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Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in
conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting
artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In
this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the
first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm.
The 𝐿1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second
step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory
motion among the recovered images. The framework is tested for free breathing simulated and in vivo 2D cardiac cine MRI data.
Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error
(MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison between k-t
FOCUSS with MEMC and the proposed method.

1. Introduction

Compressed sensing (CS) has been successfully implemented
to reduce the scan time ofMR images [1–3]. Application of CS
to transformed domainMR images includes brain [1], cardiac
[4], and pediatricMR imaging [5]. According toCS approach,
a sparse or compressible image can be recovered, by solving
𝑙1-𝑙2 norm mixed optimization problem, from randomly
undersampled data using a nonlinear recovery technique
[2, 6]. Since the 𝑙1-norm is not differentiable everywhere, an
approximation to the 𝑙1-norm is used in the reconstruction
algorithm. Different approaches [1, 7] have been used to
approximate 𝑙1-norm using some differentiable functions.
Reference [7] uses hyperbolic tangent based function as an
approximation of 𝑙1-norm to solve the CS recovery problem
for static MR images.

Different types of motion during the data acquisition
process cause artifacts like ghosting and blurring in the

recovered cardiac MR images. In the presence of respira-
tory motion, high quality MR images can be produced by
combining k-space profiles of the same cardiac phases in
ECG-gated MR acquisition [8]. Addition of the same cardiac
phases at different respiratory motions or states produces
inconsistencies in k-space which results in motion artifacts
in the combined reconstructed images. Sparsity, a necessary
condition for CS, is also violated by this k-space profile com-
bination [9]. Hence, to avoid periodic breath holds during
the acquisition process and to take advantage of sparse signal
recovery from undersampled data using CSmethods, motion
artifacts may need to be corrected. The combined approach
of CS and motion correction has been implemented in [8–
11]. Otazo et al. proposed 1D translational respiratory motion
correction. Usman et al. introduced a reconstruction scheme
for dynamic cardiac MRI by incorporating general motion
framework directly into CS reconstruction. Their method
uses data binning and intensity based nonrigid registration
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algorithm for estimating respiratory motions. Reference [11]
proposed a CS based motion correction in the free breathing
environment with multiple constraints. This method uses
Demon based registration to estimate the motion between
reference and other respiratory states.

Interframemotion estimation and compensation for time
varying features of images has been used in video compres-
sion standards [12, 13].These standards are based on different
block matching algorithms [14] for motion estimation and
compensation. Similar to video compression, dynamic MR
images can be predicted by exploiting temporal redundancies
between the images. Asif et al. proposed an algorithm, MAS-
TeR [15], for the breath held condition, based on interframe
motion to recover different cardiacMR images.MASTeR uses
motion adaptive transform that models temporal sparsity
using interframe motion estimation. k-t FOCUSS [16] also
uses interframe motion estimation and compensation with a
fixed reference frame during the image recovery process for
breath held cardiac cine MRI.

In this article, a novel framework is presented for the
recovery of highly undersampled free breathing cardiac
MR images. Similar cardiac phases at different respiratory
states are grouped like the frames of a video sequence.
The Adaptive Rood Pattern Search (ARPS) technique, based
on the interframe motion, is used to estimate and correct
respiratory states among the grouped images. A two-step
approach is adopted for the reconstruction of dynamic MR
images. In the first step, free breathing cardiac phases without
motion estimation are recovered from undersampled k-space
data. Next, interframe motion between the reconstructed
cardiac phases is calculated using ARPS to improve the
image estimates iteratively. An approximation of the 𝑙1-norm
penalty is used in the gradient descent algorithm to recover
dynamic MR images. The adjustable parameters of the 𝑙1-
norm approximation provide an extra benefit, as it can be
adjusted to reflect the changing statistics of dynamic MR
images. After the application of the proposed method, the
combinations of similar cardiac phases at different respiratory
states are clear and accurate as compared to the combined
cardiac phase without motion estimation and correction.

The rest of the paper is organized as follows. Section 2
discusses the preliminaries for interframe motion estimation
in dynamicMRI andCS. Section 3describes themethodology
of the proposed algorithm. Section 4 gives the details of
algorithm, Section 5 presents the simulation parameters and
results followed by Section 6 that discusses the merits and
demerits of the scheme, and Section 7 concludes the work.

2. Free Breathing Imaging Model and CS

Free breathing downsampled k-spaced data corrupted by
motion states 𝑑 = 1, 2, 3, . . . , 𝐷 for cardiac phase 𝑛 =
1, 2, 3, . . . , 𝑁 is mathematically given as

y𝑛 =
𝐷

∑
𝑑=1

A𝑑,𝑛Fx𝑑,𝑛 =
𝐷

∑
𝑑=1

Φx𝑑,𝑛, (1)

where x𝑑,𝑛 is a two-dimensional complexMR image vector of
length 𝑇 representing a cardiac phase 𝑛 at respiratory state

𝑑, F is a Fourier operator that transforms an image to k-
space, A𝑑 is a random variable-density undersampling mask,
different for all respiratory states and Φ = AF is a sensing
matrix, and y𝑛 is a combined k-space measurement vector
of length 𝐶 for nth cardiac phase acquired for all respiratory
positions. A single cardiac phase n at respiratory state d in a
specific heart cycle can be given as

y𝑑,𝑛 = A𝑑,𝑛Fx𝑑,𝑛 = Φx𝑑,𝑛. (2)

The reduction or acceleration factor for MR images is given
by 𝑅 = 𝑇/𝐶. By increasing 𝑅, the system in (1) becomes
highly underdetermined. Compressed sensing solves such
underdetermined system of equations effectively to recover
MR images. The recovery of a sparse signal x ∈ R𝑇 using CS
can be achieved by solving the following convex optimization
problem:

min
x

𝑓 (x) fl Φx − y
2
2 + 𝜆 ‖x‖1 , (3)

where 𝜆 ∈ R+ is the Lagrangian that provides a balance
between sparsity and data consistency.The 𝑙2-norm keeps the
solution consistent with the data and the 𝑙1-norm given by
‖x‖1 fl ∑𝑇𝑖=1 |𝑥𝑖| encourages sparsity in solution [2].

3. Methods

3.1. Smooth 𝑙1-Norm Approximation. CS algorithms recover
sparse signals or images by solving the 𝑙1-norm regularized
optimization problem such as that given in (3). In this
article, we use gradient descent algorithm for solving the
optimization problem with wavelet based penalty term.
Nondifferentiability of the 𝑙1-norm at origin excludes the
usage of mostly optimization approaches for the solution.
Reference [1] uses an approximation of |𝑥| ≈ √𝑥𝑥∗ + 𝜇
with 𝑥∗ the complex conjugate and 𝜇 a positive smoothing
factor. Reference [7] proposes a new smooth function for
approximating the 𝑙1-norm, used in this paper, which is given
below

|𝑥| ≈ 𝑥 tanh (𝛾𝑥) . (4)

This function better approximates the absolute value
and provides extra flexibility of adjusting the slope at the
origin with the proper selection of 𝛾 and makes it more
suitable for dynamic images. Mostly MR images are sparse in
transformed domain so the modified version of cost function
given in (3) for transformed MR images is

minx 𝑓 (x) fl Φx − y
2
2 + 𝜆 ‖Ψx‖1 , (5)

whereΨ is a wavelet operator that transforms the image to a
sparse domain.

In this article, we propose an iterative algorithm that uses
the following approximation for the 𝑙1-norm penalty:

‖x‖1 ≈
𝑇

∑
𝑖=1

𝑥𝑖 tanh (𝛾𝑥𝑖) =
𝑇

∑
𝑖=1

𝛼 (𝑥𝑖) , (6)
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where 𝛼(𝑥𝑖) = 𝑥𝑖 tanh(𝛾𝑥𝑖). The update equation for the
algorithm, derived using the steepest descent method for a
sparse vector x ∈ RT, is

x𝑖+1 = x𝑖 − 𝜂∇𝑓 (x𝑖) , (7)

where 𝜂 is positive valued step size and ∇ is the gradient
operator that differentiates the cost function 𝑓(x) at 𝑖th
iteration. During each iteration, shrinkage given in (8) is
applied in the wavelet domain after (7) to reconstruct theMR
images.

𝑇𝛽 (𝑧) = max {|𝑧| − 𝛽, 0} ⋅ sgn (𝑧) , (8)

where 𝛽 is a thresholding parameter. By incorporating the
approximation ‖x‖1 ≈ ∑𝑇𝑖=1 𝛼(𝑥𝑖), the cost function can be
written as

𝑓 (x) = 1
2

Φx − y
2
2 + 𝜆

𝑇

∑
𝑖=1

𝛼 (𝑥𝑖) . (9)

The gradient of the cost function is easy to compute:

∇𝑓 (x) = ΦT (Φx − y) + 𝜆
𝑇

∑
𝑖=1

𝛼 (𝑥𝑖) (10)

with

𝛼 (𝑥𝑖) = tanh (𝛾𝑥𝑖) + 𝑥𝑖𝛾 (1 − tanh2 (𝛾𝑥𝑖)) . (11)

3.2. Respiratory Motion Based Dynamical System. Two main
problems with free breathing cardiac MRI are as follows.

(1) Blurring artifacts are generated by the combination
of k-space samples for the same cardiac phases at different
respiratory states.

(2) The combination of k-space data in free breathing
decreases the sparsity level.

In this article, we use interframe motion to estimate
the respiratory states between the same cardiac phases.
Video standards MPEG and H.264 [12, 13] have success-
fully exploited interframe motion for compression. In the
dynamic MRI images, pixels are not significantly displaced
in the neighboring frames. Pixel locations can be predicted
using interframe motion estimation. Temporal redundancy
among the frames is advantageous for the prediction of pixel
locations. Let x𝑑,𝑛 and x𝑑,𝑛+1 be images having 𝑛th cardiac
phases at respiratory states d and 𝑑+1, respectively.The pixel
values of x𝑑 at location (𝑎, 𝑏) are closest to the pixel values
at (𝑎 + Δ𝑎, 𝑏 + Δ𝑏) in x𝑑+1. The displacement of all pixels in
x𝑑,𝑛 from (𝑎, 𝑏) to (𝑎 + Δ𝑎, 𝑏 + Δ𝑏) in x𝑑+1,𝑛 is represented
by motion vectors (Δ𝑎, Δ𝑏). According to [2], cardiac phase
x𝑑,𝑛 at dth respiratory state can be generated from the cardiac
phase x𝑑+1,𝑛 at (𝑑 + 1)th respiratory state by the following
equation:

x𝑑,𝑛 = M𝑑+1,𝑛x𝑑+1,𝑛 + m𝑑,𝑛, (12)

where M𝑑+1,𝑛 is a backward transformation that uses infor-
mation about the physical changes between two datasets of

the same cardiac phases. The motion compensated residual
is computed by taking the difference between predicted
and compensated image. Using the transformation M𝑑+1,𝑛, a
motion dependent linear system can be written by combining
(1) and (12) as follows:

y𝑛 =
𝐷

∑
𝑑=1

A𝑑,𝑛Fx𝑑,𝑛, (13a)

m𝑑,𝑛 = M𝑑+1,𝑛x𝑑+1,𝑛 − x𝑑,𝑛. (13b)

To recover the cardiac phases x𝑑,𝑛, we solve (13a) and (13b)
by exploiting sparse structure in m𝑑,𝑛 and x𝑑,𝑛. The process
of complete high resolution image generation is shown in
Figure 1. The data is acquired in segmented fashion because
MRI is a slow imaging modality. During the data scanning
process, a limited k-space sample is recorded at each heart
phase in all cardiac cycles. To simulate this condition, each
cardiac phase at different respiratory states is multiplied with
different sampling matrix A𝑑,𝑛.

3.3. Initial CS Reconstruction. A two-step approach is
adopted to recover motion free cardiac phases. In the 1st step,
images with motion effects are reconstructed from under-
sampled k-space data independently. For the recovery of
dynamic cardiac images, the iterative algorithm, mentioned
as Algorithm 1, optimizes the cost function given in (9)
with the approximation given in (4). Wavelet based soft
thresholding is used for the recovery of theNth cardiac phase
for each respiratory state. Daubechies-4 (db4) wavelet is used
to exploit the transformed domain sparsity.

3.4. Interframe Motion Estimation and Correction (MEMC).
In the 2nd step, interframemotion estimation and correction
is performed from a pair of CS recovered images and divided
into two substeps.

(a) Motion Estimation. Exploit initially CS reconstructed
images to estimate or refine interframe motion and the
motion transformationM as follows. Cardiac phase in the 1st
R-RECG interval is taken as a P frame (frame to be predicted)
and cardiac phases in subsequent R-R intervals are taken as
an I frame (reference frame).The P and I frame are borrowed
terminology fromvideo compression. To estimate themotion
between the 2nd cardiac phases of the 1st and 4thR-R interval,
for example, we take the 2nd cardiac phase of the 1st interval
as a P frame and the 2nd cardiac phase at different respiratory
state in the 4th R-R interval as an I frame.

(b) Motion Correction. After finding motion vectors using
ARPS block matching algorithm, we generate the corrected
image from I frame and with the help of motion vectors. For
the refinement ofmotion corrected image, solve the following
optimization problem written for (13a) and (13b):

minx 𝑓 (x𝑑,𝑛) fl
Φx𝑑,𝑛 − y𝑑,𝑛


2
2 + 𝜆 m𝑑,𝑛

1 , (14a)
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Figure 1: A presentation of initial CS recovery and CS-MEMC recovery steps of the proposed method. For simplicity, only two heart phases
with different respiratory states are shownwith six heart beats and𝑁 cardiac phases. Low resolution P and I frames are generated primarily by
CS. Using ARPS block matching algorithm, motion is estimated and corrected to produce a motion corrected image. The CS-free breathing
MEMC image is generated by combining a low resolution P frame and motion corrected image.
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INPUTS
y𝑑,𝑛, y𝑑+1,𝑛: k-space data
F: Fourier Operator
Ψ: Sparsifying transform operator
𝜆 = 0.005, 𝜂 = 0.9, Maxiter = 50
OUTPUT
X𝑑,𝑛: Motion corrected final image
INITIALIZATION
x̂𝑑,𝑛 = F−1y𝑑,𝑛, x̂𝑑+1,𝑛 = F−1y𝑑+1,𝑛
INITIAL CS BASED RECOVERY

Step 1. For 𝑖 = 1 : Maxiter
Step 2. Update x𝑖+1𝑑,𝑛 = x̂𝑖𝑑,𝑛 − 𝜂∇𝑓(x̂𝑖𝑑,𝑛)
Step 3. Shrinkage: x̂i+1𝑑,𝑛 = Ψ−1{𝑇𝛽(Ψx𝑖+1𝑑,𝑛 )} (Using (8))
Step 4. End (i) Return x𝑑,𝑛

Repeat Steps 1 to 4 for recovery of x𝑑+1,𝑛
MOTION ESTIMATION AND COMPENSATION

Step 5. For 𝑗 = 1:Maxiter do
If 𝑗 = 1

Step 6. Find motion compensated image x̂j
𝑑,𝑛

for x𝑑,𝑛 and x𝑑+1,𝑛
Else

Step 7. Refine motion between x̂j
𝑑,𝑛

and x𝑑+1,𝑛
End (Else)

Step 8. Update x𝑗+1
𝑑,𝑛

= x̂𝑗
𝑑,𝑛

− 𝜂∇𝑓(x̂𝑗
𝑑,𝑛

)
Step 9. Shrinkage: x̂j+1

𝑑,𝑛
= Ψ−1{𝑇𝛽(Ψx

𝑗+1

𝑑,𝑛
)} (Using (8))

End (j) Return refined image ...x𝑑,𝑛
Step 10. X𝑑,𝑛 =

...x𝑑,𝑛 + x𝑑,𝑛

Algorithm 1: The proposed algorithm.

wherem𝑑,𝑛 is given in (13b) and its 𝑙1-norm approximation is

m𝑑,𝑛
1 =
𝐸

∑
𝑒=1

(𝑚𝑑,𝑛)e tanh (𝛾 (𝑚𝑑,𝑛)e) . (14b)

At the final step, we generate the image of 2nd cardiac phase
by combining P frame and motion corrected image to get an
image with high temporal and spatial resolution.

4. Proposed Algorithm

Steps involved in the reconstruction of MRmotion corrected
images are given in Algorithm 1.

5. Experimental Setup and Results

Theproposedmethodwas tested on simulated data generated
by the MRXCAT framework [17] and on fully sampled, free
breathing, cine MRI data. The recovered images for CS-
free breathing motion corrected were compared with CS-
free breathing images and with CS-breath held images. All
CS images were recovered in MATLAB (R2012a, MathWorks
Inc., Natick, MA) using the proposed hyperbolic tangent
based surrogate function to solve the nondifferentiability
problem of the 𝑙1-norm penalty. In the gradient descent
algorithm, step size 𝜂 in an update equation was chosen
empirically. Parameter values used in the algorithm are 𝛽 =
0.005, 𝜂 = 0.9, and 𝛾 ≥ 10. The same values for 𝛽, 𝜂, and

𝛾 were used for initial CS reconstruction and for the final
interframe motion estimation and compensation.

The structural similarity index (SSIM) [18], peak signal-
to-noise ratio (PSNR), and mean square error (MSE) were
used for quantitative comparison between CS-free breathing
reconstruction with motion correction and that without
motion correction. The PSNR and MSE of complete image
and ROI for CS-free breathing motion corrected and CS-free
breathing were calculated as

PSNR in dB =
10 log10 (MAX𝑐)

2

MSE
,

MSE = 1
𝑧 × 𝑧

𝑍−1

∑
𝑖=0

𝑍−1

∑
𝑗=0

(𝐶𝑖𝑗 − 𝑅𝑖𝑗)
2
,

(15)

where MAX𝑐 is a maximum pixel value of the current image
having dimensions of 𝑍 × 𝑍 and 𝐶𝑖𝑗 and 𝑅𝑖𝑗 are pixels
being compared with current and reference cardiac phases,
respectively. The ARPS block matching algorithm was used
for interframe respiratory motion estimation between the
reference image and the current image. Diastolic, middle of
systolic and diastolic, and systolic heart phases at different
respiratory states were used for both simulated images and
clinical data.

The MRXCAT, a Matlab software for numerical simula-
tion of cardiac MRI, is used for generating free breathing and
breath held images. For the MRXCAT, the following param-
eters were used: reconstruction matrix size of 256 × 256,
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(a) (b) (c)

Figure 2: Variable-density sampling patterns for different acceleration rates (R): (a) 𝑅 = 3, (b) 𝑅 = 4, and (c) 𝑅 = 8.

24 cardiac phases in the presence of respiratory motion, with
an image resolution of 1× 1×1mm3, TE = 1.5ms, TR = 3ms,
and flip angle = 60∘. In real free breathing cardiac cine MRI,
fully sampled ECG-gated data was acquired on a Philips 1.5
T scanner (b-SSFP). Reconstruction matrix size of 256 × 256,
6 cardiac cycles with 24 cardiac phases in each cycle, and an
image resolution of 2.5 × 2.5 × 8mm3 were used.

For comparison of the proposed method with k-t
FOCUSS, we used the following data: a short-axis MRI scan
(images shown in Figure 5) was acquired using a GE 1.5 T
Twin Speed scanner (R12M4) with a 5-element cardiac coil
and a FIESTA/FastCARD cine SSFP sequence. Scan parame-
ters were selected as follows: TE: 2.0ms, TR: 4.1ms, flip angle:
45∘, FOV: 350 × 350mm, slice thickness: 12mm, 8 views per
segment, 224 phase-encoding lines, 256 read-out samples,
and 16 temporal frames. To emulate the estimation of sensitiv-
ity maps from a prescan, we acquired a separate scan (which
we assume to be a prescan) with identical scan parameters
and estimated sensitivity maps as follows: Half of the (high
frequency) k-space samples from each coil were removed
from the prescan via a smoothing filter followed by an inverse
Fourier transform to obtain smoothed images for each coil.
To estimate the sensitivity maps, we divided each smoothed
coil image by the root sum of squares of all coil images.

The acquired data were retrospectively undersampled
for acceleration rates 𝑅 = 2 (50% of samples), 3 (33% of
samples), and 8 (12.5%of samples) using variable-density ran-
dom undersampling method. Sampling masks for different
acceleration rates are shown in Figure 2. The sampling mask
randomly selects more samples from the low frequencies of
the k-space data and fewer samples from the high frequencies
of the k-space data.

Figure 3 provides a comparison of the CS-free breathing
motion corrected (CS + MEMC), CS-free breathing (CS +
no MEMC), and breath held for the short-axis MRI images
generated from the MRXCAT simulation software at the
reduction factors 2 and 8. Figure 3(a) illustrates frames 1, 5,
and 12 out of 24 frames in a sequence, produced from fully
sampled breath held k-spaced data.Most of the changes occur
in the heart region, enclosed in the white box in (a), and are
taken as a region of interest (ROI). Figure 3(b) shows the

ROI, specifying left and right ventricles with endocardium
and epicardium. Figures 3(c) and 3(e) show the proposed
method recovery (CS+MEMC) at the reduction factors 2 and
8, respectively. Figures 3(d) and 3(f) represent the difference
between breath held and estimated images for the proposed
method. Figures 3(g) and 3(i) show CS + no MEMC at the
reduction factors 2 and 8, respectively. Figures 3(h) and 3(j)
represent the difference between breath held and estimated
images with CS + no MEMC.

Images recovered by the proposed method show sig-
nificant improvement as compared to the image recovery
without MEMC at both reduction factors. Motion artifacts
like ghosting and blurring can be seen in Figures 3(g) and
3(i) pointed by the black arrows. The proposed method
eliminated ghosting and blurring effects and achieved high
spatial and temporal accuracy as shown in Figures 3(c) and
3(e). The elimination of motion artifacts provides sharp
endocardium and epicardium borders. This sharpness is
very important in the clinical interpretation of ventricular
dynamics. The improved recovery of the proposed method
is also evident from difference images.

Figure 4 presents the comparison of the proposedmethod
and CS + no MEMC for the short-axis MRI images at the
reduction factors 3 and 8.

Figure 4(a) illustrates complete dataset of a diastolic,
middle of diastolic and systolic, and systolic frames in a
sequence, produced from clinically observed fully sampled
k-spaced data. Figure 4(b) shows the ROI, enclosed in
rectangular box in (a), representing left and right ventricle
and epicardium and endocardium. Figures 4(c) and 4(e)
show the proposed method recovery at reduction factors 3
and 8, respectively. The results of CS-free breathing without
MEMC at reduction factors 3 and 8 are illustrated in Figures
4(g) and 4(i), respectively. For clinical data, images generated
by the proposed method show significant improvement as
compared to the image recovery without MEMC at both
reduction factors. Motion artifacts like ghosting and blurring
can be seen in Figures 4(g) and 4(i) pointed by black arrows.
The systolic phase recovered by proposed method in (c) and
(e) is very close and clear to fully sampled ROI in (b) as
compared to (g) and (i) where not only are the images ghosted
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CS + MEMC CS + no MEMC

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Right ventricle

Le� ventricle

Epicardium

Endocardium

Figure 3: Comparison of recovered images with and without respiratory motion estimation for simulated data: frames 1, 5, and 12 (left to
right). (a) Gold standard images from full k-space breath held data. (b) Spatial region of interest (ROI). (c) Reconstruction using the proposed
technique (CS +MEMC) at𝑅 = 2. (d) Difference between estimated images (c) and (b). (e) Reconstruction using the proposed technique (CS
+ MEMC) at 𝑅 = 8. (f) Difference between estimated images (e) and (b). (g) Reconstruction with CS + no MEMC at 𝑅 = 2. (h) Difference
between estimated images (g) and (b). (i) Reconstruction CS + no MEMC at 𝑅 = 8. (j) Difference between estimated images (i) and (b).

and blurred, but also the heart walls are displaced from their
true location. Sharpness of epicardium and endocardium is
also prominently visible in images recovered through the
proposed method.

Figure 5 illustrates the comparison of the proposed
method (CS + MEMC) and k-t FOCUSS with MEMC for
the short-axis MRI dataset at reduction factor 4. Figure 5(a)

shows frames 1, 13, and 10 (from left to right) out of
the 16 frames in the sequence, calculated from the fully
sampled breath held k-space data. Using k-space tutorial [19],
motion-corrupted images are generated from the short-axis
MRI dataset. Figure 5(b) presents the proposed technique
reconstructions at reduction factor 4. The results for k-t
FOCUSS with MEMC at reduction factor 4 are presented
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Figure 4: Comparison of recovered images with and without respiratory motion estimation for clinical data: frames diastolic, middle of
diastolic and systolic, and systolic (left to right). (a) Gold standard images from full k-space data. (b) ROI. (c) Reconstruction using the
proposed technique (CS + MEMC) at 𝑅 = 3. (d) Difference between estimated images (c) and (b). (e) Reconstruction using the proposed
technique (CS + MEMC) at 𝑅 = 8. (f) Difference between estimated images (e) and (b). (g) Reconstruction with CS + no MEMC at 𝑅 = 3.
(h) Difference between estimated images (g) and (b). (i) Reconstruction CS + no MEMC at 𝑅 = 8. (j) Difference between estimated images
(i) and (b).
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Figure 5: Comparison of recovered images in pixel domain for proposed method and k-t FOCUSS with MEMC data at a reduction factor of
4. (a) Fully sampled breath held k-space data. (b) Recovered images with proposed method. (c) Reconstructed images for k-t FOCUSS with
MEMC.

in Figure 5(c). The proposed method reconstruction shows
significant improvement and less random noise than k-
t FOCUSS with MEMC reconstruction. Furthermore, k-
t FOCUSS with MEMC reconstructions contains motion
artifacts (visible with bright regions), while the proposed
method reconstructions are much cleaner. Tables 1, 2, and
3 provide a comparison of the proposed method and k-t
FOCUSS for performance metrics such as SSIM, PSNR, and
MSE. The numerical values of metrics for selected frames 1,
10, and 13 show that the proposed method outperforms k-t
FOCUSS with MEMC.

A plot for PSNR at different reduction factors for CS-
free breathing and CS-free breathing motion corrected is
shown in Figure 6. It is drawn for recovered images shown
in Figure 4. Dotted lines denote PSNR over the ROI and the
solid line shows it over the entire image.The curves show that
CS-free breathingmotion corrected (the proposedmethod) is
far better than the CS-free breathing at all reduction factors

for both the full reconstruction and the reconstructions of
ROI. Even at higher reduction factor like 12, PSNR for ROI
is 4 db better in CS-free breathing with MEMC as compared
to CS-free breathing without MEMC.

To show how the recovered images, with and without
MEMC, are similar to the fully sampled images, we used
SSIM. A plot for SSIM at different reduction factors for
CS-free breathing and CS-free breathing motion corrected
is shown in Figure 7. The plot is drawn for clinical data
of Figure 4. Solid lines denote SSIM over the ROI and
dotted line shows it over the entire image (full image). The
curves illustrate that the images recovered with the proposed
method are more similar to a gold standard as compared to
CS-free breathing without MEMC at all reduction factors.

A plot for reconstruction mean square error (MSE) at
different reduction factors for CS-free breathing and CS-
free breathing motion corrected is illustrated in Figure 8.
The plot is drawn for clinical data of Figure 4. Solid lines
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Table 1: SSIM comparison for the proposed method and k-t FOCUSS with MEMC.

Technique Diastolic (frame #1) Systolic (frame #10) Middle (frame #13)
The proposed method 0.7319 0.8687 0.8260
k-t FOCUSS 0.7004 0.8368 0.7302

Table 2: PSNR (db) comparison for the proposed method and k-t FOCUSS with MEMC.

Technique Diastolic (frame #1) Systolic (frame #10) Middle (frame #13)
The proposed method 29.9443 34.2610 31.1526
k-t FOCUSS 25.4316 32.3289 26.2374

Table 3: MSE comparison for the proposed method and k-t FOCUSS with MEMC.

Technique Diastolic (frame #1) Systolic (frame #10) Middle (frame #13)
The proposed method 0.001 3.7488𝑒 − 4 7.6690𝑒 − 4
k-t FOCUSS 0.002 5.8494𝑒 − 4 0.0024

Comparison of PSNR for CS + MEMC and CS + no MEMC
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Figure 6: Performance comparison of PSNR at different reduction
factors for CS-free breathing (CS + no MEMC) and CS-free
breathing motion corrected (CS + MEMC). Dotted lines depict
PSNR over the full image and solid lines show PSNR in the region
of interest (ROI).

denote MSE over the ROI and dotted line shows it over the
entire image.The curves illustrate that images recovered with
proposed method have smaller MSE in comparison with CS-
free breathingwithoutMEMCat all reduction factors for both
entire region and ROI.

6. Discussion

Interframe motion estimation and compensation has been
used to improve cardiac images in breath held condition
and at the same respiratory states. The proposed CS-free
breathing motion corrected framework exploits temporal
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Figure 7: Performance comparison of SSIM at different reduction
factors for CS-free breathing without MEMC and CS-free breathing
with MEMC. Dotted lines depict SSIM over the full image and solid
lines show SSIM in the region of interest (ROI).

redundancy among the same cardiac phases at different res-
piratory states (free breathing). The source of improvement
is the use of a novel smooth 𝑙1-norm approximation and
inclusion of sparse residual in the basic cost function of (3).

This article suggests a CS-free breathing motion cor-
rected recovery from cardiac cine MR data acquired below
the Nyquist sampling rate. The proposed framework is a
combination of interframe motion estimation technique and
compressed sensing. The ARPS block matching algorithm is
used for respiratory motion estimation and compensation.
A simple gradient descent algorithm, with the 𝑙1-norm
approximated by hyperbolic tangent function, is used to
reconstruct the motion corrected images. The proposed
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Figure 8: Performance comparison of MSE at different reduction
factors for CS-free breathing and CS-free breathing motion cor-
rected. Dotted lines depictMSE over the entire region and solid lines
depict MSE in the region of interest (ROI).

method is implemented for 2D ECG-gated cardiac cine
MRI for both simulation and clinical data. Implementation
parameters are discussed in an experimental setup section.

The proposed method requires higher computations due
to an iterative nature of the algorithm. To estimate motion
corrected image, the algorithm needs to compute motion
operators M and x alternatively multiple times. The ARPS
introduces interpolation error during the prediction process
of motion corrected image. There is a need to investigate
motion estimation schemes with reduced interpolation error
during the process of motion estimation and correction.This
error is inherent in all estimation schemes and is not a topic
in this article.

In the presented scheme, motion corrected images are
produced from a fixed reference frame. In the future, motion
estimation can be done from adjacent frames in both forward
and backward direction and other CS recovery approaches
can be used. Further research might be required to find its
usage in 3D dynamic cardiacMRI.The proposedmethodwill
require modification for arrhythmic patients because heart
rate variability is not considered in this work. Similar cardiac
phases at different respiratory states are chosen visually from
a sequence of cardiac MRI frames. Data binning might be
used for selection of cardiac phases at different respiratory
states.

7. Conclusion

In this article, we proposed a method for respiratory motion
correction in ECG-gated free breathing cardiac MRI. Inter-
framemotion estimation was used to estimate the respiratory
motion between the same cardiac phases, but at different

respiratory states. The block matching algorithm was used
for MEMC. A gradient descent algorithm based on flexible
𝑙1-norm approximation was used for the recovery of MR
images free from motion artifacts and close to the true MR
images. Standard metrics like SSIM, PSNR, and MSE at
different reduction factors were observed to be superior for
the proposed method as compared to the results obtained
without MEMC and k-t FOCUSS.
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