortality

LEPTIN # # "

ADM # # " " "

BNP # # " " "

CYSTATIN C # # " " " "

CRP # # " " "

ADIPSIN # # " " "

sICAM1 # " " "

GDF-15 # # " " " "

AGP-1 # # " " "

TIMP-1 # # " " " "

UCMGP # # " "

SAA1 # " "

IGFBP2 # " "

TERTANECTIN " # #

SRAGE " # #

https://doi.org/10.1371/journal.pone.0266523.t005
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higher FVC, total lung capacity (TLC), and diffusion (DLCO) suggesting beneficial effects on

the lungs [29–31]. sRAGE has been proposed to act on advanced glycation end-products

(AGEs) to inhibit their ability to prevent wound healing and destroy the extracellular matrix

[29]. Tetranectin and sRAGE have also been reported to be associated with favorable cardiac

features. In particular, lower serum tetranectin levels have been associated with higher preva-

lence of coronary artery disease and have been recorded in patients with acute myocardial

infarction [32, 33]. Tetranectin engages in thrombolysis by binding to fibrin and converting

plasminogen to plasmin, therefore lower levels of tetranectin could lead to higher rates of

thrombosis [33]. Tetranectin and sRAGE have been reported to be associated with lower all-

cause mortality risk and our study further highlights their potential protective effects with

regard to the lungs [11, 34].

Similar to tetranectin and sRAGE, IGFBP2 demonstrated a positive association with FEV1

and FVC in cross-sectional analyses. Guiot et al. demonstrated higher serum IGFBP2 levels in

patients with idiopathic pulmonary fibrosis (IPF); however, when gene expression profiles of

the lung fibroblast were examined in IPF and control patients, IGFBP2 was >10 higher in the

controls [35, 36]. IGFBP2 has been reported to be associated with adverse cardiac outcomes

including CVD death and reduced LVEF [11, 37]. IGFBP2 may have protective roles in both

the lungs and heart by downregulating insulin growth factor (IGF) in the lung and reducing

fibroblast formation, as well as limiting myoblast formation in the heart [36, 37]. Given that

IGFBP2 serum levels decrease in response to initiation of anti-fibrotic medication in IPF

patients, it is possible that serum IGFBP2 is upregulated in response to inflammation or dam-

age within the lungs [36].

In addition to identifying 18 proteins associated with FEV1%predicted and/or FVC%predicted

with little effect on the FEV1/FVC ratio, we identified five proteins (IGFBP1, CRP, GDF-15,

EFEMP1, and ceruloplasmin) associated with new-onset restrictive physiology (after adjusting

for BMI) [38]. GDF-15 is an epithelial stress marker that is elevated in patients with idiopathic

pulmonary fibrosis (IPF), a predictor of more severe disease and worse outcomes in IPF and

associated with a greater odd of developing interstitial lung abnormalities (ILA) in both the

FHS and COPDGene cohorts [38, 39]. Higher levels of baseline GDF-15 have also been associ-

ated with a more rapid decline in FEV1 over the span of 5 years in a community based sample

[40]. Elevated levels of GDF-15 have been demonstrated to be an independent predictor of

heart failure related rehospitalization as well as death in patients with both diastolic and sys-

tolic heart failure after adjusting for troponin and BNP levels [41]. In addition, elevated GDF-

15 have been associated with higher right atrial pressures and adverse outcomes in patient

with idiopathic pulmonary arterial hypertension (PAH) [42]. While the association of GDF-15

with lung fibrosis, heart failure, and PAH has previously been established, our results demon-

strate a novel association of EFEMP1 with new onset of restrictive lung physiology [38].

EFEMP1 is known to play a role in cell-to-cell and cell-to-matrix communication and inhibits

cell growth [43]. An elevated EFEMP1 has previously been demonstrated to be associated with

a greater odds of heart failure, CVD mortality, and all-cause mortality, suggesting that it may

have roles in the development or progression of cardiac and lung diseases [11]. Of note, the

association of GDF-15 and EFEMP1 with new onset restrictive physiology was independent of

BMI.

Our study has several limitations worth noting. We utilized a panel of 71 high value CVD

plasma proteins to assess their associations with lung function. These proteins represent an

incomplete proteomic fingerprint of lung disease. In addition, this was an observational study,

which limits inferences of causality and biological mechanisms underlying lung disease. Fur-

thermore, we defined restrictive and obstructive physiology based solely upon spirometry

measures. Body-plethysmography may provide a more specific test for restrictive pulmonary
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disease as a decrease in FVC may be the result of increased dead space. Finally, the participants

in this study were predominantly white, limiting potential generalizability of the study findings

to other racial/ethnic groups.

In conclusion, our findings highlight several potential shared proteins between lung func-

tion and CVD. Specifically, we identified 18 proteins associated with baseline and four proteins

associated with longitudinal changes in FEV1%predicted and/or FVC%predicted. Many of the pro-

teins demonstrate patterns of association with lung function that are suggestive of restrictive

lung physiology. We identified five proteins associated with new onset restrictive lung physiol-

ogy. The proteins identified include markers of inflammation, adiposity, and fibrosis reflecting

proteins that may contribute to lung function and either directly or indirectly affect cardiac

function. Further studies are needed to explore the mechanisms underlying shared proteins

involved in lung and cardiac diseases.
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