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perspectral imaging for spatial
prediction of soluble solid content in sweet potato
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Zhichao Hu,*b Xiang Han,a Chong Gaoa and Kaili Wanga

Visible and near infrared (Vis-NIR) hyperspectral imaging was used for fast detection and visualization of

soluble solid content (SSC) in ‘Beijing 553’ and ‘Red Banana’ sweet potatoes. Hyperspectral images were

acquired from 420 ROIs of each cultivar of sliced sweet potatoes. There were 8 and 10 outliers removed

from ‘Beijing 553’ and ‘Red Banana’ sweet potatoes by Monte Carlo partial least squares (MCPLS). The

optimal spectral pretreatments were determined to enhance the performance of the prediction model.

Successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were

employed to select characteristic wavelengths. SSC prediction models were developed using partial least

squares regression (PLSR), support vector regression (SVR) and multivariate linear regression (MLR). The

more effective prediction performances emerged from the SPA–SVR model with Rp
2 of 0.8581, RMSEP

of 0.2951 and RPDp of 2.56 for ‘Beijing 553’ sweet potato, and the CARS–MLR model with Rp
2 of 0.8153,

RMSEP of 0.2744 and RPDp of 2.09 for ‘Red Banana’ sweet potato. Spatial distribution maps of SSC were

obtained in a pixel-wise manner using SPA–SVR and CARS–MLR models for quantifying the SSC level in

a simple way. The overall results illustrated that Vis-NIR hyperspectral imaging was a powerful tool for

spatial prediction of SSC in sweet potatoes.
1 Introduction

Sweet potato (Ipomoea batatas L.) is grown worldwide as a strong
adaptive crop to drought, temperature and low fertile soils. It
contains plenty of starch, multiple vitamins, protein and inor-
ganic salts such as calcium, phosphorus and iron. Sweet potato
has been widely consumed for its functions of delaying aging,
improving immunity and preventing cancer.1,2 Soluble solids
mainly contain sugars, acids, vitamins and minerals,3,4 which
are the important indicators to determine the taste of sweet
potato. Consumers generally prefer sweet potato with high and
uniform soluble solid content (SSC). However, SSC distribution
in sweet potato varies greatly depending on growth environ-
ment such as temperature, moisture and light, which leads to
the non-uniform spatial quality.5 Whether fresh sweet potatoes
or dried chips or slices, SSC plays an important role in their
quality attribution and commercial value. Therefore, a strong
emphasis should be placed on visual detection of SSC distri-
bution in sweet potato to determine its quality level and develop
an online SSC-detection device.
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Traditionally, destructive techniques are time-consuming
and laborious for measurement of the SSC. Vibrational spec-
troscopic techniques offer the ability to measure internal
quality attributes of agro-food with the ease of application, the
non-destructive nature and rapidity.6,7 It can impart the
inherent chemical and physical information through interac-
tions between electromagnetic radiation and vibrational modes
of covalently bound molecules.8 Conventional near-infrared
(NIR) spectroscopy has been widely employed to predict the
gross SSC of diverse fruits such as pear,9,10 apples,11–13 water-
melons,14 citrus,15 tomatoes,16 and sweet cherries,17 but was
incapable of determining the change in SSC of different
positions.

Hyperspectral imaging is a promising technique to obtain
spatially resolved spectral information from a sample for
present chemical mapping by advances in digital imaging and
optics.18 As an rapid and non-contact tool, hyperspectral
imaging has been applied to measure the internal attributes of
foodstuff including total volatile basic nitrogen (TVB-N) content
in chicken,19 vitamin C content in head cabbage,20 as well as SSC
and other quality parameters of various fruits.21–25 In particular,
a partial least squares regression (PLSR) model was developed
to map the SSC on apple slices by visible/near-infrared (Vis-NIR)
hyperspectral imaging.26 A multispectral algorithm was
proposed to detect and visual the early decay of citrus with
fungal infection.27 Hyperspectral imaging was applied to visu-
alize the spatial distribution of protein content in peanuts
This journal is © The Royal Society of Chemistry 2020

http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra10630h&domain=pdf&date_stamp=2020-09-07
http://orcid.org/0000-0001-6272-335X


Fig. 2 Hyperspectral imaging system.
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coupled with chemometrics.28 The dry matter in potatoes was
detected by Vis-NIR hyperspectral system, and a PLSR model
was develop to generate the visualization map for dry matter,
with a determination coefficient of prediction set (Rp

2) of 0.849
and root mean square error of prediction (RMSEP) of 0.878%.29

However, to the best of our knowledge, no attention has been
paid respect to mapping the distribution of SSC in sweet potato.

The objective of this study was to explore the potential of
hyperspectral imaging techniques for spatial prediction of
soluble solids content in sweet potato. To this end, hyper-
spectral images were captured from two cultivars of sliced sweet
potatoes, and prediction models were developed for spatial
distribution of SSC using preprocessed spectral data and
optimal wavelengths.
2 Materials and methods
2.1 Sample preparation

There were two cultivars of sweet potatoes used for the experi-
ments. ‘Beijing 553’, a yellow-esh cultivar, and ‘Red Banana’,
with orange esh, were purchased from the XinLv Vegetable
Wholesale Market in Tai'an City, Shandong Province, China. A
batch of 14 sweet potatoes without any bruises or defects and
with uniform shape were selected for each cultivar, and trans-
ported to the postharvest engineering laboratory at Shandong
Agricultural University, Tai'an City, Shandong Province, China.
Then these samples were washed and dried under controlled
conditions with 20 �C for 24 h, and weighed. The weight of
‘Beijing 553’ sweet potatoes ranged between 187.39 g and
234.18 g whereas the weight of ‘Red Banana’ sweet potatoes
varied between 214.25 g and 267.38 g. Each sweet potato was cut
into six slices with 15 mm thick from le to right along its long
axis using a slicing tool (ST-100a, Gossoo, China), and residual
pieces at both ends were excluded as shown in Fig. 1. Each
sliced sweet potato was marked using a puncher with a diam-
eter of 15 mm, and 30 markers were acquired for a single sweet
potato, 840 markers in total.
2.2 Hyperspectral imaging system

As shown in Fig. 2, hyperspectral images were captured using
a portable hyperspectral imager in 400–1000 nm with 2.8 nm
resolution (GaiaField-V10E, Dualix Instruments Co., Ltd,
Chengdu, Sichuan Province, China), providing a three-
dimensional spectral cube of 1394 (pixels) � 1040 (lines) �
256 (bands). Four 100 W halogen lamps were symmetrically
Fig. 1 ‘Beijing 553’ sweet potato sample.
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placed around the hyperspectral imager to provide a stable light
source with an incident angle of 45�. A special computer was
equipped with the hyperspectral data acquisition soware
SpecView.

2.3 Hyperspectral images acquisition and calibration

Before collecting hyperspectral images, the light source was
turned on and preheated for 15 minutes to ensure its stability.
In order to capture clear and undistorted images, the exposure
time was set to 10.38 ms, and the distance between the lens and
the sample was 58.72 mm. The white reference image RW were
captured by scanning the standard white plate with light turned
on, and the dark reference image RD was obtained through
covering the lens without illumination. The raw hyperspectral
images R0 were calibrated as reectance image R to eliminate
the impacts of uneven illumination and dark current noise by
the following expression.30

R ¼ R0 � RD

RW � RD

(1)

Sliced sweet potatoes were sequentially scanned in the order
of slice A to slice F. The region of interest (ROI) (in this case
marker) of the corrected images were extracted by ENVI 4.6
(Environment for Visualizing Images soware, Research
Systems Inc., Boulder, CO, USA). The average spectrum of all the
pixels in the ROI was calculated to provide the spectral data for
the prediction model.

2.4 Measurement of soluble solids content

Aer hyperspectral images were acquired for each sliced sweet
potatoes, a digital refractometer (PAL-1, Atago Co, Tokyo, Japan)
was used to measure SSC. Flesh of sweet potato were rst
scooped out from each marker, and squeezed with manual
juicer (B-YZQ001, Bolne, Germany). Then the juice was sucked
with a straw and dropped on prism plate of refractometer to
show the SSC value on LCD. The measurement was repeated
three times to calculate the average value for each marker.

2.5 Data processing

2.5.1 Monte Carlo partial least squares. The abnormal
samples may seriously affect the performance of prediction
models due to errors from instruments and operations. Here,
Monte Carlo partial least squares (MCPLS) was used to remove
RSC Adv., 2020, 10, 33148–33154 | 33149



Fig. 3 Distribution of SSC in sweet potato.
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these outliers from the samples using MATLAB 2011a (the Math
Works Inc. Natick, MA, USA) and The Unscrambler X 10.4
(CAMO AS, Oslo, Norway) soware. Firstly, some fractions of the
samples were randomly selected to create the calibration set,
and the remaining was assigned to prediction set. Then PLS
models were developed multiple times until each sample was
used more than once as the prediction set. As a result, each
sample obtained a set of predictive residual errors (PRE). Mean
value of predicted residual errors (MPRE) and standard devia-
tion of predicted residual errors (STDPRE) were acquired for
each sample in the prediction set. Those samples with larger
MPRE and STDPRE were identied as abnormal samples.31

2.5.2 Sample set partition and spectra pretreatment.
Sample set portioning based on joint x–y distance (SPXY) is an
effective sample partition method, which takes into account
both spectral characteristics and chemical properties while
selecting samples. It has the advantage of improving the
predictive ability of the model.32 In this study, 840 markers
constituted the whole sample set, and were further divided into
calibration set and prediction set using MATLAB 2011a soware
aer elimination of abnormal samples.

To greatly improve the prediction ability of SSC in sweet
potatoes, spectral data were pretreated to remove noise and
other disturbances using baseline correction, de-trending,
moving average smoothing (MA), multiplicative scatter correc-
tion (MSC), Savitzky–Golay (SG), and standard normal variate
(SNV).33 A relatively good pretreatment was determined by
evaluating the performances of partial least squares regression
(PLSR) model.

2.5.3 Characteristic wavelength selection. As a forward
variable selection method, successive projection algorithm
(SPA) can improve the speed and accuracy of modeling by
reducing the collinearity and redundant information between
variables. It starts with a certain wavelength and calculates the
projection of the wavelength on the unselected wavelength in
each iteration. The wavelength with the maximum projection
value is selected as characteristic wavelength until the set
number of wavelengths reaches. The optimal number of vari-
ables is determined by the lowest root mean square error of
cross validation (RMSECV) in multiple linear regression (MLR)
calibration.34 The process of SPA was operated by a graphical
user interface GUI_SPA in MATLAB 2011a.

Competitive adaptive reweighting algorithm (CARS) is an
effective wavelength variable selection method using the
‘survival of the ttest’ strategy in Darwin's evolution theory.
Through N-times adaptive reweighted sampling technique, the
wavelength variables with large absolute value of regression
coefficient are screened out from PLS model, and the wave-
length variables with small weight are removed. Aer N-times
sampling, N subsets of variables are obtained in an iterative
manner. Based on 10-fold cross-validation, RMSECV values are
calculated for each subset of variables in PLS model, and the
subset with the smallest RMSECV is characterized as charac-
teristic wavelengths.35 The process of CARS was operated in
MATLAB 2011a.

2.5.4 Prediction models. PLSR employs the information
from full spectra to predict sample composition. It is used to
33150 | RSC Adv., 2020, 10, 33148–33154
model the maximum covariance or a linear relationship
between reference values (in this case SSC) Y and spectral data
X. In the process of modeling, a smaller amount of new vari-
ables in the X space were extracted to best describe the Y space
and reduce the dimensionality.36,37

As an extension of support vector machine (SVM), support
vector regression (SVR) attempts to cast the original data into
a feature space of high dimensionality using nonlinear
mapping functions. It conducts the linear relationship between
the independent and the dependent variables by adopting the
structural risk minimisation principle.38 During modeling,
three parameters, insensitive loss coefficient 3, penalty factor C,
width coefficient of kernel function (in this case radial basis
kernel) g, were optimized using a grid search procedure.

Multiple linear regression (MLR) is a widely used method for
modeling the relationship between spectra data and chemical
components by the linear equation dened as follows.39–41

Y ¼ a0 + a1X1 + a2X2 + . + aiXi + 3 (2)

where Y denotes SSC value, ai are the regression coefficient, Xi

are the spectral data at different wavelength bands, and 3 is the
regression deviation.

Each model was developed using The Unscrambler X 10.4
and Origin 2017 (Origin Lab Corporation, Northampton, MA,
USA) soware, the performance of which was evaluated by
a determination coefficient of calibration (Rc

2), determination
coefficient of prediction (Rp

2), root mean square error of cali-
bration (RMSEC), and root mean square error of prediction
(RMSEP). Moreover, residual predictive deviation (RPD) was
considered for calibration (RPDc) and prediction (RPDp).
3 Results and discussion
3.1 Analysis of soluble solids content

SSC was measured from 840 ROIs of two cultivars of sweet
potatoes. Fig. 3 illustrated the SSC distribution of 840 ROIs. For
‘Beijing 553’ sweet potato, SSC values of 420 ROIs varied from
9.3–15.5 �Brix, and most of them ranged from 10.3–13.0 �Brix.
For ‘Red Banana’ sweet potato, SSC values of 420 ROIs varied
from 5.5–10.2 �Brix, and most of them ranged from 7.0–9.2
�Brix. It could be seen clearly from the Fig. 3 that SSC values of
‘Beijing 553’ sweet potato were generally higher than that of
This journal is © The Royal Society of Chemistry 2020



Fig. 4 Spectral curves for two cultivars of sweet potatoes. (a) Original
spectral curves; (b) mean spectral curves.

Fig. 5 Scatter plot of MPRE and STDPRE for MCPLS. (a) ‘Beijing 553’
sweet potato; (b) ‘Red Banana’ sweet potato.
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‘Red Banana’ sweet potato. Moreover, ‘Beijing 553’ sweet pota-
toes had a wider SSC distribution than ‘Red Banana’ sweet
potato. On the whole, there were notable distinctions in SSC
value and its distribution between two cultivars of sweet
potatoes.
3.2 Spectral curves

Fig. 4 showed the original and mean spectral curves from 420
ROIs for each cultivar of sweet potato. It was found that spectral
curves of ‘Beijing 553’ sweet potato were similar to that of ‘Red
Banana’ sweet potato, but the former is higher than the latter.
The spectral difference in the visible range was caused by the
color characteristics of the samples themselves. There was
a large absorption peak at around 425 nm, which was the strong
absorption band of carotenoids.29 The small absorption peak
around 650 nm was the strong absorption region of chloro-
phyll.42 Moreover, spectral reectance had a notable difference
in the NIR region as the result of the chemical differences. The
peaks at 770 nm and 980 nm were assumed to O–H stretching
third- and second-overtone of water respectively, which were
relevant to SSC in sweet potatoes.35
Table 1 Statistics analysis of measured samples of the calibration set
and prediction set

Cultivars Sample sets Number

Soluble solid content (�Brix)

Min Max Mean SD

Beijing 553 Calibration 308 9.9 13.4 11.8 0.7758
Prediction 102 10 13 11.9 0.7560

Red banana Calibration 309 6.1 9.3 8.0 0.6669
Prediction 103 6.5 9.2 8.0 0.5739
3.3 Elimination of abnormal samples

75% of the samples were randomly selected as the calibration
set, and the remaining 25% were used as the prediction set.
This process was then repeated 5000 times, and scatter plot of
MPRE–STDPRE for MCPLS was illustrated in Fig. 5. For ‘Beijing
553’ sweet potato, there were 10 abnormal samples with MPRE
over 1.0 and STDPRE over 0.099. As a result, these abnormal
samples were removed including samples 207, 226, 228, 317,
This journal is © The Royal Society of Chemistry 2020
321, 322, 324, 377, 395, and 396 (Fig. 5a). For ‘Red Banana’
sweet potato, there were 8 abnormal samples with MPRE over
0.75 and STDPRE over 0.12. They were samples 1, 16, 25, 90,
108, 174, 249, and 308 (Fig. 5b). The remaining 410 samples of
‘Beijing 553’ sweet potatoes and 412 samples of ‘Red Banana’
sweet potatoes could be used for SSC prediction.

3.4 Sample set partition and spectra pretreatment

SPXY algorithmwas applied to split the samples into calibration
set and prediction set at the ratio of 3 : 1, and the results were
shown in Table 1. It could be observed that the maximum and
minimum values of SSC occurred in calibration set of two
cultivars of sweet potato, and SSC values were widely distributed
in the prediction set. Thus sample set partition was reasonable.

Various spectral pretreatments were explored and evaluated
their performances of SSC prediction using PLSR models. SG
was the most commonly used method to eliminate noise. SNV
and MSC could be applied to eliminate the scattering effect
caused by the light and particle size. De-trending could elimi-
nate the baseline dri caused by spectral diffuse reection.
Those methods were considered with good spectral pre-
processing ability when PLSRmodel had the higher R2 and RPD,
and the lower RMSE. Table 2 demonstrated the regression
statistics achieved on preprocessed data for calibration and
prediction of sweet potatoes. For ‘Beijing 553’ sweet potatoes,
RMSEC varied between 0.3224 and 0.3309 with Rc

2 ranging
between 0.8160 and 0.8254, and RMSEP varied between 0.3577
and 0.3687 with Rp

2 ranging between 0.7713 and 0.7853. The
better results were emerged in PLSR models with de-trending
pre-treatment due to the higher value RPDc of 2.41 and RPDp

of 2.11. For ‘Red Banana’ sweet potatoes, PLSR models with
original spectra acquired the relatively good performance as the
result of the higher RPDc of 2.12 and RPDp of 1.88. Therefore,
spectral data preprocessed with de-trending and original
spectra could be used for subsequent analysis of ‘Beijing 553’
and ‘Red Banana’ sweet potatoes, respectively.

3.5 Characteristic wavelengths selection

Spectral data of 256 bands contained a large amount of
redundant, collinear and overlapping information, which
deteriorated the performance of the multivariate calibration
models. In this study, SPA and CARS were used to select char-
acteristic wavelengths with the smallest collinearity and least
redundancy for improving the modeling efficiency. Through
SPA method, 18 characteristic wavelengths from ‘Beijing 553’
RSC Adv., 2020, 10, 33148–33154 | 33151



Table 2 PLSR models of sweet potato SSC using different pretreatment methodsa

Cultivars Pretreatment Rc
2 RMSEC RPDc Rp

2 RMSEP RPDp PCs

Beijing 553 Original 0.8227 0.3248 2.39 0.7713 0.3687 2.05 15
Baseline 0.8228 0.3248 2.39 0.7793 0.3633 2.08 15
De-trending 0.8254 0.3224 2.41 0.7853 0.3577 2.11 13
MA 0.8192 0.3280 2.37 0.7777 0.3648 2.07 15
MSC 0.8219 0.3256 2.38 0.7798 0.3625 2.09 13
SG 0.8160 0.3309 2.34 0.7822 0.3612 2.09 15
SNV 0.8201 0.3271 2.37 0.7782 0.3643 2.08 14

Red banana Original 0.7754 0.3146 2.12 0.7331 0.3058 1.88 14
Baseline 0.7724 0.3182 2.10 0.7024 0.3146 1.82 13
De-trending 0.7465 0.3358 1.99 0.6733 0.3296 1.74 17
MA 0.7627 0.3326 2.01 0.7065 0.3146 1.82 15
MSC 0.7514 0.3327 2.00 0.7029 0.3143 1.82 11
SG 0.7580 0.3338 2.00 0.7066 0.3145 1.82 14
SNV 0.7661 0.3226 2.07 0.7007 0.3155 1.82 12

a ‘PCs’ means number of principal components.

Table 3 Characteristic wavelengths selected by SPA and CARS methods

Cultivars Selection methods Number Characteristic wavelengths (nm)

Beijing 553 SPA 18 401, 404, 409, 411, 418, 423, 433, 437, 454, 467, 530, 562,
607, 715, 836, 909, 944, 978

CARS 19 404, 442, 479, 498, 501, 515, 518, 552, 555, 577, 580, 604,
607, 632, 644, 670, 746, 946, 949

Red banana SPA 35 418, 423, 425, 428, 433, 435, 462, 467, 469, 471, 474, 476,
481, 486, 496, 508, 530, 547, 560, 577, 602, 632, 655, 672,
708, 743, 792, 810, 839, 865, 891, 907, 946, 959, 989

CARS 36 452, 457, 462, 467, 471, 474, 479, 510, 520, 523, 547, 552,
560, 572, 587, 592, 622, 634, 675, 682, 710, 723, 748, 766,
795, 800, 802, 815, 818, 828, 901, 909, 941, 949, 957, 997

Table 4 Performance of SSC prediction using PLSR, SVR and MLR modelsa

Cultivar Model Spectra Parameter

Calibration set Prediction set

Rc
2 RMSEC RPDc Rp

2 RMSEP RPDp

Beijing 553 PLSR SPA 9 0.7318 0.4018 1.93 0.7486 0.3804 1.99
CARS 10 0.6729 0.4437 1.75 0.6947 0.4191 1.80

SVR SPA (100, 0.1, 0.077) 0.8600 0.2890 2.68 0.8581 0.2951 2.56
CARS (100, 0.1, 0.026) 0.8370 0.3057 2.54 0.6909 0.4327 1.75

MLR SPA 0.05 0.7318 0.4148 1.88 0.8147 0.3608 2.10
CARS 0.05 0.6957 0.4426 1.75 0.7969 0.3800 1.99

Red banana PLSR SPA 10 0.7361 0.3426 1.95 0.7486 0.3804 1.51
CARS 13 0.7331 0.3445 1.94 0.6947 0.4191 1.37

SVR SPA (100, 0.1, 0.071) 0.7593 0.3295 2.02 0.7512 0.2875 2.00
CARS (100, 0.1, 0.033) 0.8010 0.2686 2.48 0.6728 0.3888 1.48

MLR SPA 0.05 0.7518 0.3535 1.89 0.8069 0.3127 1.84
CARS 0.05 0.8385 0.2881 2.31 0.8153 0.2744 2.09

a Parameter of PLSR model means the optimal number of PCs; parameters of SVR model mean different penalty factor (C), insensitivity loss
coefficient (3) and width coefficient of kernel function (g), shown as (C, 3, g); parameter of MLR model means signicance level.

RSC Advances Paper
sweet potato and 35 characteristic wavelengths from ‘Red
Banana’ sweet potato were selected, accounting for 7.03% and
13.67% of the total wavelength variables, respectively. Through
CARS method, 19 characteristic wavelengths from ‘Beijing 553’
33152 | RSC Adv., 2020, 10, 33148–33154
sweet potato and 36 characteristic wavelengths from ‘Red
Banana’ sweet potato were selected, accounting for 7.42% and
14.06% of the total wavelength variables, respectively. All
characteristic wavelengths were detailed in Table 3.
This journal is © The Royal Society of Chemistry 2020



Fig. 6 Scatter plots of measured versus predicted SSC. (a) SPA–SVRmodel for ‘Beijing 553’ sweet potato; (b) CARS–MLRmodel for ‘Red Banana’
sweet potato.
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3.6 Prediction models for soluble solids content

Prediction models for SSC were developed using PLSR, SVR and
MLR combined with characteristic wavelengths, and their
performances were presented in Table 4. For ‘Beijing 553’ sweet
potato, SVR model using characteristic wavelengths selected by
SPA (SVR–SPA) provided the best performance with higher Rc

2

(0.8600) and Rp
2 (0.8581), lower RMSEC (0.2890) and RMSEP

(0.2951). RPDc and RPDp were 2.68 and 2.56, respectively. For
‘Red Banana’ sweet potato, the more effective prediction results
were emerged by MLR model using characteristic wavelengths
selected by CARS (MLR–CARS), with Rc

2 of 0.8385 and Rp
2 of

0.8153, RMSEC of 0.2881 and RMSEP of 0.2744. RPDc and RPDp

were 2.31 and 2.09, respectively. Fig. 6 showed the scatter plots
of measured versus predicted SSC obtained by SPA–SVR and
CARS–MLR models, and the predicted SSC values correlated
well with measured ones.
3.7 Visual distribution of soluble solids content

Spatial distribution maps of SSC in two cultivars of sweet
potatoes could be obtained in a pixel-wise manner using SPA–
SVR and CARS–MLR models. The specic steps were as follows:
(1) obtaining the hyperspectral images of sweet potato slices at
characteristic wavelengths; (2) extracting the reectance of all
Fig. 7 Distribution map of SSC using SPA–SVR model for ‘Beijing 553’
sweet potato (a), and CARS–MLR for ‘Red Banana’ sweet potato (b).

This journal is © The Royal Society of Chemistry 2020
pixels in the characteristic wavelength image; (3) calculating the
SSC corresponding to each pixel point using the prediction
models; (4) constructing the spatial distribution maps of SSC in
sweet potato slices by pseudo-color processing over gray-scale
image.

Fig. 7 showed the SSC distribution in sliced sweet potatoes in
term of a variation in color from blue to red, higher SSC with
intense red color. For ‘Beijing 553’ sweet potato, the 1st, 2nd and
6th slices (from le to right) showed higher SSC values with more
red pixels. SSC in other three slices was a signicant change from
high to low as the result of red at central areas and yellow-green
near epidermis. For ‘Red Banana’ sweet potato, central areas
and epidermis of six slices have high-SSC red pixels, and other
locations showed low-SSC yellow pixels. In general, ‘Beijing 553’
sweet potato had higher SSC than ‘Red Banana’ sweet potato.
However, SSC was more uneven within ‘Beijing 553’ sweet potato
compared with ‘Red Banana’ sweet potato.

Some studies have been investigated to predict the sugar
content in potatoes (another tuber crop) using spectral proles
obtained by hyperspectral imaging, dielectric and nuclear
magnetic resonance, and most types of spectral analyses pre-
sented a good predictive ability for the average SSC rather than
spatial distribution of SSC within potato tubers.43–46 In this
study, the prediction results acquired from the mapping tech-
nique showed the signicant differences in SSC occurring
spatially within sweet potatoes, which demonstrated hyper-
spectral imaging as a powerful tool for spatial prediction of SSC
in sweet potatoes, laying a foundation for develop an online
SSC-detection device.
4 Conclusions

This study demonstrated that Vis-NIR hyperspectral imaging
was capable of determining the spatial distribution of SSC in
sweet potato. SPA–SVR model had the best performance for
‘Beijing 553’ sweet potato with higher Rc

2 (0.8600) and Rp
2

(0.8581), lower RMSEC (0.2890) and RMSEP (0.2951). RPDc and
RPDp were 2.68 and 2.56, respectively. MLR–CARS model was
the more effective for ‘Red Banana’ sweet potato, with Rc

2 of
RSC Adv., 2020, 10, 33148–33154 | 33153
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0.8385 and Rp
2 of 0.8153, RMSEC of 0.2881 and RMSEP of

0.2744. RPDc and RPDp were 2.31 and 2.09, respectively.
Distribution of SSC in sweet potatoes was visualized and map-
ped to allow quantifying the SSC level in a spatial way, showing
the great potential for quality monitor of sweet potatoes.
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115, 91–98.

23 A. Baiano, C. Terracone, G. Peri and R. Romaniello, Comput.
Electron. Agric., 2012, 87, 142–151.

24 J. B. Li and L. P. Chen, Comput. Electron. Agric., 2017, 142,
524–535.

25 Y. P. Huang, R. F. Lu and K. J. Chen, J. Food Eng., 2018, 236,
19–28.

26 C. Mo, M. S. Kim, G. Kim, J. Lim, S. R. Delwiche, K. Chao,
H. Lee and B. K. Cho, Biosyst. Eng., 2017, 159, 10–21.

27 J. B. Li, W. Q. Huang, X. Tian, C. P. Wang, S. X. Fan and
C. J. Zhao, Comput. Electron. Agric., 2016, 127, 582–592.

28 H. W. Yu, Q. Wang, A. M. Shi, Y. Yang, L. Liu, H. Hu and
H. Z. Liu, Spectrosc. Spectral Anal., 2017, 37, 853–858.

29 Y. C. Xu, X. Y. Wang, X. Yin, Z. X. Hu and R. C. Yue, Trans.
Chin. Soc. Agric. Mach., 2018, 49, 339–344, 357.

30 W. C. Guo, F. Zhao and J. L. Dong, Food Anal. Methods, 2016,
9(1), 38–47.

31 W. L. Guo, Y. P. Du, Y. C. Zhou, S. Yang, J. H. Lu, H. Y. Zhao,
Y. Wang and L. R. Teng,World J. Microbiol. Biotechnol., 2012,
28, 993–1002.

32 Z. F. Yang, H. Xiao, L. Zhang, D. J. Feng, F. Y. Zhang,
M. S. Jiang, Q. M. Sui and L. Jia, Anal. Methods, 2019, 11,
3936–3942.

33 H. L. Wang, J. Y. Peng, C. Q. Xie, Y. D. Bao and Y. He, Sensors,
2015, 15(5), 11889–11927.

34 W. W. Cheng, D. W. Sun, H. B. Pu and Q. Y. Wei, Food Chem.,
2018, 239, 1001–1008.

35 H. T. Wang, R. Y. Zhang, Z. Peng, Y. L. Jiang and B. X. Ma, J.
Food Process Eng., 2019, 42(5), e13100.

36 J. P. Imer Orrillo, T. Cruz, C. Alicia, O. Maritza,
C. Alessandra, F. B. Douglas and S. Raúl, Food Control,
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